3 矩阵的相似标准形
- 格式:ppt
- 大小:852.00 KB
- 文档页数:75
03第三节相似矩阵第三节相似矩阵分布图⽰★相似矩阵与相似变换的概念★例1 ★相似矩阵的性质★例2 ★相似矩阵的特征值与特征向量★矩阵与对⾓矩阵相似的条件★例3★例4★矩阵可对⾓化的条件★矩阵对⾓化的步骤★例5★例6★利⽤矩阵对⾓化计算矩阵多项式★矩阵对⾓化在微分⽅程组中的应⽤★例7 ★约当形矩阵的概念★例8 ★例9★例10★内容⼩结★课堂练习★习题4-3内容要点⼀、相似矩阵的概念定义1 设B A ,都是n 阶矩阵, 若存在可逆矩阵P ,使BAP P=-1,则称B 是A 的相似矩阵, 并称矩阵A 与B 相似.记为B A ~.对A 进⾏运算AP P 1-称为对A 进⾏相似变换, 称可逆矩阵P 为相似变换矩阵. 矩阵的相似关系是⼀种等价关系,满⾜:(1) 反⾝性: 对任意n 阶矩阵A ,有A A 与相似; (2) 对称性: 若B A 与相似, 则B 与A 相似;(3) 传递性: 若A 与B 相似, 则B 与C 相似, 则A 与C 相似. 两个常⽤运算表达式: (1) ))((111BP P AP P ABP P ---=;(2) BP lP AP kP P lB kA P 111)(---+=+, 其中l k ,为任意实数.⼆、相似矩阵的性质定理1 若n 阶矩阵A 与B 相似,则A 与B 的特征多项式相同,从⽽A 与B 的特征值亦相同.相似矩阵的其它性质: (1) 相似矩阵的秩相等;(2) 相似矩阵的⾏列式相等;(3) 相似矩阵具有相同的可逆性, 当它们可逆时,则它们的逆矩阵也相似.三、矩阵与对⾓矩阵相似的条件定理2=Λn λλλ21相似的充分必要条件为矩阵A 有n 个线性⽆关的特征向量.注: 定理的证明过程实际上已经给出了把⽅阵对⾓化的⽅法.推论1 若n 阶矩阵A 有n 个相异的特征值n λλλ,,,21 ,则A 与对⾓矩阵=Λn λλλ21 相似.对于n 阶⽅阵A ,若存在可逆矩阵P , 使Λ=-AP P 1为对⾓阵, 则称⽅阵A 可对⾓化. 定理3 n 阶矩阵A 可对⾓化的充要条件是对应于A 的每个特征值的线性⽆关的特征向量的个数恰好等于该特征值的重数. 即设i λ是矩阵A 的i n 重特征值, 则A 与Λ相似),,2,1()(n i n n E A r i i =-=-?λ。
矩阵的标准形式是什么矩阵是线性代数中的重要概念,它在数学和工程领域中有着广泛的应用。
在研究矩阵的性质和特征时,我们常常需要将矩阵转化为其标准形式。
那么,矩阵的标准形式究竟是什么呢?本文将对此进行详细的介绍和解释。
首先,让我们来了解一下矩阵的基本概念。
矩阵是由 m 行 n 列元素组成的一个数表,通常记作 A=(aij)m×n。
其中,aij 表示矩阵 A 中第 i 行第 j 列的元素。
矩阵可以进行加法、数乘和乘法等运算,具有很强的代数性质。
接下来,我们来介绍矩阵的标准形式。
在线性代数中,矩阵的标准形式通常指的是特殊的形式,通过一系列的变换,可以将任意的矩阵转化为标准形式,从而更好地研究其性质和特征。
常见的矩阵标准形式包括行阶梯形、列阶梯形、对角形和标准型等。
首先,我们来介绍行阶梯形。
一个矩阵被称为行阶梯形,如果满足以下条件,首先,非零行(如果存在)在零行的上面;其次,每个非零行的首个非零元素为1;最后,每个非零行的首个非零元素所在的列,除了该元素外,其余元素都为0。
行阶梯形的矩阵可以帮助我们更好地理解矩阵的线性相关性和线性无关性。
其次,是列阶梯形。
一个矩阵被称为列阶梯形,如果其转置矩阵为行阶梯形。
列阶梯形的矩阵同样具有重要的性质,可以帮助我们进行矩阵的分解和求解。
接着,是对角形。
一个矩阵被称为对角形,如果除了对角线上的元素外,其余元素都为0。
对角形的矩阵在矩阵的对角化和特征值分解中有着重要的应用。
最后,是标准型。
一个矩阵被称为标准型,如果它是行阶梯形并且满足一定的特定条件。
标准型的矩阵可以帮助我们更好地理解矩阵的相似性和等价性。
总的来说,矩阵的标准形式是通过一系列的变换,将矩阵转化为特定的形式,以便更好地研究其性质和特征。
不同的标准形式在不同的领域和问题中有着重要的应用,对于深入理解矩阵的性质和特征具有重要的意义。
在实际应用中,我们常常需要将矩阵转化为其标准形式,以便进行进一步的分析和计算。
求矩阵的标准形式
矩阵的标准形式是指将矩阵通过一系列行变换和列变换,转化为具有特定形式的矩阵,以便更好地描述和分析矩阵的性质和特征。
常见的矩阵标准形式包括:
1. 行简化阶梯形标准形:将矩阵转化为上三角形式,即除主对角线以下的元素全为零。
2. 列简化阶梯形标准形:将矩阵转化为左上角为单位矩阵,下方全为零的形式。
3. Jordan标准形:将矩阵通过相似变换转化为由特殊形式的Jordan 块组成的对角矩阵。
4. 可对角化标准形:通过相似变换将矩阵转化为对角矩阵,其中对角线上的元素为特征值。
5. 实标准形:将矩阵转化为对角矩阵,对角线上的元素为1或-1。
这些标准形式的应用可以帮助我们更好地理解和分析矩阵的代数、几何和物理性质。
1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。
(3)传递性如果A∽B,B∽C,那么A∽C。
已知有X,Y使B?X?1AX,C?Y?1BY。
令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。
3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。
?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。
1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。
(3)传递性如果A∽B,B∽C,那么A∽C。
已知有X,Y使B?X?1AX,C?Y?1BY。
令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。
3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。
?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。
相似矩阵的判定及其应用摘要:相似矩阵是高等代数中重要的知识点,在本文中,我们先给出了判定两个矩阵相似的三种方法,然后我们知道矩阵相似于对角矩阵是高等代数中一个重要而基本的问题,我们给出怎样判断矩阵A是否可对角化,然而我们知道一个矩阵未必相似于对角矩阵,但是在复数域上任何一个矩阵都与一个若而当形矩阵相似,因此我们给出了矩阵的相似标准形及其应用;最后,我们给出了矩阵相似在实际生活中(尤其是考研中)的应用.关键字:相似矩阵,对角矩阵,若尔当标准形1.相似矩阵及其判定这一节我们在系统归纳相似矩阵的一些相关概念和性质的基础上,着重介绍相似矩阵的几种判定方法。
并通过一些具体的例子加以说明。
下面我们首先介绍相关的概念和性质。
定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B=1X A X,就说A相似于B,记BA~过渡矩阵矩阵等价 特征矩阵 行列式因子 不变因子 初等因子相似是矩阵之间的一种关系,这种关系具有三个性质: ⑴反身性: A A ~⑵对称性:如果B A ~,那么A B ~⑶传递性:如果B A ~,C B ~,那么C A ~在此基础上,定理1.1 线性变换在不同基下所对应的矩阵相似。
我们从下面的例1来看这个定理的应用。
例112312312311112A B A a εεεεεεεεεεεεε⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ΛΛΛΛΛ=++1112133332312122232322213132331312112131a a a a a a 设=a a a ,a a a 是数域P 上的矩阵,证明A ,B 相似.a a a a a a 证明:设数域P 上的三维线性空间V 的一个线性变换在V 中的一组基,,下的矩阵为A ,(,,)=(,,)a a 即:32123312333212321132********,,a B A B a εεεεεεεεεεεεεεεεεεεεεεε⎧⎪Λ=++⎨⎪Λ=++⎩Λ=++⎧⎪Λ=++⎨⎪Λ=++⎩Λ⎡⎤⎢⎥=Λ⎢⎥⎢⎥⎣⎦12223213233333231332221231213332312322211312a a a a a a a a a 于是a a a a a 在基,下的矩阵a a a a a a ,为同一线性变换在两组不同的基下的矩阵,a a 由定理1A B 可得:同一线性变换在两组不同的基下的矩阵相似,可得,相似.例2 设3P 的线性变换σ将基1α=(-1,0,-2),2α=(0,1,2)3α=(1,2,5)变成σ(1α)=(2,0,-1),σ(2α)=(0,0,1),σ(3α)=(0,1,2)求σ在基1β,2β,3β下的矩阵,其中1β=(-1,1,0),2β=(1,0,1),3β=(0,1,2). 解题步骤:(1)先求出σ在基1α,2α,3α下的矩阵A ;(2)求出由基1α,2α,3α到1β,2β,3β的过渡矩阵P ; (3)求出σ在基1β,2β,3β下的矩阵B =1P AP -.解:我们从平常的解题中知道,我们通常取标准基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)为中介,若令M =200001112⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦ , N = 101012225-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, T =110101012-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦则σ(1α,2α,3α)=(1ε,2ε,3ε)M (1α,2α,3α)=(1α,2α,3α)N (1β,2β,3β)=(1ε,2ε,3ε)T ,故σ在基1α,2α,3α下的矩阵1A N M -=,并且由基1α,2α,3α到基1β,2β,3β的过渡矩阵1P N T -=,从而σ在基1β,2β,3β下的矩阵1111221421211B P AP T NN MN T -----⎡⎤⎢⎥===-⎢⎥⎢⎥--⎣⎦定理1.2 设A ,B为数域P 上两个n ⨯n 矩阵,它们的特征矩阵E A λ-和E B λ-等价则可得A 与B相似.想保留证明过程,可以把它作为用定义1来判定矩阵相似的例子。
矩阵的等价标准形矩阵的等价标准形是线性代数中一个重要的概念,它可以帮助我们更好地理解和分析矩阵的性质和特点。
在矩阵的等价标准形中,我们通常会涉及到矩阵的相似性、对角化和标准型等概念。
本文将从这些方面对矩阵的等价标准形进行详细的介绍和解析。
首先,我们来看一下矩阵的相似性。
如果存在可逆矩阵P,使得矩阵A和B满足关系式,B=P^(-1)AP,那么我们就称矩阵A和B是相似的。
相似矩阵具有一些重要的性质,例如它们的特征值和特征向量是相同的。
通过相似变换,我们可以将一个复杂的矩阵转化为一个更简单的形式,从而更方便地进行分析和运算。
接下来,我们要讨论矩阵的对角化。
对角化是指将一个矩阵通过相似变换转化为对角矩阵的过程。
对角化可以简化矩阵的运算,使得矩阵的乘法、幂运算等操作更加方便和高效。
对角化还可以帮助我们更清晰地看出矩阵的特征值和特征向量,从而更好地理解矩阵的性质和结构。
除了对角化,我们还需要了解矩阵的标准型。
对于一个n阶矩阵,它的标准型可以表示为,T=P^(-1)AP,其中T是一个特殊的形式,它的非零元素只存在于主对角线和次对角线上。
标准型可以帮助我们更清晰地了解矩阵的结构和特点,从而更好地应用矩阵进行问题的求解和分析。
在矩阵的等价标准形中,我们还需要考虑到矩阵的不变因子和有理标准型等概念。
不变因子是指矩阵通过相似变换后,保持不变的一些因子,它可以帮助我们更好地理解矩阵的相似性和结构。
有理标准型则是对于一个矩阵,通过有理变换可以将其转化为一个特殊的形式,从而更好地进行分析和运算。
总的来说,矩阵的等价标准形是线性代数中一个重要且复杂的概念,它涉及到相似性、对角化、标准型、不变因子和有理标准型等多个方面。
通过对矩阵的等价标准形进行深入的了解和研究,我们可以更好地应用矩阵进行问题的求解和分析,为线性代数的学习和应用提供更多的便利和帮助。
希望本文的介绍和解析能够帮助读者更好地理解和掌握矩阵的等价标准形,从而更好地运用它们解决实际问题。
第三章 矩阵的相似标准形矩阵的相似标准形有着广泛的应用.在线性代数中,已讨论了可对角化方阵的相似标准形——对角形矩阵.但并不是所有方阵都可对角化,本章将从任意方阵的特征矩阵入手,介绍矩阵相似的判别法和两种常用的相似标准形,并进一步讨论方阵可对角化的条件,最后给出一类特殊矩阵的对角化方法.§3.1 λ矩阵及其Smith 标准形一、λ矩阵的基本概念定义1 设()(1,2,,,1,2,,)ij a i m j n λ== 是数域F 上的多项式,以()ij a λ为元素的m n ⨯矩阵111212122212()()()()()()()()()()n n m m mn a a a a a a A a a a λλλλλλλλλλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为多项式矩阵或λ矩阵,多项式()(1,2,,,1,2,,)ij a i m j n λ== 中的最高次数称为()A λ的次数,数域F 上m n ⨯λ矩阵的全体记为[]m n F λ⨯.为了与λ矩阵相区别,我们把以数域F 中的数为元素的矩阵称为数字矩阵.显然,数字矩阵是λ矩阵的特例.数字矩阵A 的特征矩阵E A λ-就是1次λ矩阵.如果m n ⨯的λ矩阵()A λ的次数为k ,则()A λ可表示为1110()k k k k A A A A A λλλλ--=++++ ,其中(0,1,,)i A i k = 是m n ⨯数字矩阵,并且0k A ≠.例如22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭2010101100000111000111000100λλ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. 如果另一个m n ⨯的λ矩阵()B λ可表示为1110()λλλλ--=++++ l l l l B B B B B ,则当且仅当k l =,(0,1,,)j j A B j k == 时()A λ与()B λ相等,记为()()A B λλ=. 由于λ的多项式可作加法、减法、乘法三种运算,并且它们与数的运算有相同的运算规律;而矩阵的加法、减法、乘法和数量乘法的定义仅用到其元素的加法、减法、乘法.因此,我们可以同样定义λ矩阵的加法、减法、乘法和数量乘法,并且λ矩阵的这些运算同数字矩阵的加法、减法、乘法和数量乘法具有相同的运算规律.矩阵行列式的定义也仅用到其元素的加法与乘法,因此,同样可以定义一个n 阶λ矩阵的行列式,一般说来λ矩阵的行列式是λ的多项式,λ矩阵的行列式与数字矩阵的行列式有相同的性质,例如,对两个n 阶λ矩阵()A λ与()B λ,有()()()()A B A B λλλλ=有了λ矩阵行列式的概念,可以同样定义λ矩阵的子式、代数余子式.定义2 设()[]m n A P λλ⨯∈,如果()A λ中有一个(1min{,})≤≤r r m n 阶子式不为零,而所有1r +阶子式(如果有的话)全为零,则称()A λ的秩为r ,记为(())rank A r λ=.规定零矩阵的秩为0.例1 设A 是n 阶数字矩阵,则λ-E A 是λ的n 次多项式,因此A 的特征矩阵λ-E A 的秩为n ,即λ-E A 总是满秩的.定义3 设()[]λλ⨯∈n n A P ,如果存在一个n 阶λ矩阵()B λ,使得()()()()λλλλ==A B B A E , (1)则称λ矩阵()A λ是可逆的,并称()B λ为()A λ的逆矩阵,记作1()λ-A .容易证明:如果n 阶λ矩阵()A λ可逆,则它的逆矩阵是唯一的.定理1 设()[]n n A P λλ⨯∈,则()A λ是可逆的充分必要条件是()A λ是一个非零常数.证 必要性 设()A λ可逆,则存在n 阶λ矩阵()B λ满足(1),从而()()1A B λλ=. 因为()A λ与()B λ都是λ的多项式,则由上式可知()A λ与()B λ都是零次多项式,故()A λ是非零常数.充分性 设()A d λ=是非零常数,*()A λ是()A λ的伴随矩阵,则*1()A dλ是一个n 阶λ矩阵,并且**11()()()()λλλλ==A A A A E d d, 因此()A λ可逆,并且1*1()()λλ-=A A d. 二、λ矩阵的初等变换与等价 与数字矩阵类似,对于λ矩阵,也可进行初等变换.定义4 下列三种变换称为λ矩阵的初等变换.(1) 互换λ矩阵的两行(列);(2) 用非零常数k 乘以λ矩阵的某一行(列);(3) 将λ矩阵的某一行(列)的()ϕλ倍加到另一行(列),(其中()ϕλ是λ的多项式).对单位矩阵施行上述三种初等变换便得相应的三种λ矩阵的初等矩阵(,),(()),(,())P i j P i k P i j ϕ,即11011(,)11011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭iP i j j ,11(())11⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭P i k k i ,11()(,())11ϕλϕ⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭i P i c j .与数字矩阵的情形完全一样,对一个m n ⨯的λ矩阵()A λ作一次初等行变换相当于在()A λ左边乘上相应的m 阶初等矩阵;对()A λ作一次初等列变换相当于在()A λ的右边乘上相应的n 阶初等矩阵.容易证明:初等矩阵都是可逆的,并且1111(,)(,),(())(()),(,())(,())P i j P i j P i k P i k P i j P i j ϕϕ----===-.为方便起见,我们用下列记号表示初等变换:[,]i j 表示第,i j 行(列)互换位置;[()]i k 表示用非零常数k 乘第i 行(列);[()]i j ϕ+表示将第j 行(列)的()ϕλ倍加到第i 行(列).定义5 设(),()[]m n A B P λλλ⨯∈,如果()A λ可以经过有限次初等变换化为()B λ,则称λ矩阵()A λ与()B λ等价,记为()()A B λλ≅由初等变换的可逆性可知,等价是λ矩阵之间的一种等价关系.利用初等变换与初等矩阵的对应关系可得定理2 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ等价的充分必要条件为存在一系列m 阶初等矩阵1(),,()l P P λλ 与n 阶初等矩阵1(),,()t Q Q λλ ,使得11()()()()()()l t A P P B Q Q λλλλλλ= .与数字矩阵不同,具有相同秩的两个λ矩阵未必等价,例如22(),()02A B λλλλλλ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 因为2(),()4A B λλλλ==,所以()A λ与()B λ的秩均为2.因为初等变换是可逆的,则由定理 2知,两个等价的λ方阵的行列式只能相差一个非零常数,故()A λ与()B λ不等价,因此,秩相等不是λ矩阵等价的充分条件.§3.2λ矩阵在等价下的标准形现在我们讨论λ矩阵在初等变换下的标准形.为此,先证明一个引理. 引理1 设λ矩阵()[()]ij A a λλ=的左上角元素11()0a λ≠,并且()A λ中至少有一个元素不能被11()a λ整除,则存在一个与()A λ等价的λ矩阵()[()]ij B b λλ=,使得11()0b λ≠,且1111(())(())b a λλ∂<∂.证 根据()A λ中不能被11()a λ整除的元素所在的位置,分三种情形来讨论.1)若在()A λ的第一列中有一个元素1()i a λ不能被11()a λ整除,则由多项式的带余除法,存在多项式()q λ和()r λ,使得111()()()()i a q a r λλλλ=+,其中()0r λ≠,且11(())(())r a λλ∂<∂.对()A λ作两次初等行变换,首先将()A λ第1行的()q λ-倍加到第i 行,这时第i 行第1列位置的元素是()r λ;然后将第1行与第i 行互换,即得所要求的λ矩阵()B λ.2)在()A λ的第一行中有一个元素1()i a λ不能被11()a λ整除,这种情形的证明与1)类似,但是对()A λ进行的是初等列变换.3)()A λ的第一行与第一列中的元素都能被11()a λ整除,但()A λ中有另一个元素()ij a λ(1,1)i j >>不能被11()a λ整除,因为111()|()j a a λλ,所以存在一个多项式()ϕλ,使得111()()()j a a λϕλλ=.对()A λ作两次初等列变换.首先将()A λ第1列的()ϕλ-倍加到第j 列,这时第1行第j 列位置的元素是0,第i 行第j 列位置的元素变为1()()()ij i a a λϕλλ-;然后把第j 列的1倍加到第1列,此时第1行第1列位置的元素仍是11()a λ,而第i 行第1列位置的元素变为1()[1()]()ij i a a λϕλλ+-,它不能被11()a λ整除,这就化为已经证明的情形1).定理3 设()[()][]m n ij A a P λλλ⨯=∈,且(())ran A r λ=,则()A λ必等价于如下对角形矩阵12()()()00r d d d λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, (1) 其中()(1,,)i d i r λ= 是首项系数为1的多项式,且1()|()i i d d λλ+(1,2,i =, 1)r -.证 若0r =,则()A λ为零矩阵,结论显然成立,现设0r >,且()A λ=[()]ij a λ的左上角元素11()0a λ≠.否则可通过行、列交换做到这一点,由引理1知,()A λ进行一系列初等变换可得一个与()A λ等价的λ矩阵()[()]ij B b λλ=,并且11()b λ是首项系数为1的多项式,11()b λ整除()B λ的全部元素,即有11()()(),ij ij b q b λλλ= 1,,;1,,i m j n == .则可对()B λ作一系列初等变换,使得第1行、第1列除对角元11()b λ外全为零,即11()000()()0d B A λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪⎝⎭, 其中1111()(),()d b A λλλ=是(1)(1)m n -⨯-矩阵.因为1()A λ的元素是()B λ中元素的组合,而11()b λ(即1()d λ)整除()B λ的所有元素,所以1()d λ整除1()A λ的所有元素.如果1()0A λ≠,则对1()A λ重复上述过程,进而把矩阵化成122()000()000()00d d A λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 其中12(),()d d λλ都是首项系数为1的多项式,并且122()|(),()d d d λλλ整除2()A λ的全部元素.继续上述过程,最后把()A λ化成所要求的形式.定理3中的对角形矩形(1)称为λ矩阵()A λ在等价下的标准形即Smith 标准形.定义 6 λ矩阵()[]m n A P λλ⨯∈的Smith 标准形的主对角线上的非零元12(),(),,()r d d d λλλ 称为()A λ的不变因子.例1 用初等变换把λ矩阵22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭化为标准形解222[31(1)][13(1)]222[3(1)][32(1)][21()][31()]2211()0011010010000000A λλλλλλλλλλλλλλλλλλλλλλλλ+-+-++-+-⎛⎫⎛⎫ ⎪ ⎪−−−→-−−−−→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪−−−−→-−−−→- ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭例2 用初等变换将λ矩阵100010()001000a a A a a λλλλλ--⎛⎫ ⎪-- ⎪= ⎪-- ⎪-⎝⎭化为Smith 标准形.解()A λ[43()]33[3,4]41000100001000100001()001()000000()a a a a a λλλλλ+-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪−−−→−−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭3[43(())][3(1)]4111()a a λλ+--⎛⎫ ⎪ ⎪−−−−−→ ⎪- ⎪-⎝⎭. 一般地1111()m m ma a a a λλλλ⨯--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪≅ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭ . §3.3 λ矩阵的行列式因子和初等因子本节讨论λ矩阵Smith 标准形的惟一性,并给出两个λ矩阵等价的条件.因此,需要引进λ矩阵的行列式因子.定义7 设()[]m n A P λλ⨯∈,且(())rank A r λ=.对于正整数(1)k k r ≤≤,()A λ的全部首项系数为1的k 阶子式的最大公因式称为()A λ的k 阶行列式因子,记为()k D λ.例1 求22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭的各阶行列式因子.解 由于1λ-与λ的首项系数为1的最大公因式为1,故(1,)1λλ-=,所以1()1D λ=.[1,2]100010()001000a a A a a λλλλλ--⎛⎫ ⎪-- ⎪−−−→ ⎪-- ⎪-⎝⎭2[21()]1000()10001000a a a a a λλλλλ+---⎛⎫ ⎪-- ⎪−−−−→ ⎪-- ⎪-⎝⎭ 2[1(1)][21()]10000()10001000a a a a λλλλ-+-+⎛⎫ ⎪-- ⎪−−−−−→ ⎪-- ⎪-⎝⎭ 2[2,3]100001()0001000a a a λλλ⎛⎫ ⎪-- ⎪−−−→ ⎪-- ⎪-⎝⎭ 2[32()]3100001()000()1000a a a a λλλλ+-⎛⎫ ⎪-- ⎪−−−−→ ⎪-- ⎪-⎝⎭23[32(()][2(1)]1000010000()1000a a a λλλ+--⎛⎫ ⎪ ⎪−−−−−→ ⎪-- ⎪-⎝⎭. 又 2211(1)()λλλλλϕλλλ-+=--+=,232221(1)()1λλλλϕλλλ-+=--=+,而12((),())ϕλϕλλ=,其余的二阶子式(还有7个)都包含因子λ,所以2()D λλ=.最后,由于32det(())A λλλ=--,所以323()D λλλ=+.行列式因子的重要性在于它在初等变换下是不变的.定理4 等价的λ矩阵具有相同的秩和相同的各阶行列式因子.证 只需要证明,λ矩阵经过一次初等变换后,其秩与行列式因子是不变的.设λ矩阵()A λ经过一次初等变换后变成()B λ,()f λ和()g λ分别是()A λ和()B λ的k 阶行列式因子,针对3种初等变换来证明()()f g λλ=.1)交换()A λ的某两行得到()B λ.这时()B λ的每个k 阶子式或者等于()A λ的某个k 阶子式,或者是()A λ的某个k 阶子式的1-倍.因此()f λ是()B λ和k 阶子式的公因子,从而()|()f g λλ.2)用非零数α乘()A λ的某一行得到()B λ.这时()B λ的每个k 阶子式或者等于()A λ的某个k 阶子式,或者等于()A λ的某个k 阶子式的α倍,因此()f λ是()B λ的k 阶子式的公因子,从而()|()f g λλ.3)将()A λ第j 行的()ϕλ倍加到第i 行得到()B λ.这时,()B λ中那些包含第i 行与第j 行的k 阶子式和那些不包含第i 行的k 阶子式都等于()A λ中对应的k 阶子式;()B λ中那些包含第i 行但不包含第j 行的k 阶子式等于()A λ中对应的一个k 阶子式与另一个k 阶子式的()ϕλ±倍之和,也就是()A λ的两个k 阶子式组合,因此()f λ是()B λ的k 阶子式的公因式,从而()|()f g λλ.由初等变换的可逆性,()B λ也可以经过一次初等行变换变成()A λ,由上面的讨论,同样有()|()g f λλ,所以()()f g λλ=.对于初等列变换,可以完全一样地讨论,总之,如果()A λ经过一次初等变换变成()B λ,则()()f g λλ=.当()A λ的全部k 阶子式为零时,()0f λ=,则()0g λ=,()B λ的全部k 阶子式也为零;反之亦然,因此()A λ与()B λ既有相同的行列式因子,又有相同的秩.由定理4知,任意λ矩阵的秩和行列式因子与其Smith 标准形的秩和行列式因子是相同的.设λ矩阵()A λ的Smith 标准形为12()()()00r d d d λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭(1) 其中()(1,2,,)i d i r λ= 是首项系数为1的多项式,并且1()|()(1,2,,1)i i d d i r λλ+=- .容易求得()A λ的各阶行列式因子如下:1121212()(),()()(),()()()().r r D d D d d D d d d λλλλλλλλλ=⎧⎪=⎪⎨⎪⎪=⎩ (2) 于是有12231()|(),()|(),,()|()r r D D D D D D λλλλλλ- ,211211()()()(),(),,()()()rr r D D d D d d D D λλλλλλλλ-=== . (3) 从而得如下结论:定理5 λ矩阵()A λ的Smith 标准形是惟一的.证 因为()A λ的各阶行列式因子是惟一的,则由(3)知()A λ的不变因子也是惟一的,因此()A λ的Smith 标准形是惟一的.应用λ矩阵的Smith 标准形,可以证明如下定理.定理6设(),()[]m n A B P λλλ⨯∈,如果()A λ与()B λ和同一个Smith 标准形等价,那么()A λ与()B λ等价.一般说来,通过行列式因子来求不变因子比较复杂,但对一些特殊的λ矩阵,先求行列式因子再求不变因子反而简单.例2 求100()100m ma a A a λλλλ⨯--⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭ 的行列式因子和不变因子.解 由于()A λ的一个1m -阶子式111(1)1m a a λλ----=---,故1()1m D λ-=,由(3)式的第一式,即行列式因子的“依次”整除性,有122()()()1m D D D λλλ-==== .而()()m m D a λλ=-,因此()A λ的不变因子为121()()()1,()()m m m d d d d a λλλλλ-=====- .由此可知()A λ的标准形为1()1()m m mA a λλ⨯⎛⎫ ⎪ ⎪≅ ⎪ ⎪-⎝⎭ . 定理7 设()[]n n A P λλ⨯∈,则()A λ可逆的充分必要条件是()A λ可表示为一系列初等矩阵的乘积.证 必要性 设()A λ为一个n 阶可逆矩阵,则由定理1知()0A d λ=≠,从而()A λ的行列式因子为12()()()1n D D D λλλ==== .于是()A λ的不变因子为12()()()1n d d d λλλ==== .因此()A λ与单位矩阵等价,即存在一系列初等矩阵1(),,(),t P P λλ 1(),,()t Q Q λλ 使得1111()()()()()()()()()l t l t A P P EQ Q P P Q Q λλλλλλλλλ== .充分性 设()A λ可表示为一系列初等矩阵的乘积,即存在一系列初等矩阵1(),,(),l P P λλ 1(),,()t Q Q λλ 使得11()()()()()l t A P P Q Q λλλλλ= ,则 111111()()()()()l t P P A Q Q E λλλλλ----= , 则()A λ的行列式是一个非零常数,因此由定理1知()A λ可逆.利用定理2和定理7容易证明下面定理.定理8 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ等价的充分必要条件是存在两个可逆λ矩阵()[]m m P P λλ⨯∈与()[]n n Q P λλ⨯∈,使得()()()B P A Q λλλλ=. §3.3 矩阵的初等因子下面再引进λ矩阵的初等因子,设λ矩阵()A λ的不变因子为1(),d λ 2(),,()r d d λλ ,在复数域内将它们分解成一次因式方幂的乘积:11112221221211221212()()()(),()()()(),()()()(),s s rs r r k k k s k k k s k k k rs d d d λλλλλλλλλλλλλλλλλλλλλ⎧=---⎪=---⎪⎨⎪⎪=---⎩ (1) 其中1,,s λλ 是互异的复数,ij k 是非负整数,因为1()|()(1,2,,1)i i d d i r λλ+=- ,所以ij k 满足如下关系1121112222120,0,0.r r s s rs k k k k k k k k k ≤≤≤≤⎧⎪≤≤≤≤⎪⎨⎪⎪≤≤≤≤⎩ 定义8 在(1)式中,所有指数大于零的因子()ij kj λλ-,(0,1,2,,,1,2,,)ij k i r j s >==称为λ矩阵()A λ的初等因子.例如,若λ矩阵()A λ的不变因子为 122232334()1,()(1),()(1)(1),()(1)(1)(2),d d d d λλλλλλλλλλλλλ=⎧⎪=-⎪⎨=-+⎪⎪=-+-⎩ 则()A λ的初等因子为22323,,,1,(1),(1),(1),(1),2λλλλλλλλλ---++-.由定义8知,若给定λ矩阵()A λ的不变因子,则可惟一确定其初等因子;反过来,如果知道一个λ矩阵的秩和初等因子,则也可惟一确定它的不变因子.事实上,λ矩阵()A λ的秩r 确定了不变因子的个数,同一个一次因式的方幂作成的初等因子中,方幂最高的必在()r d λ的分解中,方幂次高的必在1()r d λ-的分解中,如此顺推下去,可知属于同一个一次因式方幂的初等因子在不变因子的分解式中出现的位置是惟一确定的.例如,若已知56⨯λ矩阵()A λ的秩为4,其初等因子为22333,,,1,(1),(1),(1),()i λλλλλλλλ---+-,则可求得()A λ的不变因子23334()(1)()()d i i λλλλλ=-+-,23()(1)d λλλ=-,2()(1)d λλλ=-,1()1d λ=.从而()A λ的Smith 标准形为2232331000000(1)000000(1)000000(1)(1)()00000000i λλλλλλλλ⎛⎫ ⎪- ⎪ ⎪- ⎪-+- ⎪ ⎪⎝⎭. 由定理6以及不变因子与初等因子之间的关系容易导出如下定理. 定理9 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ等价的充分必要条件是它们有相同的秩和相同的初等因子.分块对角矩阵()0()0()B A C λλλ⎛⎫= ⎪⎝⎭, 不能从()B λ与()C λ的不变因子求得()A λ的不变因子,但是能从()B λ与()C λ的初等因子求得()A λ的初等因子.定理10 设λ矩阵()0()0()B A C λλλ⎛⎫= ⎪⎝⎭(2) 为分块对角矩阵,则()B λ与()C λ的初等因子的全体是()A λ的全部初等因子.证 将()B λ与()C λ分别化为Smith 标准形1()()()00B r b b B λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,1()()()00C r c c C λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 其中1(()),(()),(),,()B B C r r r a n k B r r a n k C b b λλλλ== 与1(),,()C r c c λλ 分别为()B λ与()C λ的不变因子,则(())B C rank A r r r λ==+.把()i b λ和()i c λ分解为不同的一次因式的方幂的乘积,不妨设1212()()()(),1,2,,i i is b b b i s B b i r λλλλλλλ=---= ,1212()()()(),1,2,,j j js c c cj s C c j r λλλλλλλ=---= .则()B λ与()C λ的初等因子分别为 1212(),(),,(),1,2,,i i is b b b s B i r λλλλλλ---=和1212(),(),,(),1,2,,j j js c c c s C i r λλλλλλ---=中非常数的多项式.我们先证明()B λ与()C λ的初等因子是()A λ的全部初等因子.不失一般性,仅考虑()B λ与()C λ中只含1λλ-的方幂的那些初等因子,将1λλ-的指数1111211121,,,,,,,B C r r b b b c c c按由小到大的顺序排列,记为120r j j j ≤≤≤≤ ,由(2)可知,对()B λ与()C λ进行初等变换实际上是对()A λ进行初等变换,于是11()()()()()00B C r r b b c A c λλλλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12111212()()()()()()00r j j j λλϕλλλϕλλλϕλ⎛⎫- ⎪- ⎪ ⎪ ⎪≅- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ , 其中多项式1(),,()r ϕλϕλ 都不含因式1λλ-.设()A λ的行列式因子和不变因子分别为12(),(),,()r D D D λλλ 和12(),(),,()r d d d λλλ ,则在这些行列式因子中因子1λλ-的幂指数分别为111211,,,,r ri i i i j j j j j -==+∑∑ ,而由行列式因子与不变因子的关系式(3)知,12(),(),,()r d d d λλλ 中因子1λλ-的幂指数分别为121,,,,r r j j j j - .因此()A λ中与1λλ-相应的初等因子是1()i j λλ-,0i j >,1,2,,i r =也就是()B λ、()C λ中与1λλ-相应的全部初等因子.对23,,,r λλλλλλ--- 进行类似的讨论,可得相同结论.于是()B λ和()C λ的全部初等因子都是()A λ的初等因子.下面证明,除()B λ、()C λ的初等因子外,()A λ再没有其他的初等因子. 因为()r D λ为()A λ的所有初等因子的乘积,而 11()()()()()B C r r r D b b c c λλλλλ= 如果()k a λ-是()A λ的初等因子,则它必包含在某个()(1,,)i B b i r λ= 或()j c λ(1,,C j r = )中,即()A λ的初等因子包含在()B λ与()C λ的初等因子中,因此,除()B λ、()C λ的全部初等因子外,()A λ再没有别的初等因子.定理10可推广为定理11 若λ矩阵()A λ等价于块对角阵12()()()()t A A A A λλλλ⎛⎫⎪ ⎪≅ ⎪ ⎪⎝⎭ , 则12(),(),,()t A A A λλλ 的各个初等因子的全体就是()A λ的全部初等因子.对t 应用数学归纳法,请读者自行证明. 例3 求λ矩阵22000000()00(1)10022A λλλλλλλ⎛⎫+ ⎪⎪= ⎪++ ⎪ ⎪--⎝⎭的初等因子,不变因子和标准形.解 记22123(1)1(),(),()22A A A λλλλλλλλλ⎛⎫++=+== ⎪--⎝⎭,则 123()00()0()000()A A A A λλλλ⎛⎫ ⎪= ⎪ ⎪⎝⎭.对于3()A λ,其初等因子为,1,1λλλ-+,利用定理11可得()A λ的初等因子为,,,1,1,1λλλλλλ-++.因为()A λ的秩为4,故()A λ的不变因子为4321()(1)(1),()(1),,()1d d d d λλλλλλλλλ=-+=+== 因此()A λ的Smith 标准形为100000000(1)0000(1)(1)λλλλλλ⎛⎫⎪⎪ ⎪+ ⎪+-⎝⎭.§3.4 矩阵相似的条件设A 是n 阶数字矩阵,其特征矩阵E A λ-是λ矩阵,它是研究数字矩阵的重要工具.应用特征矩阵也可以给出两个n 阶数字矩阵A 与B 之间相似性的判断准则.为此,我们先证明两个引理.引理2 设,A B 是两个n 阶数字矩阵.如果存在n 阶数字矩阵,P Q 使得()E A P E B Q λλ-=-. (1)则矩阵A 与B 相似.证 比较(1)两边λ的同次幂的系数矩阵,得,PQ E A PBQ ==.由此11,Q P A PBP --==,故A 与B 相似.引理3 设A 是n 阶非零数字矩阵,()U λ与()V λ是n 阶λ矩阵,则必存在n 阶λ矩阵()Q λ、()R λ以及n 阶数字矩阵0U 、0V ,使得0()()()U E A Q U λλλ=-+,(2) 0()()()V R E A V λλλ=-+. (3)(2)式与(3)式的证明类似,这里仅证(2)式.把()U λ改写成1011()m m m m U D D D D λλλλ--=++++ ,其中01,,,m D D D 都是n 阶数字矩阵.并且00D ≠(1) 若0m =,则取()0Q λ=及00U D =,它们显然满足要求. (2) 若0m >,令120121()m m m m Q Q Q Q Q λλλλ----=++++ ,其中011,,,m Q Q Q - 是待定的n 阶数字矩阵.由1010()()()m m E A Q Q Q AQ λλλλ--=+-+1121()()m k k k m m m Q AQ Q AQ AQ λλ-----+-++-- .只需取0011022111201,,,,,m m m m m Q D Q D AQ Q D AQ Q D AQ U D AQ ----==+=+=+=+ , 则(2)式成立.定理12 n 阶矩阵A 和B 相似的充分必要条件是它们的特征矩阵E A λ-和E B λ-.证 充分性 设E A λ-和E B λ-等价,由定理8知存在可逆的λ矩阵(),()U V λλ使()()()I A U E B V λλλλ-=-. (4) 由引理3,存在λ矩阵()Q λ与()R λ以及数字矩阵0U 与0V 使得0()()()U E A Q U λλλ=-+, (5) 0()()()V R E A V λλλ=-+ , (6) 把(4)式改写为1()()()()U E A E B V λλλλ--=- , (7) 1()()()()E A V U E B λλλλ--=- . (8)将()V λ的表达式(6)代入(7)式,得10[()()()]()()U E B R E A E B V λλλλλ----=-.因为上式右边的λ的次数1≤,所以1()()()U E B R λλλ---是数字矩阵,记为T ,即1()()()T U I B R λλλ-=-- , (9) 0()()T I A IB Vλλ-=- . (10) 由(9)式,并利用(5)式和(8)式,得()()()()I U T U E B R λλλλ=+-1()()()()U T E A V R λλλλ-=+-10[()()]()()()E A Q U T E A V R λλλλλ-=-++-10()[()()()]U T E A Q T V R λλλλ-=+-+.上式右边第二项必为零;否则右边λ的次数至少是1,等式不可能成立.因此0I U T =,从而0,U T 可逆,并且10T U -=.由(10)式得00()I A U I B V λλ-=-.由引理2知,A 和B 相似.定义9 设A 是n 阶数字矩阵,其特征矩阵I A λ-的行列式因子、不变因子和初等因子分别称为矩阵A 的行列式因子、不变因子和初等因子.由定理6和定理12立即得定理13 n 阶矩阵A 和B 相似的充分必要条件是它们有相同的行列式因子,或者说它们有相同的不变因子.由第二节的例1,定理9和定理12得定理14 n 阶矩阵A 和B 相似的充分必要条件是它们有相同的初等因子.§3.5 矩阵的Jordan 标准形定义10 形式为1010t tJ λλλ⨯⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭ (1)的矩阵称为Jordan (若尔当)块,其中λ为复数.由若干个Jordan 块组成的块对角矩阵称为Jordan 形矩阵,其一般形式如12s J J J J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭. 其中 101,1,2,,1i ii ii i k k J i s λλλ⨯⎛⎫ ⎪⎪⎪== ⎪ ⎪⎪⎝⎭并且12,,,s λλλ 中有一些可以相等. 例如,矩阵11000010000004000000100000100000i i i ⎛⎫ ⎪⎪ ⎪⎪- ⎪ ⎪- ⎪⎪-⎝⎭是一个Jordan 形矩阵.容易验证,i n 阶Jordan 块i J 具有如下性质:1)i J 具有一个i n 重特征值i λ,对应于特征值i λ仅有一个线性无关的特征向量. 2)i J 的方幂有明显的表示式(1)11()()()()2!(1)!()(),1,2,1()2!()()i n p i p i p i p i i p i p i pi p i p i p i f f f f n f f J p f f f λλλλλλλλλ-⎛⎫''' ⎪- ⎪ ⎪ ⎪' ⎪⎪=='' ⎪⎪⎪⎪' ⎪⎪⎝⎭其中()p p f λλ=. 3)i J 的不变因子为11()()1,()()i i i n n n i d d d λλλλλ-====- .从而i J 的初等因子为()i n i λλ-.设12(,,,)s J diag J J J =是Jordan 形矩阵,其中i J 为形如(1)的Jordan 块.J 的特征矩阵为11(,,)sn n s E J diag E J E J λλλ-=--由定理11知Jordan 形矩阵J 的初等因子为1212(),(),,()s n n n s λλλλλλ--- .可见,Jordan 形矩阵的全部初等因子由它的全部Jordan 块的初等因子组成,而Jordan 块被它的初等因子惟一决定,因此,Jordan 形矩阵除去其中Jordan 块排列的次序外被它的初等因子惟一决定.定理15 每个n 阶复矩阵A 都与一个Jordan 形矩阵相似,这个Jordan 形矩阵除去其中Jordan 块的排列次序是被矩阵A 惟一决定的.证 设A 的初等因子为1212(),(),,()s n n n s λλλλλλ--- (2)其中12,,,s λλλ 可能有相同的,1,,s n n 也可能有相同的.每一个初等因子()i n i λλ-对应于一个Jordan 块 11,1i ii ii i n n J λλλ⨯⎛⎫ ⎪⎪⎪= ⎪ ⎪⎪⎝⎭1,2,i s = (3) 这些Jordan 块构成一个Jordan 形矩阵12(,,,)s J diag J J J = (4)其初等因子也是(2).因为J 与A 有相同的初等因子,由定理14知J 与A 相似.Jordan 形矩阵(3)称为矩阵A 的Jordan 标准形.若有另一个Jordan 形矩阵'J 与A 相似,则J 与A 有相同的初等因子.因此,J '与J 除去其中Jordan 块排列的次序外是相同的,这就证明了惟一性.利用矩阵在相似变换下的Jordan 标准形,可得线性变换的结构.定理16 设A 是复数域上n 维线性空间V 的线性变换,则在V 中存在一组基,使得A 在这组基下的矩阵是Jordan 形矩阵.证 在V 中任取一组基12,,,n εεε ,设线性变换A 在这组基下的矩阵是A .由定理15知,存在可逆矩阵P ,使得1P AP J -=为Jordan 形矩阵.令1212(,,,)(,,,)n n P ηηηεεε= .则线性变换A 在基12,,,n ηηη 下的矩阵是1P AP J -=为Jordan 形矩阵.如果1i n =,则i i J λ=是一阶Jordan 块,当矩阵A 的Jordan 标准形中的Jordan 块都是一阶块时,A 的Jordan 标准形就是对角矩阵.因为一阶Jordan 块的初等因子是一次的,所以对角矩阵的初等因子都是一次的.由此得定理17 设n n A C ⨯∈,则A 与一个对角矩阵相似的充分必要条件是A 的初等因子都是一次的.例1 求矩阵126103114A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭的Jordan 标准形.解 因为21261001301011400(1)E A λλλλλλ+-⎛⎫⎛⎫ ⎪ ⎪-=-≅- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 的初等因子为1λ-,2(1)λ-.故A 的Jordan 标准形为100011001J ⎛⎫⎪= ⎪ ⎪⎝⎭.由定理15知,对任意的n 阶矩阵A ,存在n 阶可逆矩阵P ,使得1P AP J -=为Jordan 标准形.下面介绍求变换矩阵P 的方法.先看一个例子.例2 求化矩阵126103114A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭为Jordan 标准形的变换矩阵.解 由例1知,存在3阶可逆矩阵P 使得1100011001P AP J -⎛⎫ ⎪== ⎪ ⎪⎝⎭.记123(,,)P p p p =,则得123123100(,,)(,,)011001Ap Ap Ap p p p ⎛⎫⎪= ⎪ ⎪⎝⎭.比较上式两边得1122323,,.Ap p Ap p Ap p p =⎧⎪=⎨⎪=+⎩ 由此可见,12,p p 是A 的对应于特征值1的两个线性无关的特征向量.从方程组()0E A x -=,可求得两个线性无关的特征向量131,001ξη-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.可取1p ξ=.但不能简单地取2p η=,因为2p 的选取应保证非齐次线性方程组32()I A p p -=-有解.由于,ξη的线性组合仍是()0I A x -=的解,因此我们选取212p k k ξη=+,其中待定常数12,k k 只要保证1p 和2p 线性无关,且使得32()I A p p -=-有解即可.因为2121212(3,,)T p k k k k k k ξη=+=-+,所以选取12,k k 使得方程组11221322263113113x k k x k x k --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭有解,容易看出,当12k k =时方程组有解,且其解为12313x x x k =-+-,其中1k 是任意非零常数.取11k =,可得23221,011p p ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.于是122110011P -⎛⎫ ⎪= ⎪⎪⎝⎭使得1100011001P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,即P 为所求的变换矩阵.一般地,设n n A C ⨯∈,则存在n 阶可逆矩阵P ,使得121s J J P A P J J -⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭, (5) 其中i J 为形如(3)式的Jordan 块,记12(,,,)s P P P P = (6)其中in n i P C⨯∈.由(5)式和(6)式得 121122(,,,)(,,,)s s s AP AP AP PJ P J P J = .比较上式两边得,1,2,,i i i AP PJ i s == (7) 记()()()12(,,,)i i i i i n P p p p = ,由(7)式可得()()11()()()221()()()1,,ii i i i i i i i i i i i n i n n Ap p Ap p p Ap p p λλλ-⎧=⎪=+⎪⎨⎪⎪=+⎩ 由上式可见,()1i p 是矩阵A 对应于特征值i λ的特征向量,且由()1i p 可依次求得()()2,,i i i n p p .由例2可知,特征向量()1i p 的选取应保证()2i p 可以求出,类似地()2i p 的选取(因为()2i p 的选取一般不惟一,只要适当选取一个即可)也应保证()3i p 可以求出,依次类推,并且使()()()12,,ii i i np p p 线性无关. §3.6 Cayley-Hamilton 定理与最小多项式设A 为任意n 阶矩阵,其特征多项式为12121()det()n n n n n f E A a a a a λλλλλλ---=-=+++++矩阵A 与其特征多项式之间的关系有代数学上著名的哈密顿-凯莱定理.定理18(Hamilton -Cayley 定理) 设A 是n 阶矩阵,()f λ是A 的特征多项式,则()0f A =.证 考虑特征矩阵E A λ-的伴随矩阵*()E A λ-,其元素至多是λ的1n -次多项式,则*()E A λ-可表示为*12121()n n n n E A C C C C λλλλ----=++++ ,其中,12,,,n C C C 都是n 阶数字矩阵.因为*()()()E A E A f E λλλ--=,即12121()()n n n n E A C C C C λλλλ----++++ 111n n n n E a E a E a E λλλ--=++++比较两边λ的同次幂的系列矩阵,得1C E =, 211C AC a E -=, 322C AC a E -=,…11n n n C AC a E ---=, n n AC a E -=.用1,,,,n n A A A E - 分别左乘上面各式的两端,再累加,得12121321()()()n n n n n n A C A C AC A C AC A C AC AC ---+-+-++--111()n n n n A a A a A a E f A --=++++= .因为上式左边为零矩阵,所以()0f A =.定义11 设A 为n 阶矩阵,如果非零多项式()ϕλ使()0A ϕ=,则称()ϕλ为A 的一个化零多项式.对任意n 阶矩阵A ,()f λ是A 的特征多项式,由定理18知()f λ为A 的化零多项式.设()f λ为A 的化零多项式,()g λ是任意多项式,则()()g f λλ也是A 的化零多项式.因此,任意n 阶矩阵A 的化零多项式总存在,并且A 的化零多项式有无穷多个.定义12 n 阶矩阵A 的所有化零多项式中,次数最低且首项系数为1的多项式称为A 的最小多项式.由定理18知,任意n 阶矩阵A 的最小多项式存在且次数不超过n . 定理19 设A 是n 阶矩阵,则1)A 的最小多项式()m λ能整除A 的任一化零多项式()ϕλ,特别地,()m λ能整除A 的特征多项式()f λ;2)A 的最小多项式()m λ的零点是A 的特征值;反之,A 的特征值是()m λ的零点;3)A 的最小多项式是惟一的.证 1)设()m λ是A 的最小多项式,()ϕλ是A 的任一化零多项式,由多项式的带余除法,有()()()()q m r ϕλλλλ=+其中(),()q r λλ是多项式,()0r λ=或者()0r λ≠但(())(())r m λλ∂<∂.因此()0r λ=,否则与()m λ是A 的最小多项式矛盾,于是()|()m λϕλ.2)设()f λ是A 的特征多项式,由(1)知()()()f q m λλλ=,其中()q λ是一个多项式,因此()0m λ=的根必为()0f λ=的根,即A 的特征值.反过来,设0λ是A 的任一特征值,相应的特征向量为0ξ≠,即0A ξλξ=则0()()m A m ξλξ=.因为()0,0m A ξ=≠,所以0()0m λ=,即0λ是()0m λ=的根.3)设A 有两个最小多项式12(),()m m λλ,则它们的次数相同,如果12()()m m λλ≠,则12()()()0m m m λλλ=-≠,且1(())(())m m λλ∂<∂. 设()m λ的首项系数为a ,则3()()m m aλλ=是首项系数1的多项式且31(())(())m m λλ∂<∂.由于31211()()(()())0m A m A m A m A a a==-=, 于是,3()m λ是A 的化零多项式,这与1()m λ是A 的最小多项式的假设矛盾.因此A 的最小多项式是惟一的.定理20 相似的矩阵具有相同的最小多项式.证 设n 阶矩阵A 与B 相似,则存在可逆矩阵P ,使得1B P AP -=.对任意多项式()g λ恒有1()()g B P g A P -=.可见,A 与B 有相同的化零多项式,从而它们具有相同的最小多项式.例1 求Jordan 块1010i ii ii i n n J λλλ⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭的最小多项式.解 因为i J 的特征多项式()()i n i f λλλ=-,则由定理19知i J 的最小多项式()m λ具有如下形式()()k i m λλλ=-其中正整数i k n ≤.但当i k n <时0100()()0100ki i i m J J I λ⎛⎫ ⎪⎪⎪=-=≠ ⎪ ⎪ ⎪⎝⎭,而i k n =时()0i m J =,因此()()i n i m λλλ=-.定理21 分块对角矩阵12(,,,)s A diag A A A = 的最小多项式等于其诸对角块的最小多项式的最小公倍式.证 设i A 的最小多项式为()(1,2,,)i m i s λ= .由于对任意多项式()ϕλ1()((),,())s A diag A A ϕϕϕ= .如果()ϕλ为A 的化零多项式,则()ϕλ必为(1,,)i A i s = 的化零多项式,从而()|()(1,2,,)i m i s λϕλ= ,因此()ϕλ为1(),,()s m m λλ 的公倍式.反过来,如果()ϕλ为1(),,()s m m λλ 的任一公倍式,则()0(1,,)i A i s ϕ== , 从而()0A ϕ=.因此,A 的最小多项式为1(),,()s m m λλ 的公倍式中次数最低者,即它们的最小公倍式.定理22 设n n A C ⨯∈,则A 的最小多项式为A 的第n 个不变因子()n d λ. 证 由定理15知A 相似于Jordan 标准形1(,,)s J diag J J = ,其中i J 为形如第5节(1)式的Jordan 块.由定理13和定理20知A 与J 有相同的不变因子和最小多项式.又由定理21知J 的最小多项式为1,,s J J 的最小多项式的最小公倍式,而i J 的最小多项式为()(1,2,,)i n i i s λλ-= 而1212(),(),,()s n n n s λλλλλλ---的最小公倍式是J 的第n 个不变因子()n d λ,因此,A 的最小多项式就是A 的第n 个不变因子()n d λ.由定理17和定理22可得如下定理.定理23 n 阶矩阵A 相似于对角矩阵的充分必要条件是A 的最小多项式()m λ没有重零点.例2如果n 阶矩阵A 满足2A A =,则称A 为幂等矩阵.证明幂等矩阵A 一定相似于对角矩阵.证 令2()ϕλλλ=-,则()ϕλ是A 的化零多项式,由定理19知A 的最小多项式()m λ整除()ϕλ所以()()m λϕλ=.因为()0ϕλ=没有重根,据定理23知A 相似于对角矩阵.例3 设A 是n 阶幂等矩阵,证明 1)A H 与E-A 也是幂等矩阵; 2)A 的特征根只能是0和1;3)有可逆矩阵P ,使1(1,...,1,0,...,0)P AP diag -=;4)秩A =迹A .证 1)依定义直接验证即知. 2)设λ为A 的任一特征根,α是A 相应于λ的特征向量.则有 λαα=A . 又有()αλαλλαααλα22=====A A A A .于是 ()02=-αλλ.因0≠α,故0=λ或1=λ.3)设A 的若当标准形为J ,则必有可逆矩阵P ,使121111000s J J P AP J J -*⎛⎫ ⎪* ⎪⎪⎛⎫⎪⎪* ⎪⎪=== ⎪ ⎪*⎪ ⎪ ⎪⎝⎭ ⎪* ⎪ ⎪⎝⎭. (1)上式中每个i J 都是特征根1或0相应的若当小块,且与特征根1相应的小块垒排在前头.由A 2=A ,可推出J 2=J ,进而知i i J J =2,1,2,...,i s =由于⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----k k k k k k k kk k k k kkC C C C C λλλλλλλλλλλ1122112211111.对于2k =,λ为0或1时,欲使上式成立只有若当块的阶数为1.于是(1)式中所有*全为零.便有1(1,...,1,0,...,0)P AP J diag -==.4)若设秩A r =,则J 的主对角元中应有r 个1,其余为0.由相似矩阵迹数相等,可知迹A =迹J =r =秩A .。
矩阵的标准形线性代数中涉及矩阵的标准形有三种,分别是等价标准形、相似标准形和合同标准形.虽然各种矩阵的标准形不同,但它们有一个不变量——秩不变.0.00r E A ⎡⎤−−−−−→⎢⎥⎣⎦一系列初等变换(1) 等价标准形与是同型矩阵,若经过一系列初等A B A 变换化为,则称与等价. 若,B B A ()R A r =则又由于对作一次初等行(列)变换相当A 于左(右)乘一个初等矩阵,而初等矩阵的A 乘积是可逆阵,从而对阶矩阵而言,m n ⨯A存在阶可逆方阵和阶可逆方阵,使m P n Q 000r E PAQ ⎡⎤=⎢⎥⎣⎦其中标准形的非负整数由原矩阵唯一确定.r 易见,矩阵的等价标准形唯一.(2) 矩阵的相似标准形设均为阶方阵,若存在可逆矩阵,,A B n P 1B P AP-=则称矩阵与相似.A B 为什么要讨论这一类标准形,是起源于实对称阵如何化为对角阵,进而通过对角阵研究原矩阵.使得是的特征值.A 1P AP -=Λ对角阵,其中{}12,,,n diag λλλΛ= 12,,,n λλλ 12.n AP P P λλλ⎡⎤⎢⎥⎢⎥=Λ=⎢⎥⎢⎥⎣⎦ 设是实对称阵,能否找到可逆阵(甚至A P 正交阵)使得7将按列分块,记,则有P []12,,,n P p p p = [][]121212,,,,,,n n n A p p p p p p λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 即(1,2,,).i i i Ap p i n λ== 易见可逆矩阵的第列是实对称阵的特征P i A 值所对应的特征向量,这一表达式也正是方阵i λ的特征值与特征向量的定义起源.事实上,如何求矩阵的相似标准形,首先求矩阵的全部特征值,进而求所有特征值所对应的特征向量.教材中有结论:实对称阵必存在相似标准形.问题n一般阶方阵是否也存在相似标准形?几何重数代数重数只有两者相等时,原矩阵才可对角化.当然,这涉及到某个重特征值是否会对应k k 个线性无关的特征向量,即几何重数与代数重数之间恒有关系式:(3) 合同标准形使,则称与合同.TB C AC A B 对于同阶方阵与,若存在可逆阵,使A B C 虽然合同的定义是针对一般阶方阵定义的,n 但在实际应用中是用来研究二次型的主轴问题.因此,重点是以实对称矩阵为研究对象,而矩阵的相似标准形中有结论:.T P AP =Λ逆且)使得1T P P -=实对称阵必存在正交阵(正交阵一定可A P 是的全部特征值.12,,,n λλλ 即与合同。
第四章 矩阵的相似标准形复方阵在相似意义下的标准形——Jordan 标准形(B A B AP P ~1⇔=-)。
第一节 特征值 特征向量如果存在任意的一组基n ααα,,,21 ,使=),,,(21n f ααα ),,,(21n ααα ),,,(21n d d d d ,则n i d f i i i ,,2,1,)( ==αα。
定义1.1 设),hom(V V f ∈,V 为数域F 上的线性空间,若存在F ∈λ以及非零向量V ∈ξ,使得 λξξ=)(f则称λ是线性变换f 的特征值,ξ为f 对应于特征值λ的特征向量。
例如:1 是恒等变换I 的特征值;0是零变换O 的特征值,一切非零向量都是他们的特征向量。
设V 为n 维线性空间,n ααα,,,21 为V 的一组基,f 在该组基下的矩阵为A ,ξ的坐标向量为X ,则)(ξf 的坐标向量为AX ,于是存在0≠ξ,使得⇔=λξξ)(f 存在0≠X ,使得⇔=X AX λ存在0≠X ,使得⇔=-0)(X I A λ0=-A I λ。
因此,f 的特征值即是特征方程0=-A I λ在数域F 上的根;特征值λ对应的特征向量ξ的坐标向量X 就是齐次线性方程组0)(=-X A I λ的非零解。
定义1.2 设n n C A ⨯∈,n 次多项式0)(=-=A I C λλ称为矩阵A 的特征多项式;称0)(=-=A I C λλ的根为矩阵A 的特征值,记矩阵A 的特征值集为)(A λ;称满足X AX λ=的非零向量X 为矩阵A 的特征向量(属于特征值λ)。
定理1.1 若B A ~,则A 与B 有相同的特征多项式。
证 由B A ~知,B AP P =-1,于是A I AP P I B I -=-=--λλλ1。
定理1.2 设n n ij a A ⨯=)(,则∑=--+=-nk k n k k nb A I 1)1(λλλ。
其中A b k =的所有k 阶主子式之和,特别)(1A tr b =,A b n =。