简谐运动及其图象
- 格式:doc
- 大小:867.51 KB
- 文档页数:10
简谐运动简谐运动的图象1、简谐运动简谐运动的图象2、简谐运动的能量特征受迫振动共振3、实验:用单摆测定重力加速度简谐运动简谐运动的图象:1、简谐运动:简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,是一种变加速运动。
2、弹簧振子(1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球)。
(2)当与弹簧振子相接的小球体积较小时,可以认为小球是一个质点。
(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力。
(4)小球从平衡位置拉开的位移在弹簧的弹性限度内。
3、单摆:悬挂物体的细线的伸缩和质量可以忽略,线长比物体的直径大得多。
单摆是实际摆的理想模型。
单摆摆动的振幅很小即偏角很小时,单摆做简谐运动。
4、描述简谐运动特征的物理量(1)位移、简谐运动的位移,以平衡位置为起点,方向背离平衡位置。
(2)回复力:回复力的作用效果是使振子回到平衡位置。
简谐运动中,,负号表示力的方向总是与位移的方向相反。
(3)周期:做简谐运动的物体完成一次全振动所需的时间。
用T表示,单位秒(s)。
单摆周期弹簧振子的频率只与弹簧的劲度系数和振子质量有关。
(4)频率:单位时间内完成全振动的次数。
用f表示,单位赫兹(Hz)。
周期与频率的关系:(5)振幅:振动物体离开平衡位置的最大距离。
5、简谐运动的公式描述:,A是简谐运动的振幅,ω是圆频率(或角频率),叫简谐运动在t时刻的相位,是初相位。
6、简谐运动的图象简谐运动的图象是正弦(或余弦)函数图象(注意简谐运动的具体图象形状,取决于t=0时振动物体的位置和正方向的选取,可参看“例1”)。
简谐运动图象的应用如下:(1)可直观地读取振幅A、周期T、各时刻的位移x及各时刻的振动速度的方向和加速度的方向;(2)能判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
7、简谐运动的能量:如忽略摩擦力,只有弹力做功,那么振动系统的动能与势能互相转换,在任意时刻动能和势能的总和,即系统的机械能保持不变,机械能由振幅决定。
第3节简谐运动的图像和公式1.简谐运动图像是一条正弦(或余弦)曲线,描述了质点做简谐运动时位移x 随时间t 的变化规律,并不是质点运动的轨迹。
2.由简谐运动图像可以直接得出物体振动的振幅、周期、某时刻的位移及振动方向。
3.简谐运动的表达式为x =A sin(2πTt +φ)或x =A sin(2πft+φ),其中A 为质点振幅、(2πTt +φ)为相位,φ为初相位。
1.建立坐标系以横轴表示做简谐运动的物体的时间t ,纵轴表示做简谐运动的物体运动过程中相对平衡位置的位移x 。
2.图像的特点一条正弦(或余弦)曲线,如图所示。
3.图像意义表示物体做简谐运动时位移随时间的变化规律。
4.应用由简谐运动的图像可找出物体振动的周期和振幅。
[跟随名师·解疑难]1.图像的含义表示某一做简谐运动的质点在各个时刻的位移,不是振动质点的运动轨迹。
2.由图像可以获取哪些信息? (1)可直接读取振幅、周期。
(2)任意时刻质点的位移的大小和方向。
如图甲所示,质点在t 1、t 2时刻的位移分别为x 1和-x 2。
甲 乙(3)任意时刻质点的振动方向:看下一时刻质点的位置,如图乙中a 点,下一时刻离平衡位置更远,故a 此刻向上振动。
(4)任意时刻质点的速度、加速度、位移的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,若远离平衡位置,则速度越来越小,加速度、位移越来越大,若靠近平衡位置,则速度越来越大,加速度、位移越来越小。
如图乙中b 点,从正位移向着平衡位置运动,则速度 为负且增大,位移、加速度正在减小;c 点从负位移远离平衡位置运动,则速度为负且减小,位移、加速度正在增大。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)如图所示为某质点做简谐运动的图像,则质点在前6 s 内通过的路程为________ cm ,在6~8 s 内的平均速度大小为________ cm/s ,方向________。
专题一:简谐运动及其图象知识点一:弹簧振子1.弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。
小球滑动时的摩擦力可以忽略,弹簧的质量比小球的质量小得多,也可忽略。
这样就成了一个弹簧振子。
注意:①小球原来静止的位置就是平衡位置。
小球在平衡位置附近所做的往复运动,是一种机械振动。
②小球的运动是平动,可以看作质点。
③弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子(金属小球)的大小和形状的理想化的物理模型。
2.弹簧振子的位移——时间图象(1)振动物体的位移是指由平衡位置指向振子所在处的有向线段,可以说某时刻的位移。
说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,末位置是振子所在的位置。
因而振子对平衡位置的位移方向始终背离平衡位置。
(2)振子位移的变化规律(3)弹簧振子的位移-时间图象是一条正(余)弦曲线。
知识点二:简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。
简谐运动是机械振动中最简单、最基本的振动。
弹簧振子的运动就是简谐运动。
2.描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开平衡位置的最大距离,是表征振动强弱的物理量。
(2)周期(T)和频率(f)周期和频率的关系是:(3)相位(φ)相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。
3. 固有周期、固有频率简谐运动的周期只由系统本身的特性决定,与振幅无关,因此T叫系统的固有周期,f叫固有频率。
弹簧振子的周期公式:,其中m是振动物体的质量,k为弹簧的劲度系数。
4.简谐运动的表达式y=Asin(ωt+φ),其中A是振幅,,φ是t=0时的相位,即初相位或初相。
知识点三:简谐运动的回复力和能量1.回复力:使振动物体回到平衡位置的力。
简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。
以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。
分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。
1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。
2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D .T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s。
简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。
以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。
分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。
1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。
2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D .T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s。
简谐运动及其图象【学习目标】1.知道什么是弹簧振子以及弹簧振子是理想化模型。
2.知道什么样的振动是简谐运动。
3.明确简谐运动图像的意义及表示方法。
4.知道什么是振动的振幅、周期和频率。
5.理解周期和频率的关系及固有周期、固有频率的意义。
6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。
7.能用公式描述简谐运动的特征。
【要点梳理】要点一、机械振动1.弹簧振子弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子.2.平衡位置平衡位置是指物体所受回复力为零的位置.3.振动物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动.振动的特征是运动具有重复性.要点诠释:振动的轨迹可以是直线也可以是曲线.4.振动图像(1)图像的建立:用横坐标表示振动物体运动的时间t ,纵坐标表示振动物体运动过程中对平衡位置的位移x ,建立坐标系,如图所示.(2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律.(3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻).(4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反.如图所示,在x 坐标轴上,设O 点为平衡位置。
A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零.在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负.要点二、简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动.简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动.物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动.2.实际物体看做理想振子的条件(1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内.3.理解简谐运动的对称性如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有:(1)时间的对称:(2)速度的对称:①物体连续两次经过同一点(如D 点)的速度大小相等,方向相反.②物体经过关于O 点对称的两点(如C 与D 两点)的速度大小相等,方向可能相同,也可能相反.4.从振动图像分析速度的方法(1)从振动位移变化情况分析:如图所示,例如欲确定质点1P 在1t 时刻的速度方向,取大于1t 一小段时间的另一时刻1t ',并使11t t '-极小,考查质点在1t '时刻的位置1P '(11t x ,''),可知11x x <',即1P '位于1P 的下方,也就是经过很短的时间,质点的位移将减小,说明1t 时刻质点速度方向沿x 轴的负方向.同理可判定2t 时刻质点沿x 轴负方向运动,正在离开平衡位置向负最大位移处运动. 若12x x <,由简谐运动的对称特点,还可判断1t 和2t 时刻对应的速度大小关系为12v v >。
(2)从图像斜率分析:图像切线斜率为正,速度方向为正方向,图像切线斜率为负,速度方向为负方向,斜率绝对值表示速度大小.斜率大、速度大.要点三、描述简谐运动的基本概念1.全振动一个完整的振动过程,称为一次全振动.不管以哪里作为开始研究的起点,弹簧振子完成一次全振动的时间总是相同的.2.周期(1)定义:做简谐运动的物体完成一次全振动所需要的时间叫做振动的周期,用T 表示.(2)单位:在国际单位制中,周期的单位是秒(s ).(3)意义:周期是表示振动快慢的物理量.周期越长表示物体运动得越慢,周期越短表示物体运动得越快.(4)简谐运动的周期公式:2T =. 要点诠释:公式中m 为做简谐运动物体的质量,k 为做简谐运动物体受到的合外力跟位移的大小的比例常数.3.振幅(1)定义:振动物体离开平衡位置的最大距离,叫做振幅,用A 表示.(2)单位:在国际单位制中,振幅的单位是米(m ).(3)意义:振幅是表示振动强弱的物理量.要点诠释:①振幅是一个标量,是指物体偏离平衡位置的最大距离.它没有负值,也无方向,所以振幅不同于最大位移.②在简谐运动中,振幅跟频率或周期无关.在一个稳定的振动中,物体的振幅是不变的.③振动物体在一个全振动过程通过的路程等于4个振幅,在半个周期内通过的路程是两个振幅,但14个周期内通过的路程不一定等于一个振幅.可以比一个振幅大,也可以比一个振幅小. 4.频率(1)定义:单位时间内完成的全振动的次数,叫故振动的频率,用f 表示.常把物体在1 s 内完成的全振动次数叫做频率.(2)单位:在国际单位制中,频率的单位是赫兹(Hz ).(3)意义:频率是表示物体振动快慢的物理量.频率越大表示振动得越快,频率越小表示振动得越慢.(4)周期与频率的关系:1T f=。
(5)固有频率和固有周期:振子获得能量后,物体开始振动.物体的振动频率,只是由振动系统本身的性质决定,与其他因素无关,其振动频率叫固有频率,振动周期也叫固有周期.要点四、简谐运动的描述1.简谐运动的表达式:sin()x A t ωϕ=+(1)式中x 表示振动质点相对于平衡位置的位移,t 表示振动的时间.(2)A 表示振动质点偏离平衡位置的最大距离,即振幅.(3)ω叫做简谐运动的圆频率,它也表示简谐运动物体振动的快慢.与周期T 及频率f 的关系:所以表达式也可写成:2sin x A t T πϕ⎛⎫=+ ⎪⎝⎭或sin(2)x A f t πϕ=+. (4)ϕ表示0t =时,简谐运动质点所处的状态,称为初相位或初相.t ωϕ+代表了简谐运动的质点在t 时刻处在一个运动周期中的哪个状态,所以代表简谐运动的相位.(5)简谐运动的位移和时间的关系也可用余弦函数表示成:cos ()2x A t πωϕ⎡⎤=-+⎢⎥⎣⎦,注意同一振动用不同函数表示时相位不同,而且相位t ωϕ+ 是随时间变化的量.(6)相位每增加2π就意味着完成了一次全振动.2.测量弹簧振子周期的方法弹簧振子的周期一般较小,测定其周期时,一般是用秒表测出振子完成n 次全振动所用的时间t ,则n 值取大一些(如50)可以减小周期的测量误差.3.计算振动物体通过的路程的方法一个周期内,振子的运动路程为4A .若全振动的次数为n ,则振动物体通过的路程为4nA .4.对一次全振动的认识对简谐运动的物体,某一阶段的振动是否为一次全振动,可以从以下两个角度判断:一是从物体经过某点时的特征物理量看,如果物体的位移和速度都回到原值(大小、方向两方面),即物体完成了一次全振动;二是看物体在这段时间内通过的路程是否等于振幅的四倍.5.相位差是指两个相位之差,在实际中经常用到的是两个具有相同频率的简谐运动的相位差,反映出两简谐运动的步调差异.设两简谐运动A 和B 的振动方程分别为:它们的相位差为可见,其相位差恰好等于它们的初相之差,因为初相是确定的,所以频率相同的两个简谐运动有确定的相位差.若则称B 的相位比A 的相位超前ϕ∆,或A 的相位比B 的相位落后ϕ∆;若则称B 的相位比A 的相位落后ϕ∆,或A 的相位比B 的相位超前ϕ∆.(1)同相:相位差为零,一般的为(2)反相:相位差为π,一般的为要点诠释:比较相位或计算相位差时,要用同种函数来表示振动方程,相位差的取值范围:πϕπ-<∆≤.6.振动图像的信息如图所示,则(1)从图像上可知振动的振幅为A ;(2)从图像上可知振动的周期为T ;(3)从图像上可知质点在不同时刻的位移,1t 时刻对应位移1x ,2t 时刻对应位移2x ;(4)从图像上可以比较质点在各个时刻速度的大小及符号(表示方向),如1t 时刻质点的速度较2t 时刻质点的速度小,1t 时刻质点的速度为负,2t 时刻质点的速度也为负(1t 时刻是质点由最大位移处向平衡位置运动过程的某一时刻,而2t 时刻是质点由平衡位置向负的最大位移运动过程中的某一时刻);(5)从图像上可以比较质点在各个时刻加速度的大小及符号,如1t 时刻的加速度较质点在2t 时刻的加速度大,1t 时刻质点加速度符号为负,2t 时刻质点加速度符号为正;(6)从图像可以看出质点在不同时刻之间的相位差.7.简谐运动的周期性简谐运动是一种周而复始的周期性的运动,按其周期性可作如下判断:(1)若则12t t 、两时刻振动物体在同一位置,运动情况相同.(2)若则12t t 、两时刻,描述运动的物理量x F a v (、、、)均大小相等,方向相反.(3)若或则当1t 时刻物体到达最大位移处时,2t 时刻物体到达平衡位置;当1t 时刻物体在平衡位置时,2t 时刻到达最大位移处;若1t 时刻,物体在其他位置,2t 时刻物体到达何处就要视具体情况而定.【典型例题】类型一、简谐运动的基本概念例1.关于机械振动的位移和平衡位置,以下说法中正确的是( ).A .平衡位置就是物体振动范围的中心位置B .机械振动的位移总是以平衡位置为起点的位移C .机械振动的物体运动的路程越大,发生的位移也越大D .机械振动的位移是指振动物体偏离平衡位置最远时的位移【思路点拨】平衡位置是物体所受回复力为零时所在的位置.【答案】B【解析】平衡位置是物体可以静止时的位置,所以应与受力有关,与是否为振动范围的中心位置无关.如乒乓球竖直落在台面上的运动是一个机械振动,显然其运动过程的中心位置应在台面上,所以A 项不正确;振动位移是以平衡位置为初始点,到质点所在位置的有向线段,振动位移随时间而变,振子偏离平衡位置最远时,振动物体振动位移最大,所以只有选项B 正确.【总结升华】位移和平衡位置是机械振动问题中非常重要的概念.位移的正负方向应该作出规定,平衡位置则是物体所受回复力为零时所在的位置.举一反三:【高清课堂:简谐振动及其图像例1】【变式1】一质点做简谐运动,其振动图象如图所示,则( ).A .振幅是2cmB .振动频率为4HzC .3s t =时,质点速度为正且最大D .4s t =时,质点速度为正且最大【答案】A C【变式2】一质点作简谐运动,图象如图所示,在0.2s 到0.3s 这段时间内,质点的运动情况是( ).A .沿负方向运动,且速度不断增大B .沿负方向运动的位移不断增大C .沿正方向运动,且速度不断增大D .沿正方向的加速度不断减小【答案】C D类型二、振动图像的理解例2.如图是用频闪照相的方法获得的弹簧振子的位移一时间图像,下列有关该图像的说法正确的是( ).A .该图像的坐标原点建立在弹簧振子小球的平衡位置B .从图像可以看出小球在振动过程中是沿t 轴方向移动的C .为了显示小球在不同时刻偏离平衡位置的位移,让底片沿垂直x 轴方向匀速运动D .图像中小球的疏密显示出相同时间内小球位置变化快慢不同【答案】A 、C 、D【解析】由图可直观地获得以下信息:①0时刻振子的位置.②振子的振动方向.③底片的运动方向(t 轴负方向).④振动速度的变化等.由图像可见,0时刻振子位移为0,故位于平衡位置,A 项正确;小球只在x 轴上振动,横轴虽是由底片匀速运动得到的位移,但x vt =,已转化成了时间轴,B 项错误,C 项正确;图像中两相邻小球之间的时间间隔相同,疏处说明其位置变化快,密处说明其位置变化慢,故D 项正确.类型三、根据质点振动判断振动图像例3.一弹簧振子沿x 轴振动,振幅为4 cm ,振子的平衡位置位于x 轴上的0点.如图甲中的a b c d 、、、为四个不同的振动状态:黑点表示振子的位置,黑点上的箭头表示运动的方向.如图乙给出的①②③④四条振动曲线,可用于表示振子的振动图像的是( ).A .若规定状态a 时0t =,则图像为①B .若规定状态b 时0t =,则图像为②C .若规定状态c 时0t =,则图像为③D .若规定状态d 时0t =,则图像为④【思路点拨】把振动图像和振动的情景结合起来,由图像获取信息形成物理情景,或由实际运动情景转化为振动图像.并注意规定正方向和零时刻不同。