方阵的相似变换
- 格式:pptx
- 大小:513.99 KB
- 文档页数:25
一、n 维向量的定义及运算一、n 维向量的定义及运算二、向量空间二、向量空间第一节方阵的特征值及其特征向量第二节相似矩阵第三节实对称阵的相似对角化一、方阵的特征值及其特征向量的概念一、方阵的特征值及其特征向量的概念二、方阵的特征值及其特征向量的计算二、方阵的特征值及其特征向量的计算三、方阵的特征值及其特征向量的性质三、方阵的特征值及其特征向量的性质对11=λ,解方程组0)1(=−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−=−000110101211121112r A E , 所以A 的对应于特征值11=λ的全部特征向量为),0(111R k k k ka x ∈≠⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=111a .对22−=λ,解方程组0)2(=−−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−−−−=−−0000001111111111112r A E 得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=101,01121a a ,所以A 的对应于特征值22−=λ的全部特征向量为:,,(10101111212111R k k k k a k a k x ∈⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=+=且不同时为零)对21=λ,解方程组0)2(=−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−=−0001101012111211122r A E得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=111a .所以A 的对应于特征值21=λ的全部特征向量为 ),0(111R k k k ka x ∈≠⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==对132−==λλ,解方程组0)(=−−x A E , 由 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−−−−=−−000000111111111111r A E得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=101,01121a a ,所以A 的对应于特征值132−==λλ的全部特征向量为:R k k k k a k a k x ∈⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=+=21212211,(101011且不同时为零)推论1、方阵A 可逆Ù|A|≠0ÙA 的特征值全不为零。
矩阵的相似变换及其应用矩阵是线性代数中的重要概念之一,它被广泛应用于物理、工程、计算机科学等领域。
在矩阵中,相似变换是一种常见的操作,它可以将一个矩阵转化为另一个相似的矩阵,从而方便求解问题。
一、什么是相似变换相似变换指的是将一个矩阵A通过一个线性变换P变为另一个矩阵B的过程。
这种变换需要满足两个条件:一是变换矩阵P可逆;二是A和B具有相同的特征值。
具体来说,假设A和B都是n阶方阵,它们的特征值为λ1,λ2,…,λn。
若存在一个可逆矩阵P,使得P-1AP=B,则称A与B相似,这种变换叫做相似变换。
这个定义显然比较抽象,下面我们用一个例子来说明相似变换的具体含义。
假设有如下矩阵:A = [1 23 4]我们可以求出它的特征值和特征向量:λ1 = -0.3723,v1 = [-0.8246, 0.5658]Tλ2 = 5.3723,v2 = [-0.4159, -0.9090]T将特征向量组成的矩阵P=[v1, v2],则有:P = [-0.8246 -0.41590.5658 -0.9090]由于特征向量的性质,我们有:P-1AP = Λ = [-0.3723 00 5.3723]其中Λ是由特征值构成的对角矩阵。
这就是相似变换的应用,我们可以通过这种变换将一个矩阵A转化为一个对角矩阵Λ,从而更方便地求解问题。
二、相似变换的特性相似变换有一些重要的特性,这些特性可以帮助我们更深入地理解它的应用。
首先,相似变换是可传递的。
也就是说,如果矩阵A与B相似,B与C相似,那么A与C也相似。
这个特性可以通过变换矩阵的乘积来证明,即P-1AP=Λ,Q-1BQ=Λ,则有:(PQ)-1A(PQ) = Q-1P-1APQ = Q-1ΛQ = Λ'其中Λ'是由特征值构成的对角矩阵,证明了A与C相似。
其次,相似变换保留了矩阵的秩和行列式。
具体来说,如果矩阵A与B相似,则它们的秩和行列式相等。
这个特性可以通过排列特征值的乘积来证明,即有:|A| = λ1 * λ2 * … * λn|B| = μ1 * μ2 * … * μn由于A与B相似,则它们的特征值相同,因此有μ1 * μ2 * … * μn = λ1 * λ2 * … * λn,从而有|A| = |B|。
第六章 矩阵的相似变换本章主要讨论方阵的特征值和特征向量、方阵的相似变换和对角化等问题.第一节 方阵的特征值和特征向量一、特征值与特征向量定义1 设A 是n 阶方阵,如果存在数λ和n 维非零向量X 使关系式λ=AX X (6.1)成立,则称数λ为方阵A 的特征值;非零列向量X 称为A 对应于特征值λ的特征向量.将式(6.1)改写成()λ−=A E X 0, (6.2) 将(6.2)看成关于X 的齐次线性方程组,它有非零解当且仅当其系数行列式满足 0λ−=A E , (6.3)即1112121222120λλλ−−=−n nn n nn a a a a a a a a a , (6.4)这是以λ为未知数的一元n 次方程,称为A 的特征方程,其左端λ−A E 是λ的n 次多项式,记作()λf ,称为A 的特征多项式,特征方程的根就是A 的特征值.根据代数基本定理,在复数范围内,n 阶方阵A 有n 个特征值(重根按重数计算),记作12,,,λλλ n .求出特征值λi 后,将λi 代入齐次线性方程组(6.2)中,求解方程组()λ−=i A E X 0 (6.5) 的所有非零解向量,就是属于λi 的特征向量。
对不同的特征值逐个计算,可求得属于各特征值的全部特征向量.若非零向量X 是方阵A 的特征向量,则由(6.1)式可知,对任意实数0k ≠,有()()k k λ=A X X ,(6.6) 这表明k X 也是方阵A 的特征向量,因此属于同一特征值的特征向量有无穷多个;反之,不同特征值对应的特征向量必不相同,即一个特征向量只能属于一个特征值(证明留给读者作为练习).由齐次线性方程组解的性质容易证得如下定理.定理1 设λ是方阵A 的特征值,12,,,s p p p 是属于λ的特征向量,则12,,,s p p p 的任意非零线性组合仍是属于λ的特征向量.例1 求141130002−−=A 的特征值和特征向量. 解 A 的特征多项式2141()130(2)(1)002λλλλλλλ−−−=−=−=−−−f A E ,所以A 的特征值为12λ=,231λλ==. 对于12λ=,解齐次方程组(2)−=A E X 0.由3411012110011000000−−−=→−A E ,得基础解系 1111−=p ,所以111(0)≠k k p 是对应于12λ=的全部特征向量.对于231λλ==,解齐次方程组()−=A E X 0.由 241120120001001000−−−=→A E ,得基础解系 2210−=p ,所以222(0)≠k k p 是对应于231λλ==的全部特征向量. 例2 求204121103−−=A 的特征值和特征向量.解 A 的特征多项式2204()121(1)(2)13λλλλλλλ−−−=−=−=−+−−f A E ,所以A 的特征值为11λ=−,232λλ==. 对于11λ=−,解齐次方程组()+=A E X 0.由104104131011104000−−+=→−A E ,得基础解系 1411−=p ,所以111(0)≠k k p 是对应于11λ=−的全部特征向量.对于232λλ==,解齐次方程组(2)−=A E X 0.由 4041012101000101000−−−=→A E ,得基础解系 2010=p ,3101− = p ,所以2233+k k p p (2k ,3k 不同时为0)是对应于232λλ==的全部特征向量.二、特征值和特征向量的性质定理2* 设12,,,λλλ n 是n 阶方阵()=ij a A 的n 个特征值,则有(1)11n n i ii i i a λ==∑∑; (2)1ni i λ==∏A .其中1niii a=∑是A 的主对角元之和,称为方阵A 的迹,记作tr()A .证明 见附录六例3 设7414744y x −= −−A 的特征值为123λλ==,312λ=,求,x y 的值. 解 由定理2可得123123tr()7718331212108x x y λλλλλλ=++=++=+− A A 解之得4,1x y ==−.定理3 设λ是方阵A 的特征值,p 是A 的属于λ的任一特征向量,则有: (1)k R ∀∈,k λ是k A 的特征值,p 是k A 的属于k λ的特征向量;(2)对任意非负整数k ,k λ是k A 的特征值,p 是k A 的属于k λ的特征向量; (3)若()ϕA 是A 的m (m 为任意非负整数)次多项式,即01()m m a a a ϕ=+++A E A A ,则()ϕλ是()ϕA 的特征值,p 是()ϕA 的属于()ϕλ的特征向量;(4)若A 可逆,则0λ≠,且1λ是1−A 的特征值,p 是1−A 的属于1λ的特征向量;(5)若A 可逆,则λA是*A 的特征值,p 是*A 的属于λA的特征向量;(6)λ也是T A 的特征值.证明 (1)由λ=Ap p ,有k k λ=Ap p 成立。
矩阵相似成立条件矩阵相似是线性代数中的一个重要概念,它在矩阵理论和应用中有着广泛的应用。
相似矩阵的概念源自于矩阵变换的相似性,两个矩阵如果相似,则它们表示着相同的线性变换,只是在不同的坐标系下进行表示。
本文将围绕着矩阵相似的定义、性质和成立条件展开详细的阐述。
一、矩阵相似的定义矩阵A和B是n阶的方阵,如果存在一个可逆矩阵P,使得P^{-1}AP=B成立,那么矩阵A和B就称为相似矩阵。
可以直观地解释为,如果存在一个可逆矩阵P,对矩阵A进行线性变换后得到的结果与矩阵B相同,那么这两个矩阵就是相似矩阵。
相似矩阵的概念使得我们可以在不同的坐标系下进行对同一线性变换的表示,从而对矩阵的特征值、特征向量等性质进行更深入的研究。
二、矩阵相似的性质1. 相似关系是一个等价关系相似矩阵的定义满足等价关系的三个条件,即自反性、对称性和传递性。
自反性是指矩阵A和自己相似,即存在可逆矩阵P,使得P^{-1}AP=A成立。
对称性是指如果矩阵A和B相似,则矩阵B和A也相似。
传递性是指如果矩阵A和B相似,矩阵B和C相似,那么矩阵A和C也相似。
矩阵相似关系满足等价关系的性质。
2. 相似矩阵的特征值性质相同如果矩阵A和B相似,那么它们的特征多项式相同,从而有相同的特征值。
矩阵相似关系保持了矩阵特征值的性质,这一性质在矩阵的特征值分解、对角化等问题中具有重要的意义。
3. 相似矩阵的特征向量关系相似矩阵具有相同的特征向量,即如果矩阵A和B相似,它们的特征向量可以通过相同的线性变换关系得到。
这一性质在矩阵对角化和特征值问题的研究中有着重要的应用。
三、矩阵相似的成立条件1. 充分条件若n阶矩阵A与n阶矩阵B相似,即A∼B,则A与B有相同的特征值。
证明:设A与B相似,即存在非奇异矩阵P,使得P^{-1}AP=B,设x是A的一个特征向量,那么Px是B的一个特征向量。
A与B有相同的特征值。
2. 必要条件若n阶矩阵A与n阶矩阵B有相同的特征值,即A与B有相同的特征值。