3 矩阵的相似标准形
- 格式:ppt
- 大小:852.00 KB
- 文档页数:75
03第三节相似矩阵第三节相似矩阵分布图⽰★相似矩阵与相似变换的概念★例1 ★相似矩阵的性质★例2 ★相似矩阵的特征值与特征向量★矩阵与对⾓矩阵相似的条件★例3★例4★矩阵可对⾓化的条件★矩阵对⾓化的步骤★例5★例6★利⽤矩阵对⾓化计算矩阵多项式★矩阵对⾓化在微分⽅程组中的应⽤★例7 ★约当形矩阵的概念★例8 ★例9★例10★内容⼩结★课堂练习★习题4-3内容要点⼀、相似矩阵的概念定义1 设B A ,都是n 阶矩阵, 若存在可逆矩阵P ,使BAP P=-1,则称B 是A 的相似矩阵, 并称矩阵A 与B 相似.记为B A ~.对A 进⾏运算AP P 1-称为对A 进⾏相似变换, 称可逆矩阵P 为相似变换矩阵. 矩阵的相似关系是⼀种等价关系,满⾜:(1) 反⾝性: 对任意n 阶矩阵A ,有A A 与相似; (2) 对称性: 若B A 与相似, 则B 与A 相似;(3) 传递性: 若A 与B 相似, 则B 与C 相似, 则A 与C 相似. 两个常⽤运算表达式: (1) ))((111BP P AP P ABP P ---=;(2) BP lP AP kP P lB kA P 111)(---+=+, 其中l k ,为任意实数.⼆、相似矩阵的性质定理1 若n 阶矩阵A 与B 相似,则A 与B 的特征多项式相同,从⽽A 与B 的特征值亦相同.相似矩阵的其它性质: (1) 相似矩阵的秩相等;(2) 相似矩阵的⾏列式相等;(3) 相似矩阵具有相同的可逆性, 当它们可逆时,则它们的逆矩阵也相似.三、矩阵与对⾓矩阵相似的条件定理2=Λn λλλ21相似的充分必要条件为矩阵A 有n 个线性⽆关的特征向量.注: 定理的证明过程实际上已经给出了把⽅阵对⾓化的⽅法.推论1 若n 阶矩阵A 有n 个相异的特征值n λλλ,,,21 ,则A 与对⾓矩阵=Λn λλλ21 相似.对于n 阶⽅阵A ,若存在可逆矩阵P , 使Λ=-AP P 1为对⾓阵, 则称⽅阵A 可对⾓化. 定理3 n 阶矩阵A 可对⾓化的充要条件是对应于A 的每个特征值的线性⽆关的特征向量的个数恰好等于该特征值的重数. 即设i λ是矩阵A 的i n 重特征值, 则A 与Λ相似),,2,1()(n i n n E A r i i =-=-?λ。
矩阵的标准形式是什么矩阵是线性代数中的重要概念,它在数学和工程领域中有着广泛的应用。
在研究矩阵的性质和特征时,我们常常需要将矩阵转化为其标准形式。
那么,矩阵的标准形式究竟是什么呢?本文将对此进行详细的介绍和解释。
首先,让我们来了解一下矩阵的基本概念。
矩阵是由 m 行 n 列元素组成的一个数表,通常记作 A=(aij)m×n。
其中,aij 表示矩阵 A 中第 i 行第 j 列的元素。
矩阵可以进行加法、数乘和乘法等运算,具有很强的代数性质。
接下来,我们来介绍矩阵的标准形式。
在线性代数中,矩阵的标准形式通常指的是特殊的形式,通过一系列的变换,可以将任意的矩阵转化为标准形式,从而更好地研究其性质和特征。
常见的矩阵标准形式包括行阶梯形、列阶梯形、对角形和标准型等。
首先,我们来介绍行阶梯形。
一个矩阵被称为行阶梯形,如果满足以下条件,首先,非零行(如果存在)在零行的上面;其次,每个非零行的首个非零元素为1;最后,每个非零行的首个非零元素所在的列,除了该元素外,其余元素都为0。
行阶梯形的矩阵可以帮助我们更好地理解矩阵的线性相关性和线性无关性。
其次,是列阶梯形。
一个矩阵被称为列阶梯形,如果其转置矩阵为行阶梯形。
列阶梯形的矩阵同样具有重要的性质,可以帮助我们进行矩阵的分解和求解。
接着,是对角形。
一个矩阵被称为对角形,如果除了对角线上的元素外,其余元素都为0。
对角形的矩阵在矩阵的对角化和特征值分解中有着重要的应用。
最后,是标准型。
一个矩阵被称为标准型,如果它是行阶梯形并且满足一定的特定条件。
标准型的矩阵可以帮助我们更好地理解矩阵的相似性和等价性。
总的来说,矩阵的标准形式是通过一系列的变换,将矩阵转化为特定的形式,以便更好地研究其性质和特征。
不同的标准形式在不同的领域和问题中有着重要的应用,对于深入理解矩阵的性质和特征具有重要的意义。
在实际应用中,我们常常需要将矩阵转化为其标准形式,以便进行进一步的分析和计算。
求矩阵的标准形式
矩阵的标准形式是指将矩阵通过一系列行变换和列变换,转化为具有特定形式的矩阵,以便更好地描述和分析矩阵的性质和特征。
常见的矩阵标准形式包括:
1. 行简化阶梯形标准形:将矩阵转化为上三角形式,即除主对角线以下的元素全为零。
2. 列简化阶梯形标准形:将矩阵转化为左上角为单位矩阵,下方全为零的形式。
3. Jordan标准形:将矩阵通过相似变换转化为由特殊形式的Jordan 块组成的对角矩阵。
4. 可对角化标准形:通过相似变换将矩阵转化为对角矩阵,其中对角线上的元素为特征值。
5. 实标准形:将矩阵转化为对角矩阵,对角线上的元素为1或-1。
这些标准形式的应用可以帮助我们更好地理解和分析矩阵的代数、几何和物理性质。
1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。
(3)传递性如果A∽B,B∽C,那么A∽C。
已知有X,Y使B?X?1AX,C?Y?1BY。
令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。
3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。
?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。
1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。
(3)传递性如果A∽B,B∽C,那么A∽C。
已知有X,Y使B?X?1AX,C?Y?1BY。
令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。
3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。
?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。
相似矩阵的判定及其应用摘要:相似矩阵是高等代数中重要的知识点,在本文中,我们先给出了判定两个矩阵相似的三种方法,然后我们知道矩阵相似于对角矩阵是高等代数中一个重要而基本的问题,我们给出怎样判断矩阵A是否可对角化,然而我们知道一个矩阵未必相似于对角矩阵,但是在复数域上任何一个矩阵都与一个若而当形矩阵相似,因此我们给出了矩阵的相似标准形及其应用;最后,我们给出了矩阵相似在实际生活中(尤其是考研中)的应用.关键字:相似矩阵,对角矩阵,若尔当标准形1.相似矩阵及其判定这一节我们在系统归纳相似矩阵的一些相关概念和性质的基础上,着重介绍相似矩阵的几种判定方法。
并通过一些具体的例子加以说明。
下面我们首先介绍相关的概念和性质。
定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B=1X A X,就说A相似于B,记BA~过渡矩阵矩阵等价 特征矩阵 行列式因子 不变因子 初等因子相似是矩阵之间的一种关系,这种关系具有三个性质: ⑴反身性: A A ~⑵对称性:如果B A ~,那么A B ~⑶传递性:如果B A ~,C B ~,那么C A ~在此基础上,定理1.1 线性变换在不同基下所对应的矩阵相似。
我们从下面的例1来看这个定理的应用。
例112312312311112A B A a εεεεεεεεεεεεε⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ΛΛΛΛΛ=++1112133332312122232322213132331312112131a a a a a a 设=a a a ,a a a 是数域P 上的矩阵,证明A ,B 相似.a a a a a a 证明:设数域P 上的三维线性空间V 的一个线性变换在V 中的一组基,,下的矩阵为A ,(,,)=(,,)a a 即:32123312333212321132********,,a B A B a εεεεεεεεεεεεεεεεεεεεεεε⎧⎪Λ=++⎨⎪Λ=++⎩Λ=++⎧⎪Λ=++⎨⎪Λ=++⎩Λ⎡⎤⎢⎥=Λ⎢⎥⎢⎥⎣⎦12223213233333231332221231213332312322211312a a a a a a a a a 于是a a a a a 在基,下的矩阵a a a a a a ,为同一线性变换在两组不同的基下的矩阵,a a 由定理1A B 可得:同一线性变换在两组不同的基下的矩阵相似,可得,相似.例2 设3P 的线性变换σ将基1α=(-1,0,-2),2α=(0,1,2)3α=(1,2,5)变成σ(1α)=(2,0,-1),σ(2α)=(0,0,1),σ(3α)=(0,1,2)求σ在基1β,2β,3β下的矩阵,其中1β=(-1,1,0),2β=(1,0,1),3β=(0,1,2). 解题步骤:(1)先求出σ在基1α,2α,3α下的矩阵A ;(2)求出由基1α,2α,3α到1β,2β,3β的过渡矩阵P ; (3)求出σ在基1β,2β,3β下的矩阵B =1P AP -.解:我们从平常的解题中知道,我们通常取标准基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)为中介,若令M =200001112⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦ , N = 101012225-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, T =110101012-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦则σ(1α,2α,3α)=(1ε,2ε,3ε)M (1α,2α,3α)=(1α,2α,3α)N (1β,2β,3β)=(1ε,2ε,3ε)T ,故σ在基1α,2α,3α下的矩阵1A N M -=,并且由基1α,2α,3α到基1β,2β,3β的过渡矩阵1P N T -=,从而σ在基1β,2β,3β下的矩阵1111221421211B P AP T NN MN T -----⎡⎤⎢⎥===-⎢⎥⎢⎥--⎣⎦定理1.2 设A ,B为数域P 上两个n ⨯n 矩阵,它们的特征矩阵E A λ-和E B λ-等价则可得A 与B相似.想保留证明过程,可以把它作为用定义1来判定矩阵相似的例子。