Q(+)
左上右下为正 Q(–)
Q(+)
Q(–)
〔2〕弯矩M。使微段梁产生上弯趋势的为正弯矩;反之为负弯矩。
M(+)
M(+) M(–)
上弯为正
M(–)
例11-1 如下图简支外伸梁,受集中力偶M和均布荷载q的作 用。求梁的1-1、2-2、3-3、4-4截面上的剪力和弯矩。
A RA
M
1 2
x
C
12
a
a
4q 3
第三节 载荷集度、剪力和弯矩间的关系
一、载荷集度、剪力和弯矩间的微分关系
q(x)
y
对dx 段进展平衡分析,有
x Y0即为
x dx
Q (x)q(x)dxQ (x)dQ (x)0
q(x)dxdQ (x) q(x)
Q(x)+d Q(x) 剪力与分布载荷间的关系为
M(x)
A
Q(x) dx M(x)+d M(x)
Y0, QFYAF(lla) mC0, MFYAx
FYA
x
m
弯曲构件内力
剪力Q 弯矩M
Q A
C
弯矩M
FYA
Q
——构件受弯时,横截面上
MC
位于轴线所在平面内的内力偶。
矩心为横截面形心。
P B
FB
M F
FB
剪力Q ——构件受弯时,横截面上过截面形心且平行于截面的内力。
内力的正负规定:
〔1〕剪力Q。 绕争论对象顺时针转为正剪力;反之为负。
〔1〕计算内力时按支座反力的实际方向确定其正负号,与 坐标系相全都。
〔2〕计算弯曲内力时,选用截面左侧还是右侧计算应以计 算简便为原则。