A
q
Me
B
纵
向
对称面
x
FAy
y
FBy
平面弯曲—荷载与反力均作用在梁 的纵向对称平面内,梁轴线也在该 平面内弯成一条曲线。
第一节
F
弯曲内力的概念
Me
B
纵 向 对称面
q
A
x
FAy FBy
y
二、单跨静定梁的基本形式:
第二节
剪力图与弯矩图
一、梁的内力——剪力和弯矩
图示简支梁在荷载及支座反力共同作用下处于平 衡状态。 求距离支座A为x的横截面m-m上的内力。
x 0, M 0
x l, M 0
1 1 x l , M ql 2 2 8
Qmax
ql 2
M max pl
四.内力图的一般规律
1. M、Q图规律:
外力情况 剪力图 上的特征 有荷载段 q<0 (向下) ↘(向下斜直线) 无荷载段 水平线 集中力F 作用处 有突变, 突变值为F 集中力偶M 作用处 不变
二.用方程法绘制梁的内力图 第二节 剪力图和弯矩图
例题2. 简支梁受集 中力作用如图 所示,求梁的 剪力方程和弯 矩方程,画出 Q、M图并确定 最大剪力和最 大弯矩。
例题分析2.简支梁受均布荷载作用如图所示,求梁的剪力方程和弯矩方程, 画Q、M图,确定最大剪力和最大弯矩。
解:(1)计算支座反力
R A RB 1 ql 2
剪力图和弯矩图
二.剪力图和弯矩图的作法: 取平行于梁轴的轴线表示截面位置 规定:正值的剪力画轴上侧, 正值的弯矩画轴下侧; 可先列内力方程再作其函数曲线图。 如悬臂梁: 当x=o, Q(x)=-P, x=l, Q(x)=-P-ql, M(x)=0 M(x)=-Pl-ql2/2