课题学习 图案设计2
- 格式:ppt
- 大小:2.03 MB
- 文档页数:8
23.3 课题学习图案设计教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十三章“旋转”23. 3 课题学习图案设计,内容包括:利用平移、轴对称和旋转的组合设计图案.2.内容解析本节课我们学习利用平移、轴对称和旋转这些图形变换中的一种或组合进行图案设计,有利于学生认识图形间运动变化和联系,培养学生的审美能力.基于以上分析,确定本节课的教学重点是:利用平移、轴对称和旋转的组合设计图案.二、目标和目标解析1.目标1)学会利用旋转、轴对称或平移进行简单的图案设计.2)了解和欣赏平移、旋转在现实生活中的应用.3)灵活运用平移与旋转组合的方式进行一些图案设计.2.目标解析达成目标1)的标志是:学生进行图案设计时,能选取简单的基本图形,通过几种不同的变换组合构造出美丽的图案.达成目标2)的标志是:欣赏生活的美丽图案,并分析它的形成.达成目标3)的标志是:利用平移、轴对称和旋转的组合设计图案.三、教学问题诊断分析学生利用平移、轴对称和旋转的组合设计图案并不难,但要设计出丰富的图案,就需要学生提高审美能力,多观察多思考,感受生活中数学的美.基于以上分析,本节课的教学难点是:利用平移、轴对称和旋转的组合设计丰富、美观的组合图案.四、教学过程设计(一)复习旧知,引入新课【提问1】简述平移、轴对称、旋转的概念?【提问2】平移、轴对称变换、旋转有什么共同特征?师生活动:教师提出问题,学生回答.【设计意图】先回顾平移、轴对称、旋转的相关知识,为本节课学生分析图案的形成过程和设计图案做好铺垫.(二)探究新知[问题1]生活中有很多由几何图形组成的优美图案,你知道它们是怎样形成的吗?[问题2]生活中有很多由几何图形组成的优美图案,你知道它们是怎样形成的吗?[问题3]观察下面的图案,分析它是将哪种基本图形经过哪些变换得到的?[问题4]观察下面的图案,分析它是将哪种基本图形经过哪些变换得到的?师生活动:教师提出问题,学生回答.教师演示课件,展示基本图形经过不同的图形变换后得到组合图案的过程,让学生在组合图案中辨析出基本图形经过了哪些图形变换,再现组合图案的设计过程,感受图形变换的奇妙、美丽、生动与灵活,调动学生创造的热情.教学时,应关注学生能否准确地运用数学语言表述基本图形进行平移、旋转和轴对称变换的过程.【设计意图】让学生感受简单的基本图形如何通过不同的变换组合变成丰富多彩的图案.[问题5]简述分析图案形成过程的方法?师生活动:教师提出问题,学生回答.教师负责引导学生归纳:1)找出组成原图案最基本的图形;2)说明将该基本图形运用平移、旋转、轴对称中的哪些图形变换,通过怎样的变换方式得到原图案.【设计意图】让学生掌握分析图案形成过程的方法.(三)典例分析和针对训练例1 分析下列图案的形成过程.【针对训练】1.下面四个图案中,不能由基本图案旋转得到的是( )2.如图,将甲图经图形变换变到乙图,下列说法错误的是( )A .可以通过旋转和平移实现B .可以通过旋转和轴对称实现C .必须通过旋转才能实现D .不必通过旋转就能实现3.下列对下图的形成过程叙述正确的是( )A .它可以看作是一只小狗绕图案的中心位置旋转90∘,180∘,270∘形成的B .它可以看作是相邻两只小狗绕图案的中心位置旋转180∘形成的C .它可以看作是相邻两只小狗绕图案的某条对称轴翻折而成的D .它可以看作是左侧和上方的小狗分别向右侧和下方平移得到的A .B .C .D .【设计意图】考查学生分析图案形成过程.(四)探究新知【小组讨论】请以给定的图形○○△△=(两个圆,两个三角形,两条平行线)为构件,尽可能多地构思有意义的一些图形,并写上一两句贴切,诙谐的解说词.如下图就是符合要求的图形,你能构思其它图形吗?比一比,看谁想得多,看谁想得妙!(图形不限定大小,线段不限定长短,每小组至少给出5个答案,比一比哪个小组画的最漂亮)师生活动:教师提出问题,以小组为单位讨论并给出答案.[问题]简述设计图案的方法?师生活动:教师提出问题,学生回答.教师负责引导学生归纳:图案的设计通常是利用基本图形通过轴对称、平移、旋转这三种基本形式变换来进行的,三种基本变换都有一个共同特征,那就是变换前后图形的形状、大小不发生变化,只有位置发生了变化,它们都属于全等变换。
23.3 课题学习图案设计教学目标知识技能1.认识和欣赏平移、旋转、轴对称变换在现实生活中的应用;2. 能够灵活运用平移、旋转、轴对称变换进行简单的图案设计.数学思考通过学生操作和试验,构建自主学习环境,充分发挥学生的主体性,让学生在活动中获取知识;问题解决经历搜集、欣赏、分析、设计和操作的过程,培养学生搜集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力;情感态度经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识;教学重点利用各种图形变换设计组合图案;教学难点将基本图形创造性地运用平移、旋转、轴对称变换设计出丰富、美观的组合图案;授课类型新授课课时第一课时教具多媒体教学活动教学步骤师生活动设计意图回顾(展示问题)回顾以下问题:1.平移、旋转和轴对称变换的基本特征;2.归纳三种图形变换的共性;师生活动:学生思考后回答,相互交流后,教师进行点评和归纳.3.图片欣赏:利用多媒体演示图片,学生观察图形,三种图形变换情境展示.用美丽的图片捕捉学生的眼睛,帮助学生回顾三种图形变换.活动一:创设情境导入新课【课堂引入】展示问题:观察下面图形,分析是将哪种基本图形经过了哪些变换后得到的?你能用平移、旋转或轴对称变换分析这个图案的形成过程吗?师生活动:学生观察图形,将基本图形从组合图案中分离出来.教师利用多媒体演示基本图形经过三种变换后得到组合图案的过程,突出基本图形经过不同的图形变换后得到组合图案的过程.通过辨析图形,认识到图形变换的本质是简单图形的复杂变换,让学生感受数学生动、灵活,美感,调动学生的创作热情.活动二:1.探究新知:活动一:学生展示搜集到的利用平移、旋转和轴对称变换设计的组合图案.学生在展示的同时,说明图案是运用了哪种图形变换,最基本的图形是什么?教师观察学生的展示,适时评价或肯定.活动二:教师引导学生反思图案设计的关键.学生讨论后,师生进行总结:1.对学生进行创新意识的培养,让学生在合作中学习与他人交流,集实践探究交流新知选取简单的基本几何图形,通过不同的变换组合出丰富的图案.2.综合运用教师指导学生选择简单的基本图形,进行不同的图形变换,组合出美丽的图案.如:利用三角形、矩形、菱形、圆等作为基本图形,进行图案设计.学生活动:自己独立设计;小组交流设计图案;小组内选出优秀图案班内展示;教师活动:组织学生进行评价选择.思广益.2.以学生为主展示其创作成果,在促进学生进行数学交流的基础上增强学生表达与交流的意识.活动三:开放训练体现应用【应用举例】(课件展示)例1:在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()例2:下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个师生活动:学生解答问题,教师进行个别提问,教师总结解题方法.【拓展提升】例3:如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有()A.4种B.5种C.6种D.7种师生活动:学生小组内讨论、交流,总结答案,教师在过程中进行引导、点拨.典型问题的设计利用学生对于基本知识的理解和运用,设置开放型问题,利于激发学生思维,拓展思维的空间发挥学生的想象力.【达标测评】1. 下列语句中,不正确的是()A.图形平移是由移动的方向和距离所决定;B.图形旋转是由旋转中心和旋转角度所决定;C.中心对称图形是指一个图形绕其中的某一点旋转180°后能与其自身重合的图形;D.旋转后能重合的图形也是中心对称图形;2. 下列现象属于旋转的是()A.摩托车在急刹车时向前滑动B.空中飞舞的雪花C.拧开自来水龙头的过程D.飞机起飞后冲向空中的过程3. 如图所示的图案,至少绕它的中心旋转()度能与自身重合.A.45°B.90°C.135°D.180°4.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度正确的为()A.30°B.60°C.120°D.180°5.在右图的方框中做出以O为旋转中心旋转后的图形.学生进行当堂检测,完成后,教师进行批阅,点评、讲解. 针对本课时的主要问题,从多个角度、分层次进行检测,达到学有所成、了解课堂学习效果的目的.活动四:课堂总结1.课堂总结:(1)谈一谈你在本节课中有哪些收获?哪些进步?(2)学习本节课后,还存在哪些困惑?2.布置作业:教材第76页,习题第5、8题.让学生养成自主归纳课堂重点的习惯,提高学生的学习能力.【板书设计】提纲挈领,重点突出。
教学设计:新2024秋季九年级人教版数学上册第二十三章旋转《课题学习图案设计》一、教学目标(核心素养)1、知识与技能:学生能够理解旋转在图案设计中的应用,掌握利用旋转设计简单图案的基本方法,提高空间想象能力和图形变换能力。
2、数学思维:培养学生的创新思维和审美能力,通过图案设计活动,引导学生观察、分析、创造,发展其逻辑思维和图形构造能力。
3、情感态度:激发学生对数学美的追求,增强学习数学的兴趣和自信心,培养团队合作精神和创造力。
二、教学重点•理解旋转在图案设计中的重要性。
•掌握旋转图案设计的基本步骤和方法。
•能够运用旋转设计具有创意和美感的图案。
三、教学难点•如何引导学生将旋转知识灵活应用于图案设计中,创造出独特且富有美感的图案。
•提升学生的空间想象能力,确保设计的图案符合旋转变换的规律。
四、教学资源•多媒体课件(包含旋转图案设计示例、设计工具介绍)。
•教材及图案设计素材(如纸张、彩笔、圆规、直尺等)。
•小组合作任务卡,用于指导小组内的图案设计活动。
五、教学方法•情境导入法:通过展示旋转图案设计的实例,创设情境,激发学生兴趣。
•示范讲解法:教师展示图案设计过程,讲解旋转设计的要点和技巧。
•实践操作法:学生动手设计图案,通过实践巩固所学知识。
•小组合作法:学生分组合作,共同完成图案设计任务,促进交流与合作。
六、教学过程1. 导入新课(5分钟)•情境创设:展示一系列利用旋转设计的精美图案,如风车、雪花、花朵等,引导学生欣赏并思考这些图案的共同特点。
•提出问题:这些图案是如何通过旋转设计出来的?旋转在图案设计中起到了什么作用?•引入课题:明确本节课的学习内容——利用旋转进行图案设计。
2. 新课教学(30分钟)•理论讲解(10分钟):•回顾旋转的基本概念和性质,强调旋转在图案设计中的重要性。
•介绍图案设计的基本步骤:确定基本图形、选择旋转中心、确定旋转角度、进行旋转操作、调整和完善图案。
•示范操作(5分钟):•教师利用多媒体课件或实物展示,详细演示一个图案的设计过程,特别是旋转操作的具体步骤和注意事项。
第14讲课题学习图案设计(5种题型)【知识梳理】一.利用轴对称设计图案利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.二.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.三.作图旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.四.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.五.几何变换的类型(1)平移变换:在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等(2)轴对称变换:在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.(3)旋转变换:在旋转变换下,对应线段相等,对应直线的夹角等于旋转角(4)位似变换:在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心.【考点剖析】一.利用轴对称设计图案(共4小题)1.(2023•都昌县校级模拟)如图是由全等的小等边三角形组成的网格,其中有3个小三角形被涂成了黑色(用阴影表示).若平移其中1个阴影三角形到空白网格中,使阴影部分构成的图形为轴对称图形,则平移的方法共有()A.2种B.3种C.4种D.5种2.(2023•常德三模)如图①所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,若按照图②所示的方法用若干个图形①玩接力游戏,两两相扣,相互间不留空隙,那么用2n+1个这样的图形①拼出来的图形②的总长度为()A.a+2nb B.a+4nb C.(1﹣n)a+3nb D.3.(2023•武胜县模拟)认真观察下面四幅图中阴影部分构成的图案,回答下列问题.(1)请你写出这四个图案都具有的两个共同特征:特征1:;特征2:.(2)请你借助下面的网格,设计出三个不同图案,使它也具备你所写出的上述特征.(注意:新图案与以上四幅图中的图案不能相同)4.(2023•宁波模拟)如图,方格纸上画有两条线段,请再画1条线段,使图中的3条线段组成一个轴对称图形(找出符合条件的所有线段).二.利用平移设计图案(共3小题)5.(2023•郴州)下列图形中,能由图形a通过平移得到的是()A.B.C.D.6.(2023•安次区二模)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心、吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形,形成一个”方胜”图案,则点D、B′之间的距离为()A.1cm B.2cm C.D.7.(2023春•东海县期中)下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.三.作图旋转变换(共11小题)8.(2023•道外区三模)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC向下平移3个单位后的△A1B1C1;(2)画出△ABC关于点O的中心对称图形△A2C2C2;(3)连接C1C2请直接写出C1C2的长为.9.(2023•横山区三模)如图,△ABC的顶点坐标分别为A(1,3),B(2,1),C(4,4).(1)将△ABC向左平移5个单位得到△A1B1C1,写出△A1B1C1三个顶点的坐标;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,画出△A2B2C2(A,B,C的对应点分别为A2,B2,C2)10.(2023•滨湖区一模)如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为.11.(2023•宽城区校级模拟)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边所在直线称为格线,点、A、B、C、E、F、I在格点上,D、G在格线上.只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留作图痕迹.(1)在图①中,画出△OAB关于点O的中心对称图形;(2)在图②中,画出直线EM,使得EM∥CD;(3)在图③中,点H是线段FG上一点,画出△HGN,使得S△HGN=S△HGI,且点N与点I不重合.12.(2023•富锦市校级二模)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,5),B(2,4),C(4,2).(1)△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(6,﹣4),画出△A1B1C1,并写出点A1,B1的坐标;(2)画出△ABC绕点O逆时针方向旋转90°后得到△A2B2C2;(3)在(2)的条件下,求线段AC在旋转过程中扫过的面积(结果保留π).13.(2023春•禅城区月考)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)把△ABC向左平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,点A1的坐标是;(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,点B2的坐标是;(3)在x轴上求作点P,使PB+PC的值最小.(只需画图作出点P,不需要写作法,也不需要求点P的坐标)14.(2023•砀山县一模)如图,在12×12正方形网格中建立平面直角坐标系,每个小正方形的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(0,2),B(﹣3,5),C(﹣2,2).(1)将△ABC以点A为旋转中心旋转180°,得到△AB1C1,点B,C的对应点分别为点B1,C1,请画出△AB1C1;(2)将△ABC平移至△A2B2C2,其中点A,B,C的对应点分别为点A2,B2,C2,且点C2的坐标为(﹣2,﹣4),请画出平移后的△A2B2C2.15.(2023•朝阳区校级三模)如图,在8×8的正方形网格中,每个小正方形的边长为1,小正方形的顶点称为格点,A、B、C均在格点上.只用无刻度的直尺,在给定的网格中作图(保留作图痕迹).(1)将AC绕着点C顺时针旋转90°,在图①中作出旋转后的对应线段CD.(2)在图②中作线段AE,使点E在边BC上,且.(3)在图③中作△ABC的角平分线BF.16.(2023•伊通县四模)如图①、图②均是4×1的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中画△BCG,使△BCG与△ABC关于某条直线对称;(2)在图②中画△ABH,使△ABH与△ABC关于某点成中心对称.17.(2023•宜昌)如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;(3)填空:∠OCB的度数为.18.(2023•武汉)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;(2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD上画点H,并连接MH,使∠BHM=∠MBD.四.利用旋转设计图案(共14小题)19.(2022秋•宁波期末)如图,在4×4的网格纸中,△ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将△ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点N B.点M,点Q C.点N,点P D.点P,点Q20.(2022秋•雄县校级期末)在如图3所示的4×4正方形方格中,选取一个白色的小正方形涂灰,使图中阴影部分成为一个中心对称图形,这样的涂法有()A.0种B.1种C.2种D.3种21.(2023•衡水模拟)在玩俄罗斯方块游戏时,底部已有的图形如图所示,接下去出现如下哪个形状时,通过旋转变换后能与已有图形拼成一个中心对称图形()A.B.C.D.22.(2022秋•龙川县校级期末)亦姝家最近买了一种如图(1)所示的瓷砖.请你用4块如图(1)所示的瓷砖拼铺成一个正方形地板,使拼铺的图案成中心对称图形,请在图(2)、图(3)中各画出一种拼法.(要求:①两种拼法各不相同,②为节约答题时间,方便扫描试卷,所画图案阴影部分用黑色斜线表示即可,③弧线大致画出即可)23.(2023•蜀山区校级一模)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转每次旋转度形成的.24.(2023•江北区一模)如图,下列3×4网格图均由12个相同的小正方形组成,每个网格图中有2个小正方形已涂上阴影,请在余下的空白小正方形中,分别按下列要求选取两个涂上阴影:(1)使得4个阴影小正方形组成的图形是轴对称图形,但不是中心对称图形.(2)使得4个阴影小正方形组成的图形是中心对称图形,但不是轴对称图形.请将以上两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形即可.25.(2023•宁波模拟)如图,正三角形网格中,已知两个小三角形被涂黑.(1)再将图①中其余小三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的涂法);(2)再将图②中其余小三角形涂黑两个,使整个被涂黑的图案构成一个中心对称图形.26.(2023春•薛城区期中)如图,在5×5的正方形网格中,有4个小正方格被涂黑成“L形”.(1)如图1,用2B铅笔在图中再涂黑3个小正方格,使新涂黑的图形与原来的“L形”所组成的新图形是轴对称图形但不是中心对称图形;(2)如图2,用2B铅笔在图中再涂黑3个小正方格,使新涂黑的图形与原来的“L形”所组成的新图形是中心对称图形但不是轴对称图形.27.(2023•鄞州区校级一模)如图,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在图(1),图(2),图(3)中分别画出满足以下各要求的图形.(用阴影表示)(1)使得图形既是轴对称图形,又是中心对称图形.(2)使得图形成为轴对称图形,而不是中心对称图形;(3)使得图形成为中心对称图形,而不是轴对称图形.28.(2023•沂水县二模)下列是小红借助旋转、平移或轴对称设计的四个图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.29.(2022秋•丰台区期末)图中的五角星图案,绕着它的中心O旋转n°后,能与自身重合,则n的值至少是()A.144B.120C.72D.6030.(2023•余姚市一模)图1,图2都是由边长为1的小正三角形构成的网格,每个网格图中有3个小正三角形已涂上阴影.请在余下的空白小正三角形中,分别按下列要求选取1个涂上阴影:(1)使得4个阴影小正三角形组成一个轴对称图形.(2)使得4个阴影小正三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)31.(2023•扶余市四模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.32.(2023•五华县校级开学)有两块形状完全相同的不规则的四边形木板,如图所示,两位木匠工师傅通过测量可知∠B=∠D=90°,AD=CD,现要将其拼成正方形,思考一段时间后,一位木工师傅说“我可以将这两块木板拼成一个正方形.”另一位木工师傅说“可以将一块木板拼成一个正方形,两块木板拼成两个正方形.”两位师傅把每一块木板都只分割一次,你知道他们是怎么做的吗?画出图形,并说明理由.五.几何变换的类型(共5小题)33.(2023春•舞钢市期中)如图是一张正方形的网格纸,图中4条线段的端点都在网格纸的格点上,对于这4条线段之间变换的描述不正确的是()A.线段CD可以由线段AB平移得到B.线段EF可以由线段AB先旋转再平移得到C.线段GH可以由线段AB先旋转再平移得到D.线段GH不能通过线段EF平移和旋转变换得到34.(2023•南京模拟)如图,△A′B′C′是由△ABC经过轴对称得到的,△A′B'C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①2次平移;②1次平移和1次轴对称;③2次旋转;④3次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④35.(2023•北海二模)(1)我们知道,平移、轴对称和旋转都属于全等变换,如图是5×5的正方形网格,A,B,C,D,E均是格点,∠ACB=90°,△ABC≌△DEC,请你判断△ABC是通过怎样的变换得到△DEC的?填;(2)在(1)的条件下,连接AD,BE,探究AD与BE的位置关系.36.(2022•龙岗区一模)如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△F AC≌△BAE;(2)图中△BAE可以通过一次变换得到△F AC,请你说出变换过程.37.(2023•蚌埠模拟)如图,三角形PQR是三角形ABC经过某种变换后得到的图形,分别观察点A与点P,点B与点Q,点C与点R的坐标之间的关系.(1)若三角形ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,根据你的发现,点N的坐标为.(2)若三角形PQR先向上平移3个单位,再向右平移4个单位得到三角形P′Q′R′,画出三角形P′Q′R′并求三角形P′AC的面积.(3)直接写出AC与y轴交点的坐标.【过关检测】一、单选题1.(2020秋·全国·九年级专题练习)如图,两个全等的长方形ABCD与CDEF,旋转长方形ABCD能和长方形CDEF重合,则可以作为旋转中心的点有()A.1个B.2个C.3个D.无数个2.(2022秋·全国·九年级专题练习)七巧板是我们祖先的一项卓越创造,被西方人誉为“东方魔板”.已知如图所示的“正方形”是由七块七巧板拼成的正方形(相同的板规定序号相同).现从七巧板取出四块(序号可以相同)拼成一个小正方形(无空隙不重叠),则无法拼成的序号为()A.②③④B.①③⑤C.①②③D.①③④3.(2021秋·全国·九年级专题练习)将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是()A.B.C.D.4.(2022秋·全国·九年级专题练习)边长为2的两种正方形卡片如上图①所示,卡片中的扇形半径均为2,图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片2021张,则这个图案中阴影部分图形的面积和为()A.4040B.4044–πC.4044D.4044+π5.(2021秋·全国·九年级专题练习)在综合实践活动课上,小红准备用两种不同颜色的布料缝制一个正方形座垫,座垫的图案如右图所示,应该选下图中的哪一块布料才能使其与右图拼接符合原来的图案模式( ).A.B.C.D.6.(2022·全国·九年级专题练习)关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的7.(2021秋·全国·九年级期末)如图,图2的图案是由图1中五种基本图形中的两种拼接而成,这两种基本图形是()A.①②B.①③C.①④D.③⑤8.(2022秋·全国·九年级专题练习)如图,先将该图沿着它自己的右边缘翻折,再绕着右下角的一个端点按顺时针方向旋转180 ,之后所得到的图形是()A.B.C.D.9.(2020秋·九年级单元测试)如图,为保持原图的模样,应选哪一块拼在图案的空白处()A.A B.B C.C D.D10.(2018·河北·模拟预测)在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是()A.①或②B.③或④C.⑤或⑥D.①或⑨二、填空题11.(2021秋·九年级课时练习)在平面直角坐标系中,若点P(x-2,x)关于原点的对称点在第四象限,则x的取值范围是______ .12.(2021秋·湖北襄阳·九年级统考期中)如图,在平面直角坐标系中,Rt ABC的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且2AC=.将ABC绕点C逆时针旋转90︒,则旋转后点A的对应点的坐标为________.13.(2021·九年级课时练习)如图,在平面直角坐标系中,△ABO与△A′B′O′关于原点对称,则点B′的坐标为________________.14.(2021·九年级课时练习)点A(a,2)与点B(8,b)关于原点对称,则a=___,b=____.15.(2022秋·九年级单元测试)△ABC中,AB=8,AC=6,AD是BC边上的中线,则AD长度的范围是__________.16.(2022秋·九年级课时练习)把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转α角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为__________;(2)当△CBD是等边三角形时,旋转角α的度数是__________(α为锐角).17.(2022·江苏苏州·苏州高新区实验初级中学校考一模)图形甲是小明设计的花边作品,该作品是由形如图形乙通过对称和平移得到.在图乙中,△AEO△△ADO△△BCO△△BFO,E,O,F均在直线MN上,EF=12,AE=14,则OA长为______.18.(2022秋·九年级课时练习)如图,点P是等边△ABC外一点,AP= 2,BP= 3,则PC的最大值为_______三、解答题19.(2019秋·全国·九年级专题练习)请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:;特征2:.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).20.(2022秋·吉林·九年级校考阶段练习)如图所示是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,挍下列要求选取三个涂上阴影,使得6个阴影小等边三角形组成一个中心对称图形.21.(2023秋·吉林·九年级统考期末)如图,下列4×4网格图都是由16个相同的小正方形组成,每个网格图中有4个小正方形已涂上阴影,请你在空白小正方形中,按下列要求涂上阴影:(1)在图1中选取1个空白小正方形涂上阴影,使5个阴影小正方形组成一个轴对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)22.(2022秋·广东河源·九年级校考阶段练习)亦姝家最近买了一种如图(1)所示的瓷砖.请你用4块如图(1)所示的瓷砖拼铺成一个正方形地板,使拼铺的图案成中心对称图形,请在图(2)、图(3)中各画出一种拼法.(要求:①两种拼法各不相同,②为节约答题时间,方便扫描试卷,所画图案阴影部分用黑色斜线表示即可,③弧线大致画出即可)的正方形网格,点A,B,C在格点上.23.(2022春·浙江·九年级校考阶段练习)图①、图②均为65(1)在图①中确定格点D,并画出以点A,B,C,D为顶点的四边形,使其为轴对称图形,但不是中心对称图形(画一个即可);(2)在图②中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).的正方形网格,每个小正方形边长均为1.按要24.(2023·吉林·统考一模)图①、图②和图③都是55求分别在图①、图②和图③中画图:(1)在图①中画等腰ABC,使其面积为3,并且点C在小正方形的顶点上;(2)在图②中画四边形ABDE,使其是轴对称图形但不是中心对称图形,D,E两点都在小正方形的顶点上;(3)在图③中画四边形ABFG,使其是中心对称图形但不是轴对称图形,F,G两点都在小正方形的顶点上;25.(2023·安徽合肥·校联考二模)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,猜想:在图(n )中,特征点的个数为___________(用n 表示);(2)如图,将图(n )放在直角坐标系中,设其中第一个基本图的对称中心1O 的坐标为()1,2x ,则1x =___________;图(2023)的对称中心的横坐标为___________.。
人教版数学九年级上23.3课题学习图案设计教学设计课题23.3课题学习图案设计单元第二十三章学科数学年级九年级上学习目标情感态度和价值观目标经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识。
能力目标经历搜集、欣赏、分析、设计和操作的过程,培养学生搜集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
知识目标(1)认识和欣赏平移、旋转、轴对称变换在现实生活中的应用;(2)能够灵活运用平移、旋转、轴对称变换进行简单的图案设计。
重点利用各种图形变换设计组合图案。
难点将基本图形创造性地运用平移、旋转、轴对称变换设计出和谐、丰富、美观的组合图案。
学法观察探究、合作交流教法启发法、探究法教学过程教学环节教师活动学生活动设计意图导入新课趣味导入:播放课件,演示图片:生活中,我们经常见到一些美丽的图案,下列图案各有何特点?观看屏幕图片,回答问题.凭借自己已有经验,可以考虑到几何图形的平移、旋转.通过美丽的图案集中学生的注意力,创设情境使学生自然进入到新课程中来。
讲授新课一、新知讲解活动1:1.观察下面的图案,分析它是将哪种基本图形经过哪些变换得到的?用ppt演绎基本图形经过三种变换后得到组合图案的过程:(1)以点O为旋转中心将逆时针旋转90°三次,作出图1.(2)以L为对称轴作出图2。
平移图2就可以作出图中的图案。
思考:你能用平移、旋转或轴对称分析如图中各个图案的形成学生观察图案,以小组为单位进行思考讨论,之后小组汇报思路,教师可提示该图案的基本图形。
教师用ppt演绎基本图形经过三种变换后得到组合图案的过程。
学生观察ppt演示,对比自己的思路。
学生思通过精美的图案设计,让学生体会数学的唯美。
从而思考该图案是怎么来的,激发学生的思维活动,通过小组交流得到启发,同时培养学生的合作交流能力。
通过迁移运用,将问题引导到过程吗?ppt演绎每个图形由基本图形经过三种变换后得到组合图案的过程. 考后,结合已学知识平移、旋转或轴对称的运用,口答老师提出的问题。
23.3课题学习图案设计一、教学目标(一)知识与技能1.观察思考图案的组合方法2.会自己利用平移,轴对称和旋转组合进行图案设计(二)过程与方法通过让学生自己动手进行图案设计,体会现实生活与数学的关系,培养现实观察力和想象力(三)情感与态度在学生动手操作过程中,培养团队合作精神,了解数学的价值二、教学重难点1.教学重点用图形变换的组合进行图案设计2.教学难点用平移,轴对称和旋转设计出美观的图案三、突破重难点的方法先让学生观察精美的图案,并找到这些图案的设计方法,再让学生分组进行图案设计四、教法与学法教师引导,学生合作交流,相互协作五、教具的准备多媒体、柳树叶六、教学过程(一)教学过程安排(二)教学过程设计1.回顾旧知识教师引导回顾平移、轴对称、旋转及其基本特征教师用多媒体演示平移、旋转,轴对称,学生观看学生在观看中回忆平移,旋转,轴对称的作法2.观察分析图案观察图案,思考图案是经过怎样的变换得到的教师出示几种组合图案,学生观察学生从此活动中培养细心的性格,也加深了对三种变换的理解和认识3.收集图案展示学生收集的图案学生展示自己收集的图案,教师引导对学生收集的图案进行分析培养学生为主,教师为辅的学习氛围,学生自主学习,合作交流4.设计图案利用平移,轴对称和旋转进行图案设计学生分组进行图案设计,教师引导学生用较简单的几何图形进行设计,巡视,观察巡视的设计情况,并适时给予指导培养学生合作交流能力和创新精神待学生设计完成后,让其展示成品,并说明图形是怎样变换得到的,让其它组学生给予点评5.小结归纳总结,怎样设计出精美的图案教师引导图案设计的关键是说明,图形变换的作用是说明加强学生的归纳能力,培养自主学习的能力6.布置作业教学活动1学生用花瓣模板画花通过此活动可以巩固学生所学知识七、板书设计。
23.3 课题学习图案设计教学内容课题学习──图案设计教学目标利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.重难点、关键1.重点:设计图案.2.难点与关键:如何利用平移、轴对称、•旋转等图形变换中的一种或它们的组合得出图案.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们独立完成下面的各题.1.如图,已知线段CD是线段AB平移后的图形,D是B•点的对称点,•作出线段AB,并回答,AB与CD有什么位置关系.CD2.如图,已知线段CD,作出线段CD关于对称轴L的对称线段C′D′,•并说明CD与对称线段C′D′之间有什么关系?l3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,•并说明这两条线段之间有什么关系?老师点评:1.AB与CD平行且相等;2.过D点作DE⊥L,垂足为E并延长,使ED′=ED,同理作出C′点,连结C′D•′,•则CD′就是所求的.CD的延长线与C′D′的延长线相交于一点,这一点在L上并且CD=•C′D′.3.以D点为旋转中心,旋转后CD⊥C′D′,垂足为D,并且CD=C′D.二、探索新知请用以上所讲的平移、轴对称、旋转等图形变换中的一种或组合完成下面的图案设计.例1.(学生活动)学生亲自动手操作题.按下面的步骤,请每一位同学完成一个别致的图案.(1)准备一张正三角形纸片(课前准备)(如图a)(2)把纸片任意撕成两部分(如图b,如图c)(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形.(4)并将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c)保持不动)(5)把如图(d)平移到如图(c)的右边,得到如图(e)(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.老师必要时可以给予一定的指导.三、巩固练习教材P78 活动1.四、应用拓展例2.(学生活动)请利用线段、三角形、矩形、菱形、圆作为基本图形,•绘制一幅反映你身边面貌的图案,并在班级里交流展示.老师点评:老师点到为止,让学生自由联想,老师也可在黑板上设计一、二图案.五、归纳小结本节课应掌握:利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.六、布置作业1.教材P78 活动2 P80 综合运用4、5、6、7.2.选用作业设计.作业设计一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是()2.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、综合提高题1.(1)图案设计人员在进行图设计时,•常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,•并说明你所表达的意义.~。
人教版数学九年级上册23.3《课题学习图案设计》教学设计一. 教材分析人教版数学九年级上册23.3《课题学习图案设计》是本册教材的最后一个单元,主要让学生通过学习简单的图案设计,培养学生的创新意识和实践能力。
本节课的内容包括:欣赏简单的图案设计,了解基本图案设计的方法和步骤,利用纸折叠和剪切,制作简单的图案设计。
二. 学情分析九年级的学生已经具备了一定的几何知识,对于简单的图案设计有一定的认识和理解。
但是,对于复杂的图案设计,学生还需要进一步的学习和实践。
此外,学生的动手能力参差不齐,需要教师在教学过程中给予个别指导。
三. 教学目标1.让学生了解简单的图案设计方法,培养学生创新意识和实践能力。
2.让学生掌握基本的图案设计步骤,提高学生的动手能力。
3.通过图案设计的学习,培养学生的审美观念和合作意识。
四. 教学重难点1.教学重点:让学生掌握基本的图案设计方法,能够独立完成简单的图案设计。
2.教学难点:如何引导学生创新设计,提高学生的动手实践能力。
五. 教学方法1.采用问题驱动法,引导学生思考和探索图案设计的原理和方法。
2.采用案例分析法,让学生通过分析实际案例,掌握图案设计的基本方法。
3.采用动手实践法,让学生亲自动手制作,提高学生的实践能力。
六. 教学准备1.准备相关的图案设计案例,用于分析和讲解。
2.准备纸张、剪刀等制作工具,让学生动手实践。
3.准备教学课件,用于辅助讲解和展示。
七. 教学过程1.导入(5分钟)通过展示一些生活中的图案设计案例,引导学生对图案设计产生兴趣,进而引入本节课的主题。
2.呈现(10分钟)讲解基本的图案设计方法和步骤,让学生了解图案设计的基本原理。
3.操练(10分钟)让学生分组进行图案设计,教师巡回指导,解答学生的问题。
4.巩固(5分钟)让学生展示自己的作品,互相评价,教师总结评价,巩固所学知识。
5.拓展(5分钟)引导学生思考如何将图案设计应用到实际生活中,提高学生的创新意识。
“三部五环”教学模式设计《第23章课题学习图案设计》学习指南【活动目标】1.了解图案常见的构图方式:平移、轴对称、旋转,了解简单图案设计意图。
并能够运用平移、轴对称、旋转设计出图案。
2.通过自主探索、合作探究讨论,加深以图案设计的认识。
3.通过对图案形成过程的分析,让学生了解用运动的美,观察事物,了解事物,从而培养学生设计美的能力。
【课前准备】:一活动材料准备:B4复印纸2张、直尺、剪刀、彩笔、硬纸板、圆规等二分组准备:主持人:操作员:观察员:统计员:中心发言人:【活动指南】:一回顾思考观察课件三种图形的变换过程,回答问题:(1)平移、旋转和轴对称变换的基本特征;(2)归纳三种图形的变换的共性。
二观察分析1.观察下面的图形(教科书图23.3-1)分析它是将哪种基本图形经过了那些变换后得到的?2.观察下面的图形,分析它是将哪种基本图形经过了那些变换后得到的?3.展示学生课前搜集到的利用平移、旋转和轴对称变换设计的组合图案。
(课件展示)(1)剪纸中的三种变换;(2)艺术图案中的三种变换;(3)电脑设计出的图形变换。
教师提出问题:“进行图案设计的步骤是什么?”三实践操作1.分组进行组合图案的设计。
2.通过与同学交流,我认为在图案设计的过程应该注意的问题有:四运用提高(课件展示)1.展示确定的基本图形及变换出的组合图案。
2.简单说明你的图案设计中运用了哪些图形变换?五总结反思(1)通过本节课学习我明白了以下几点:(2)我还想和大家分享以下问题:六.课后演练必做题:(1).自己学习P72页“阅读与思考”《旋转对称性》。
(2).用直尺,圆规,三角尺再设计一个新颖的(课堂上未见过的)美丽图案。
选做题:根据你的审美观点,结合具体例子,写一篇短文介绍图案设计的方法与技巧。
课题学习:图案设计泰来县大兴中心学校李慎廪一、活动目标知识技能利用图形的平移、轴对称、旋转变换设计组合图案。
能力目标学生应用各种图形变换的特征设计属于自己的图案,在对所学数学知识进行“再认识”的同时进行着独立地数学创造,发展了形象思维和创造性思维能力。
在应用图形变换进行图案设计的过程中,体会数学知识在创造性活动中的应用价值,增强学生数学的应用意识。
情感目标在经历应用数学知识进行独立地图案设计的活动中,感受到数学美与创造的同时获得自我创造的成就感,激发创造性地应用数学知识的热情。
二、重点利用各种图形变换设计组合图案。
三、难点将基本图形创造性地应用平移、轴对称、旋转等变换设计出和谐、丰富、美观的组合图案。
四、教学流程安排、活动流程图活动内容和目的活动1 知识回顾:回忆三种变换的基本特征,归纳其共同特征活动2 图案辨析,从图形变换的角度观察、认识组合图案,总结出图案设计的步骤活动3 图案搜索:展示学生搜集的图案,继续图案辨析活动4 图案设计:分组进行图案设计活动5 成果展示:各组展示设计出的组合图案活动6 反思小结归纳图案设计中蕴含的数学基础知识、基本思想方法。
五.教学过程设计:问题与情境师生行为设计意图。
六.活动时间:20130405—20130415附:活动流程:活动一:1.观察三种图形变换的过程;2.回答问题:(1)平移、旋转和轴对称变换的基本特征;(2)归纳三种图形变换的共性.教师演示一个三角形分别经过平移、旋转和轴对称变换后得到其对应图形的变换过程,学生观察图形,回忆三种图形变换的基本特征,并归纳出三种变换的共性.活动1中教师将平移、旋转和轴对称变换的全过程通过电脑逐一演示,帮助学生回顾图形变换的基本特征,为进一步从图形变换的角度辨析组合图案奠定知识基础.活动二、1.观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?2.观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?3.继续观察上述图案,感受简单图案的丰富变换(见授课实录)学生观察图形,将其本图形从组合图案中分离出来,并再现此基本图形的变换过程. 教师演示课件,突出基本图形经过不同的图形变换后得到组合图案的过程 .在本次活动中,教师应当重点关注:(1)学生能否准确地运用数学语言表述基本图形进行平移、旋转和轴对称变换的过程;(2)让学生感受到简单的基本图形可以通过不同的变换组合出丰富多彩的图案.通过让学生在组合图案中辨析出基本图形经过了哪些图形变换,再现了组合图案的设计过程,使学生认识到数学是图形变换的根本,数学意义下图形变换的本质是“简单图形的复杂变换” .图案2是利用《几何画板》设计的,借助几何画板的功能可以演示出简单的等腰三角形可以组合出丰富的、富于变换的美丽图案.直观的图形旋转演示出图形变换的奇妙与美丽,这是让学生感受数学的生动、灵活、美妙的切入点,也是调动学生“创造热情”的好时机.活动三、展示学生课前搜集到的利用平移、旋转和轴对称变换设计的组合图案.(1)剪纸中的三种变换;(2)艺术图案中的三种变换;(3)电脑设计出的图形变换.教师提出问题:“进行图案设计的步骤是什么?”学生展示其搜集到的组合图案,继续图案辨析.在本次活动中,教师应当重点关注学生搜集到的图案应是数学意义下的组合图案而非美术中的组合图案,以便于学生辨析出其中的基本图形及其作出的不同变换.随着新课程的不断推广,在教学中注重让学生主动参与、勤于动手,培养学生搜集和处理信息的能力逐渐成为教师关注的重点. 活动3便是基于此点而设计的,它体现了学生的自主学习,同时,也体现出数学源于生活,引导学生善于用数学的眼光审视生活.活动四、分组进行组合图案的设计.教师指导学生选择简单的基本图形,进行不同的图形变换,组合出美丽的图案.在本次活动中,教师应当重点关注:(1)学生选取的基本图形不要过于复杂;(2)指导学生依据对应图形全等这一图形变换的共性剪出多个基本图形,然后再依据各种变换的基本特征拼出组合图案.对学生进行创新意识的培养一直是教师在教学中追求的最高目标,这一宗旨具体体现在对学生创造性思维的训练中. 活动4进行的图案设计,即是让学生创造性地应用数学知识的实践过程.分组合作在活动4中为学生创造了与人合作的机会.让学生在合作中学习与人交流,集思广益.活动五、1.展示确定的基本图形及变换出的组合图案.2.简单说明你的图案设计中运用了哪些图形变换?教师组织学生将各组的作品在全班展示.各组学生派代表展示设计成果.在本次活动中,教师应当重点关注学生能否准确地用语言表述组合图案的设计过程及设计中运用了哪些图形变换.以学生为主展示其创作成果,在促进学生进行数学交流的基础上增强学生表达与交流的意识.活动六、1.归纳提升2.欣赏变换所产生的美教师引导学生反思图案设计的关键,即选取简单的基本几何图形,通过不同的变换组合出丰富的图案.突出图案设计是创造性地运用数学知识的实践过程,让学生感受到创造的快乐,欣赏生活中由变换而产生的美.数学是文化的一部分,活动5中通过反思图案设计的过程和欣赏变换产生的美,展现了数学的应用价值和美学价值.帮助学生了解数学是图形变换的根本,了解数学在人类文明发展中的作用,促进其形成正确的数学。
课案(学生用)23.3 课题学习图案设计(新授课)【学习目标】知识技能:利用图形的平移、轴对称、旋转变换设计组合图案.数学思考:组合图案中的基本图形是什么?怎样运用平移、轴对称和旋转等变换进行图案设计?如何按要求去正确进行设计?如何进行设计,设计出的图案才具有一定美感且富有创新性.解决问题:在应用图形变换进行图案设计的过程中,体会数学知识在创造性活动中的应用价值,增强数学的应用意识.情感态度:在经历应用数学知识进行独立的图案设计的过程中,感受到数学的创造性和数学的美学价值.同时获得数学的自我创造的成就感,激发创造性应用数学知识的热情.【学习重点】利用各种图形变换设计组合图案.【学习难点】将基本图形创造性地应用平移、轴对称、旋转等变换设计出和谐、丰富和美观的图案.课前延伸【知识梳理】已经学过的图形变换的方法有哪些?平移、轴对称和旋转这三种变换的基本特征有哪些?它们的共性是什么?请尽可能地以现实生活中的例子加以说明.根据三种变换的要求分自主学习记录卡课内探究【自主探究】(1)教材P77图23.3-1中的图案是怎样得到的?要求要能学会用数学语言加以描述.(全员的基本要求)点拨方法:按照教材的暗示,先对图中的六个图形中的第一个做剖析;在弄清了第一个的基础上,再关注第一排的三个;最后就两排整体做考虑.(2)观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?(中等及以上的同学的要求)点拨方法:要学会从复杂图形中找出相应的基本图形来,其它与上题基本类似.【合作探究】(1)①试分析下列图案(所选图案是几个国家的军用飞机的识别标志)中各个图案的形成过程.(全员要求)②如何设计出如下所示的图案.(中等及以上的同学的要求)点拨方法:要求要能象教者那样先找出相关图形的基本图形,然后再去做旋转、平移、轴对称等变换.(2)讨论:数学意义下的图形变换的本质是什么?(全员要求)方法:请同学们四人一小组进行讨论.课后提升y 的图象.1. 在坐标平面中画出函数3x2.请设计出如图所示的图案.。