第6章 矩阵的相似变换
- 格式:pdf
- 大小:675.67 KB
- 文档页数:41
1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。
(3)传递性如果A∽B,B∽C,那么A∽C。
已知有X,Y使B?X?1AX,C?Y?1BY。
令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。
3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。
?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。
★ 1、求下列矩阵的Jordan 标准形:⑴ -101120-403A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ ;⑵;⑵31-1-202-1-13A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦解:⑴解:⑴ 求A 的特征多项式并得到特征值的特征多项式并得到特征值101det(I A)1243λλλλ+−−=−−− 第一行乘以3λ−并加上第三行并加上第三行+10-1=-1-20(3)(1)40λλλλ−++ 这里变换行列式列使其变为上三角行列式这里变换行列式列使其变为上三角行列式 2210121(1)(2)0(1)λλλλλ−+=−−−=−−− 所以A 的特征值为12==1λλ ,3=2λ ,对应的2重特征值12==1λλ解方程组(I-A)x =0,由2131122201201201110110011/2402000000r r r r I A +−−−−⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−=−−⎯⎯⎯→−−⎯⎯⎯→−−⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦121×, 2101/2011/2000r r −−⎡⎤⎢⎥⎯⎯⎯⎯→⎢⎥⎢⎥⎣⎦ 10021002x y z x y z ⎧+−=⎪⎪⎨⎪++=⎪⎩ 设x 为1,依次可以解出112x y z =⎧⎪=−⎨⎪=⎩ 得基础解系:T T1(1,1,2)p =−只有一个线性无关特征向量,故A 的Jordan 标准形为:标准形为:1112J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⑵ 求A 的特征多项式并得到特征值的特征多项式并得到特征值2311211det(I A)2202113213211211020202400(44)/λλλλλλλλλλλλλλλλ−−−−−=−=−−−−−−−−−=−−+−⑴ 7543192864A A A A A I −−++−⑵ 1A − ⑶ 100A解:解:2322110102210()det(I A)43110011124343210011(1)(2)45200(1)/(1)λλλψλλλλλλλλλλλλλλλλλ+−−−−−=−=−=+−=+−−−−−−−=+−=−−=−+−−+⑴ 令7543()192864g λλλλλλ=−−++−,需要计算g(A),用()/g()ψλλ 得到:得到:4322()(41032)()3228g λλλλλψλλλ=+++−−+−由Hamilton-Cayley 定理知(A)O ψ= ,于是:,于是:221160(A)3A 22A 8I 6443019324g −⎡⎤⎢⎥=−+−=−⎢⎥−⎣⎦⑵ 由32(A)A 4A 5A 2I O ψ=−+−= 得21(A 4A 5I)2A I ⎡⎤−+=⎢⎥⎣⎦故得到:故得到:123101(A 4A 5I)41023/21/21/2A −−⎡⎤⎢⎥=−+=−⎢⎥−⎣⎦⑶ 设100210()()b 2b b q λλψλλλ=+++ 注意到(2)(1)'(1)0ψψψ=== ,分别将2λ=和1λ= 代入上式,再对上式求导数后将1λ=代入得到:代入得到:1002102102124211002b b b b b b b b ⎧=++⎪=++⎨⎪=+⎩ 解得到解得到 100010111002220023022101b b b ⎧=−⎪=−+⎨⎪=−⎩故得到:故得到:100221010010010019910004002010201221012A b A b A b I −⎡⎤⎢⎥=++=−⎢⎥⎢⎥−−⎣⎦31122113λλλ−−−+−-21-1-2-21-1-2+1λλλ211221122λλ−−−−−−1122162616p i p ⎥⎥==−⎥⎥22212012p ⎤−⎥==33213313i p ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦111623263111623ii ⎤−⎥⎥−⎥⎥⎥⎥⎦则称A 是Hermite 正定矩阵(半正定矩阵)。
第六章 矩阵的相似变换本章主要讨论方阵的特征值和特征向量、方阵的相似变换和对角化等问题.第一节 方阵的特征值和特征向量一、特征值与特征向量定义1 设A 是n 阶方阵,如果存在数λ和n 维非零向量X 使关系式λ=AX X (6.1)成立,则称数λ为方阵A 的特征值;非零列向量X 称为A 对应于特征值λ的特征向量.将式(6.1)改写成()λ−=A E X 0, (6.2) 将(6.2)看成关于X 的齐次线性方程组,它有非零解当且仅当其系数行列式满足 0λ−=A E , (6.3)即1112121222120λλλ−−=−n nn n nn a a a a a a a a a , (6.4)这是以λ为未知数的一元n 次方程,称为A 的特征方程,其左端λ−A E 是λ的n 次多项式,记作()λf ,称为A 的特征多项式,特征方程的根就是A 的特征值.根据代数基本定理,在复数范围内,n 阶方阵A 有n 个特征值(重根按重数计算),记作12,,,λλλ n .求出特征值λi 后,将λi 代入齐次线性方程组(6.2)中,求解方程组()λ−=i A E X 0 (6.5) 的所有非零解向量,就是属于λi 的特征向量。
对不同的特征值逐个计算,可求得属于各特征值的全部特征向量.若非零向量X 是方阵A 的特征向量,则由(6.1)式可知,对任意实数0k ≠,有()()k k λ=A X X ,(6.6) 这表明k X 也是方阵A 的特征向量,因此属于同一特征值的特征向量有无穷多个;反之,不同特征值对应的特征向量必不相同,即一个特征向量只能属于一个特征值(证明留给读者作为练习).由齐次线性方程组解的性质容易证得如下定理.定理1 设λ是方阵A 的特征值,12,,,s p p p 是属于λ的特征向量,则12,,,s p p p 的任意非零线性组合仍是属于λ的特征向量.例1 求141130002−−=A 的特征值和特征向量. 解 A 的特征多项式2141()130(2)(1)002λλλλλλλ−−−=−=−=−−−f A E ,所以A 的特征值为12λ=,231λλ==. 对于12λ=,解齐次方程组(2)−=A E X 0.由3411012110011000000−−−=→−A E ,得基础解系 1111−=p ,所以111(0)≠k k p 是对应于12λ=的全部特征向量.对于231λλ==,解齐次方程组()−=A E X 0.由 241120120001001000−−−=→A E ,得基础解系 2210−=p ,所以222(0)≠k k p 是对应于231λλ==的全部特征向量. 例2 求204121103−−=A 的特征值和特征向量.解 A 的特征多项式2204()121(1)(2)13λλλλλλλ−−−=−=−=−+−−f A E ,所以A 的特征值为11λ=−,232λλ==. 对于11λ=−,解齐次方程组()+=A E X 0.由104104131011104000−−+=→−A E ,得基础解系 1411−=p ,所以111(0)≠k k p 是对应于11λ=−的全部特征向量.对于232λλ==,解齐次方程组(2)−=A E X 0.由 4041012101000101000−−−=→A E ,得基础解系 2010=p ,3101− = p ,所以2233+k k p p (2k ,3k 不同时为0)是对应于232λλ==的全部特征向量.二、特征值和特征向量的性质定理2* 设12,,,λλλ n 是n 阶方阵()=ij a A 的n 个特征值,则有(1)11n n i ii i i a λ==∑∑; (2)1ni i λ==∏A .其中1niii a=∑是A 的主对角元之和,称为方阵A 的迹,记作tr()A .证明 见附录六例3 设7414744y x −= −−A 的特征值为123λλ==,312λ=,求,x y 的值. 解 由定理2可得123123tr()7718331212108x x y λλλλλλ=++=++=+− A A 解之得4,1x y ==−.定理3 设λ是方阵A 的特征值,p 是A 的属于λ的任一特征向量,则有: (1)k R ∀∈,k λ是k A 的特征值,p 是k A 的属于k λ的特征向量;(2)对任意非负整数k ,k λ是k A 的特征值,p 是k A 的属于k λ的特征向量; (3)若()ϕA 是A 的m (m 为任意非负整数)次多项式,即01()m m a a a ϕ=+++A E A A ,则()ϕλ是()ϕA 的特征值,p 是()ϕA 的属于()ϕλ的特征向量;(4)若A 可逆,则0λ≠,且1λ是1−A 的特征值,p 是1−A 的属于1λ的特征向量;(5)若A 可逆,则λA是*A 的特征值,p 是*A 的属于λA的特征向量;(6)λ也是T A 的特征值.证明 (1)由λ=Ap p ,有k k λ=Ap p 成立。
矩阵的相似变换首先,对矩阵的相似变换可以概括为:它是将一个矩阵变换为另一个矩阵的自变量和因变量的变换形式,使得两个矩阵的形状、行列式的值相等。
它是一种用来描述线性变换的抽象概念,它能够将特定的线性映射应用于任意的矩阵,实现两个矩阵之间的等价转换,并实现相应的几何变换。
1. 概述矩阵的相似变换是一种类似于线性变换的特殊变换,它能够将一个矩阵M和一个特定矩阵P变换为相同的形状和行列式值,实现矩阵M与P的等价转换,从而实现几何变换的效果。
2. 形式由于矩阵的相似变换是一种线性变换的抽象概念,它可以用一个特殊的矩阵P,实现一种类似于线性变换的方式,使得一个矩阵M变换为一个另外一个矩阵P,实现两者之间的等价转换。
因此,矩阵的相似变换可以定义为:若存在一个m×n矩阵M和一个n×n非奇异矩阵P,且满足P-1MP=P*P-1,则称矩阵M受相似变换P的影响,变换后得到一个n×n矩阵Q,称M和Q受相似变换P的影响,记为M~P=Q。
3. 特点矩阵的相似变换有几个特点:(1)由于是线性变换的抽象概念,因此矩阵的相似变换是可逆的,即可以从结果求原矩阵;(2)矩阵的相似变换可以实现两个矩阵之间等价的变换,实现形式和行列式的指定;(3)在实现矩阵的相似变换的过程中,其结果的矩阵的元素值并不会发生变化,只是形式的变换;(4)相似变换也可以通过调整元素的位置、行与列的变换等方式实现,只要最终的结果是和原矩阵的行列式值一致即可。
4. 应用矩阵的相似变换可以应用在各种线性变换中,如几何变换、线性代数运算等,都可以使用矩阵的相似变换实现。
此外,由于矩阵的相似变换能够实现可逆的结果,并且形式、行列式值不变,因此也可以用于数据安全加密以及数据处理中。
第六章矩阵的相似特征值和特征向量矩阵的相似性:在线性代数中,如果两个矩阵具有相同的特征值,则它们被称为相似矩阵。
当两个矩阵A和B相似时,它们之间可以通过一个可逆矩阵P进行相互转换,即A=PBP^(-1)。
相似矩阵具有一些有用的性质和应用。
特征值和特征向量:一个n阶矩阵A的特征值是一个标量λ,满足方程Av=λv,其中v 是一个非零的n维向量,称为特征向量。
特征值和特征向量可以通过求解矩阵的特征方程来计算。
特征值和特征向量对于理解矩阵的性质和应用非常重要。
特征值和特征向量的求解:要求解矩阵的特征值和特征向量,可以通过以下步骤进行:1. 对于矩阵A,计算其特征方程det(A-λI) = 0,其中det表示矩阵的行列式,I为单位矩阵。
2.解特征方程,得到特征值λ1,λ2,...,λn。
3. 对于每个特征值λi,求解方程(A-λiI)v = 0,其中v为特征向量。
得到多组特征向量v1,v2,...,vn。
特征值和特征向量的性质:特征值和特征向量具有一些重要的性质:1.相似矩阵具有相同的特征值,但不一定有相同的特征向量。
2.特征向量可以用于将线性变换A表示为对角矩阵D的相似变换,即A=PDP^(-1)。
3.特征值的和等于矩阵的迹(主对角线上元素的和),特征值的乘积等于矩阵的行列式。
4.如果矩阵A是对称矩阵,则其特征向量是相互正交的。
特征值和特征向量的应用:特征值和特征向量在多个领域都有广泛的应用:1.物理学中,特征值和特征向量用于描述物理系统的振动模式和稳定性。
2.图像处理中,特征值和特征向量用于图像压缩、图像恢复等算法。
3.机器学习中,特征值和特征向量用于降维、主成分分析等特征提取方法。
4.工程学中,特征值和特征向量用于结构分析、系统控制等问题的求解。
总结:特征值和特征向量是矩阵相似性的重要概念,它们可以帮助我们理解矩阵的性质和应用。
通过求解特征方程,我们可以得到矩阵的特征值和特征向量。
它们具有许多有用的性质和应用,在多个领域中得到广泛的应用。
矩阵的合同变换介绍矩阵的合同变换是线性代数中的一个重要概念,在实际应用中有着广泛的应用。
本文将从理论基础、矩阵相似性和合同变换的性质等方面进行全面、详细、完整且深入地探讨矩阵的合同变换。
理论基础1. 矩阵的定义在线性代数中,矩阵是由数按照矩形排列的矩形阵列。
一个m×n 矩阵是由 m 行n 列的矩形排列数字所组成的矩阵,其中每一个数字叫作矩阵的元素。
2. 矩阵的相似性矩阵的相似性是矩阵理论中的重要概念。
对于两个n×n 矩阵 A 和 B,如果存在一个n×n 矩阵 P 使得 PAP^-1 = B,那么称 A 和 B 是相似的,P 是相似变换矩阵。
•相似变换矩阵 P 是可逆矩阵,即存在矩阵 P^-1,使得 P^-1 P = PP^-1 = I,其中 I 是单位矩阵。
•相似的矩阵具有相同的特征值和特征向量。
3. 矩阵的合同变换矩阵的合同变换是另一个重要的矩阵变换。
对于两个n×n 矩阵 A 和 B,如果存在一个可逆矩阵 P 使得 P^TAP = B,那么称 A 和 B 是合同的,P 是合同变换矩阵。
合同变换和相似变换的不同之处在于,合同变换是在矩阵 A 的转置上进行的。
矩阵的合同变换的性质矩阵的合同变换具有一些重要的性质,下面将对这些性质进行详细介绍:1. 合同变换的保持特征值的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B具有相同的特征值。
这个性质与矩阵的相似性保持特征值的性质是相似的。
2. 合同变换的保持矩阵的秩的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B的秩相等。
这一性质保证了合同变换不改变矩阵的秩。
3. 合同变换的保持正定性和半正定性的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B的正定性和半正定性保持不变。
1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。
(3)传递性如果A∽B,B∽C,那么A∽C。
已知有X,Y使B?X?1AX,C?Y?1BY。
令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。
3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。
?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。
矩阵相似变换矩阵相似变换是线性代数中一个重要的概念,它在很多领域中都有广泛的应用。
本文将从基本概念、相似矩阵的性质以及实际应用等方面对矩阵相似变换进行解读。
一、基本概念矩阵相似变换是指对一个矩阵进行线性变换,使得变换后的矩阵与原矩阵有相同的特征值。
具体来说,对于一个n阶矩阵A和一个可逆矩阵P,如果存在一个可逆矩阵P,使得P⁻¹AP=B,那么矩阵B与矩阵A相似。
二、相似矩阵的性质1. 相似矩阵具有相同的特征值:相似矩阵不仅特征值相同,对应的特征向量也相同。
这一性质在矩阵的谱分解、对角化等问题中有广泛的应用。
2. 相似矩阵的迹相等:矩阵的迹是指矩阵主对角线上元素的和,相似矩阵的迹相等。
这一性质在矩阵的特征值求和、矩阵的迹运算等问题中有重要的应用。
3. 相似矩阵的行列式相等:矩阵的行列式是指矩阵的特征值的乘积,相似矩阵的行列式相等。
这一性质在矩阵的特征值求积、矩阵的行列式运算等问题中有重要的应用。
三、实际应用1. 特征值分析:通过矩阵相似变换,可以将一个复杂的矩阵转化为对角矩阵,从而更方便地进行特征值分析。
这在物理、化学、生物等领域中有广泛的应用,例如求解量子力学中的能级问题。
2. 线性方程组求解:通过矩阵相似变换,可以将一个线性方程组转化为一个更简单的形式。
这在工程、经济学等领域中有广泛的应用,例如求解电路中的电流和电压分布问题。
3. 图像处理:矩阵相似变换在图像处理中起着重要的作用。
通过对图像矩阵进行相似变换,可以实现图像的旋转、缩放、平移等操作,从而达到图像处理的目的。
四、总结矩阵相似变换是线性代数中的一个重要概念,它在特征值分析、线性方程组求解、图像处理等领域中有广泛的应用。
通过矩阵相似变换,可以将复杂的问题转化为简单的形式,从而更方便地进行分析和求解。
同时,相似矩阵具有一些重要的性质,如相同的特征值、相等的迹和行列式等,这些性质在实际应用中也起到了重要的作用。
因此,熟练掌握矩阵相似变换的概念和性质,对于理解和应用线性代数具有重要意义。
平面向量的相似变换和相似矩阵在线性代数的学习中,相似变换和相似矩阵是两个重要的概念。
在本文中,我们将探讨平面向量的相似变换以及相似矩阵的概念、性质和应用。
一、相似变换的定义与性质1. 相似变换的定义在平面向量的研究中,我们经常遇到一种特殊的线性变换,称为相似变换。
若存在非零实数 k 和一个可逆矩阵 P,对于任意平面向量 v,满足如下变换关系:v' = Pv其中,v' 表示变换后的向量,P 表示相似变换的变换矩阵,v 表示变换前的向量。
2. 相似变换的性质相似变换具有以下性质:(1)相似变换保持向量间的夹角和长度比例关系不变,即保持向量的相似性质;(2)相似变换保持向量的平行关系,即平行的向量在相似变换后仍然平行;(3)相似变换保持零向量不变,即零向量在相似变换后仍为零向量。
二、相似矩阵的定义与性质1. 相似矩阵的定义给定两个 n 阶方阵 A 和 B,如果存在一个可逆矩阵 P,使得 P^{-1}AP=B,则矩阵 B 称为矩阵 A 的相似矩阵,P 称为相似变换的变换矩阵。
2. 相似矩阵的性质相似矩阵具有以下性质:(1)相似矩阵具有相同的特征多项式和特征值;(2)相似矩阵具有相同的秩、迹、行列式和转置矩阵。
三、相似变换和相似矩阵的应用1. 矩阵的对角化相似矩阵的一个重要应用是矩阵的对角化。
对于一个 n 阶方阵 A,如果存在一个可逆矩阵 P,使得 P^{-1}AP=D,其中 D 是对角阵,那么矩阵 A 就可以被对角化。
2. 平面向量的变换在平面向量的研究中,相似变换和相似矩阵的应用非常广泛。
通过相似变换,我们可以将原来的向量进行旋转、缩放和剪切等操作,从而实现对平面向量的变换。
3. 物体的仿射变换相似变换和相似矩阵还被广泛应用于计算机图形学中的物体仿射变换。
通过相似变换,我们可以实现对图形的平移、旋转、缩放和错切等操作,从而实现对物体的变换和变形。
四、总结相似变换和相似矩阵是线性代数中非常重要的概念。