简谐运动及其图像
- 格式:doc
- 大小:65.50 KB
- 文档页数:7
简谐运动简谐运动的图象1、简谐运动简谐运动的图象2、简谐运动的能量特征受迫振动共振3、实验:用单摆测定重力加速度简谐运动简谐运动的图象:1、简谐运动:简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,是一种变加速运动。
2、弹簧振子(1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球)。
(2)当与弹簧振子相接的小球体积较小时,可以认为小球是一个质点。
(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力。
(4)小球从平衡位置拉开的位移在弹簧的弹性限度内。
3、单摆:悬挂物体的细线的伸缩和质量可以忽略,线长比物体的直径大得多。
单摆是实际摆的理想模型。
单摆摆动的振幅很小即偏角很小时,单摆做简谐运动。
4、描述简谐运动特征的物理量(1)位移、简谐运动的位移,以平衡位置为起点,方向背离平衡位置。
(2)回复力:回复力的作用效果是使振子回到平衡位置。
简谐运动中,,负号表示力的方向总是与位移的方向相反。
(3)周期:做简谐运动的物体完成一次全振动所需的时间。
用T表示,单位秒(s)。
单摆周期弹簧振子的频率只与弹簧的劲度系数和振子质量有关。
(4)频率:单位时间内完成全振动的次数。
用f表示,单位赫兹(Hz)。
周期与频率的关系:(5)振幅:振动物体离开平衡位置的最大距离。
5、简谐运动的公式描述:,A是简谐运动的振幅,ω是圆频率(或角频率),叫简谐运动在t时刻的相位,是初相位。
6、简谐运动的图象简谐运动的图象是正弦(或余弦)函数图象(注意简谐运动的具体图象形状,取决于t=0时振动物体的位置和正方向的选取,可参看“例1”)。
简谐运动图象的应用如下:(1)可直观地读取振幅A、周期T、各时刻的位移x及各时刻的振动速度的方向和加速度的方向;(2)能判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
7、简谐运动的能量:如忽略摩擦力,只有弹力做功,那么振动系统的动能与势能互相转换,在任意时刻动能和势能的总和,即系统的机械能保持不变,机械能由振幅决定。
第3节简谐运动的图像和公式1.简谐运动图像是一条正弦(或余弦)曲线,描述了质点做简谐运动时位移x 随时间t 的变化规律,并不是质点运动的轨迹。
2.由简谐运动图像可以直接得出物体振动的振幅、周期、某时刻的位移及振动方向。
3.简谐运动的表达式为x =A sin(2πTt +φ)或x =A sin(2πft+φ),其中A 为质点振幅、(2πTt +φ)为相位,φ为初相位。
1.建立坐标系以横轴表示做简谐运动的物体的时间t ,纵轴表示做简谐运动的物体运动过程中相对平衡位置的位移x 。
2.图像的特点一条正弦(或余弦)曲线,如图所示。
3.图像意义表示物体做简谐运动时位移随时间的变化规律。
4.应用由简谐运动的图像可找出物体振动的周期和振幅。
[跟随名师·解疑难]1.图像的含义表示某一做简谐运动的质点在各个时刻的位移,不是振动质点的运动轨迹。
2.由图像可以获取哪些信息? (1)可直接读取振幅、周期。
(2)任意时刻质点的位移的大小和方向。
如图甲所示,质点在t 1、t 2时刻的位移分别为x 1和-x 2。
甲 乙(3)任意时刻质点的振动方向:看下一时刻质点的位置,如图乙中a 点,下一时刻离平衡位置更远,故a 此刻向上振动。
(4)任意时刻质点的速度、加速度、位移的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,若远离平衡位置,则速度越来越小,加速度、位移越来越大,若靠近平衡位置,则速度越来越大,加速度、位移越来越小。
如图乙中b 点,从正位移向着平衡位置运动,则速度 为负且增大,位移、加速度正在减小;c 点从负位移远离平衡位置运动,则速度为负且减小,位移、加速度正在增大。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)如图所示为某质点做简谐运动的图像,则质点在前6 s 内通过的路程为________ cm ,在6~8 s 内的平均速度大小为________ cm/s ,方向________。
专题一:简谐运动及其图象知识点一:弹簧振子1.弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。
小球滑动时的摩擦力可以忽略,弹簧的质量比小球的质量小得多,也可忽略。
这样就成了一个弹簧振子。
注意:①小球原来静止的位置就是平衡位置。
小球在平衡位置附近所做的往复运动,是一种机械振动。
②小球的运动是平动,可以看作质点。
③弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子(金属小球)的大小和形状的理想化的物理模型。
2.弹簧振子的位移——时间图象(1)振动物体的位移是指由平衡位置指向振子所在处的有向线段,可以说某时刻的位移。
说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,末位置是振子所在的位置。
因而振子对平衡位置的位移方向始终背离平衡位置。
(2)振子位移的变化规律(3)弹簧振子的位移-时间图象是一条正(余)弦曲线。
知识点二:简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。
简谐运动是机械振动中最简单、最基本的振动。
弹簧振子的运动就是简谐运动。
2.描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开平衡位置的最大距离,是表征振动强弱的物理量。
(2)周期(T)和频率(f)周期和频率的关系是:(3)相位(φ)相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。
3. 固有周期、固有频率简谐运动的周期只由系统本身的特性决定,与振幅无关,因此T叫系统的固有周期,f叫固有频率。
弹簧振子的周期公式:,其中m是振动物体的质量,k为弹簧的劲度系数。
4.简谐运动的表达式y=Asin(ωt+φ),其中A是振幅,,φ是t=0时的相位,即初相位或初相。
知识点三:简谐运动的回复力和能量1.回复力:使振动物体回到平衡位置的力。
简谐运动的六种图象 Last updated at 10:00 am on 25th December 2020简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。
以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。
分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。
1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图44.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。
2011-12-20?人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的()A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.()A.振幅为3m,周期为8s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表.(2)乙在甲观察后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t==1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;;,,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,Ep)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==,摆长l==1(m),位移为最大值时刻为末和末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围~.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为()=T1=2T1=4T1=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2.①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t 1=T1和t2=2T2.②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点()A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为()A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=时,速度υ、加速度α的方向应为()A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为()A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是()A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点()A.在0至内,速度与加速度同方向B.在至内,速度与回复力同方向C.在末,速度为正,加速度为负D.在末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,末与末的加速度大小分别是a1与a2,则大小是a1,末与末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=时,位移是cm,此时振子正处于图(A)中的位置.(4)t由至时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是()A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是()11.如下图所示为一单摆做间谐运动的图像,在~这段时间内()A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是()13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内()A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头内振子的平均速度和每秒钟通过的路程为()s,4ms,15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在()和t3时刻具有相同的动能和动量和t3时刻具有相同的势能和不同的动量和t5时刻具有相同的加速度和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t=s时,具有正向最大加速度;t=s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比AA ∶AB=;周期之比TA∶TB=.若已知两振子质量之比mA ∶mB=2∶3,劲度系数之比kA∶kB=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=时小球的加速度的大小为,方向;在t=时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=,BC=.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】、C、D、D;;末;末;0与2s末;1s末;<;>8.(1)2;;(2)0;右;;-2;C;大;小;小;负;负;负【素质优化训练】、B、C、C、D、D;;;;;∶1;2∶3;9∶2;3∶1s2;向上;0;向下。
简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。
以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。
分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。
1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。
2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D .T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s。
简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。
以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。
分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。
1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。
2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D .T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s。
专题一:简谐运动及其图象知识点一:弹簧振子1.弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。
小球滑动时的摩擦力可以忽略,弹簧的质量比小球的质量小得多,也可忽略。
这样就成了一个弹簧振子。
注意:①小球原来静止的位置就是平衡位置。
小球在平衡位置附近所做的往复运动,是一种机械振动。
②小球的运动是平动,可以看作质点。
③弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子(金属小球)的大小和形状的理想化的物理模型。
2.弹簧振子的位移——时间图象(1)振动物体的位移是指由平衡位置指向振子所在处的有向线段,可以说某时刻的位移。
说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,末位置是振子所在的位置。
因而振子对平衡位置的位移方向始终背离平衡位置。
(2)振子位移的变化规律(3)弹簧振子的位移-时间图象是一条正(余)弦曲线。
知识点二:简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。
简谐运动是机械振动中最简单、最基本的振动。
弹簧振子的运动就是简谐运动。
2.描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开平衡位置的最大距离,是表征振动强弱的物理量。
(2)周期(T)和频率(f)周期和频率的关系是:(3)相位(φ)相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。
3. 固有周期、固有频率简谐运动的周期只由系统本身的特性决定,与振幅无关,因此T叫系统的固有周期,f叫固有频率。
弹簧振子的周期公式:,其中m是振动物体的质量,k为弹簧的劲度系数。
4.简谐运动的表达式y=Asin(ωt+φ),其中A是振幅,,φ是t=0时的相位,即初相位或初相。
知识点三:简谐运动的回复力和能量1.回复力:使振动物体回到平衡位置的力。
(1)回复力是以效果命名的力。
性质上回复力可以是重力、弹力、摩擦力、电场力、磁场力等,它可能是几个力的合力,也可能是某个力或某个力的分力。
如在水平方向上振动的弹簧振子的回复力是弹簧在伸长和压缩时产生的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。
(2)回复力的作用是使振动物体回到平衡位置。
回复力的方向总是“指向平衡位置”。
(3)回复力是是振动物体在振动方向上的合外力,但不一定是物体受到的合外力。
2.对平衡位置的理解(1)平衡位置是振动物体最终停止振动后振子所在的位置。
(2)平衡位置是回复力为零的位置,但平衡位置不一定是合力为零的位置。
(3)不同振动系统平衡位置不同。
竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。
3.简谐运动的动力学特征F回=-kx ,a回=-kx/m,其中k为比例系数,对于弹簧振子来说,就等于弹簧的劲度系数。
负号表示回复力的方向与位移的方向相反。
也就是说简谐运动是在跟对平衡位置的位移大小成正比、方向总是指向平衡位置的力作用下的振动。
弹簧振子在平衡位置时F回=0。
当振子振动过程中,位移为x时,由胡克定律(弹簧不超出弹性限度),考虑到回复力的方向跟位移的方向相反,有F回= -kx,k为弹簧的劲度系数,所以弹簧振子做简谐运动。
4.简谐运动的能量特征知识点四:简谐运动过程中各物理量大小、方向变化情况1.全振动振动物体连续两次运动状态(位移和速度)完全相同所经历的的过程,即物体运动完成一次规律性变化。
2.弹簧振子振动过程中各物理量大小、方向变化情况过程:物体从A由静止释放,从A→O→B→O→A,经历一次全振动,图中O为平衡位置,A、B为最大位移处:取OB方向为正:小结:弹簧振子的运动过程是完全对称的。
(1)B、O、A为三个特殊状态O为平衡位置,即速度具有最大值v max,而加速度a=0A为负的最大位移处,具有加速度最大值a max,而速度v=0B为正的最大位移处,具有加速度最大值a max,而速度v=0(2)其运动为变加速运动与变减速运动的交替过程,在此过程中,机械能守恒,动能和弹性势能之间相互转化加速度a与速度v的变化不一致(3)任一点C的受力情况重力G与弹力N平衡;F回=F弹=kx,可看出回复力方向始终与位移方向相反知识点五:简谐运动图象的应用1. 简谐运动图象的物理意义图象描述了做简谐运动的质点的位移随时间变化的规律,即是位移——时间函数图象。
注意振动图象不是质点的运动轨迹。
2. 简谐运动图象的特点简谐运动的图象是一条正弦(余弦)曲线。
(1)从平衡位置开始计时,函数表达式为,图象如图1。
(2)从最大位移处开始计时,函数表达式,图象如图2。
3.简谐运动图象的应用(1)确定振动质点在任一时刻的位移。
如图中,对应t1、t2时刻的位移分别为x1=+7cm、x2=-5cm。
(2)确定振动的振幅、周期和频率。
图中最大位移的值就是振幅,如图表示的振动振幅是10cm;振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示周期。
由图可知,OD、AE、BF的间隔都等于振动周期T=0.2s;频率。
(3)确定各时刻质点的速度、加速度(回复力)的方向。
加速度方向总与位移方向相反。
只要从振动图象中认清位移的方向即可。
例如在图中t1时刻质点位移x1为正,则加速度a1为负,两者方向相反;t2时刻,位移x2为负,则a2便为正;判定速度的方向的方法有:a.位移——时间图象上的斜率代表速度。
某时刻的振动图象的斜率大于0,速度方向与规定的正方向一致;斜率小于0,速度的方向与规定的正方向相反;b.将某一时刻的位移与相邻的下一时刻的位移比较,如果位移增大,振动质点将远离平衡位置;反之将靠近平衡位置。
例如图中在t1时刻,质点正远离平衡位置运动;在t3时刻,质点正向着平衡位置运动。
(4)比较不同时刻质点的速度、加速度、动能、势能的大小。
加速度与位移的大小成正比。
如图中|x1|>|x2|,所以|a1|>|a2|;而质点的位移越大,它所具有的势能越大,动能、速度则越小。
如图中,在t1时刻质点的势能E P1大于t2时刻的势能E P2,而动能则E k1<E k1,速度v1<v1。
规律方法指导1.正确分析振动物体的受力回复力是根据效果来命名的,而不是某种特殊性质的力,它可以是重力、弹力、摩擦力,或者是几个力的合力。
2.简谐运动的对称性和周期性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系。
另外速度的大小具有对称性,方向可能相同或相反。
②过程量的对称性:振动质点来回通过相同的两点间的时间相等,如;质点经过关于平衡位置对称的等长的两线段时时间相等,如。
③由于简谐运动有周期性,因此涉及简谐运动时,往往出现多解,分析时应特别注意:物体在某一位置时,位移是确定的,而速度不确定;时间也存在周期性关系。
3.简谐运动中路程和时间的关系振动质点在△t时间经过的路程与△t和质点的初始状态有关,计算比较复杂。
若质点运动时间△t是周期T的整数倍,即满足△t=nT(n=1、2……),则那么振动质点在△t时间通过的路程S=n×4A;如果时间△t是的整数倍,即△t=n(n=1、2……),那么振动质点在△t时间通过的路程为S=n×2A;如果为△t为T/4,分三种情形:①计时起点对应质点在三个特殊位置(两个最大位移处,一个平衡位置),则S=A;②计时起点对应质点在最大位移和平衡位置之间,向平衡位置运动,则S>A;③计时起点对应质点在最大位移处和平衡位置之间,向最大位移处运动,则S<A。
4.简谐运动图象反映了振动物体相对于平衡位置的位移随时间的变化规律。
要掌握好这一规律,需要把图象和振动物体实际的运动联系起来,要能够对物理图景有充分的想象能力。
典型例题透析类型一一——简谐运动的判定1、如图所示,光滑水平面上放有一质量为m的物体,弹簧的劲度系数分别为k l、k2,弹簧现在均处于原长,试证明物体开始振动之后的运动为简谐运动。
举一反三【变式】轻质弹簧上端固定在天花板上,下端悬挂物体m,弹簧的劲度系数为k,现将物体从平衡位置向下拉开一段距离后释放,试证明物体的运动是简谐运动。
类型二——简谐运动过程中各物理量的变化2、一弹簧振子做简谐运动,下列说确的是:()A.若位移为负值,则速度一定为正值,加速度也一定为正值B.振子通过平衡位置时,速度为零,加速度最大C.振子每次经过平衡位置时,加速度相同,速度也一定相同D.振子每次通过同一位置时,其速度不一定相同,但加速度一定相同举一反三【变式1】如果下表中给出的是做简谐运动的物体的位移x或速度v与时刻的对应关系,T是振动周期,则下列选项中正确的是:()A.若甲表示位移x,则丙表示相应的速度v B.若丁表示位移x,则甲表示相应的速度vC.若丙表示位移x,则甲表示相应的速度v D.若乙表示位移x,则丙表示相应的速度v【变式2】如图所示,一弹簧振子在A、B间做简谐运动,平衡位置为O,已知振子的质量为M,若振子运动到B处时将一质量为m的物体放到M的上面,且m和M无相对运动而一起运动,下述正确的是:()A.振幅不变B.振幅减小C.最大动能不变D.最大动能减小类型三——简谐运动的图象3、一质点做简谐运动的振动图象如图所示:(1)该质点振动的振幅是___________;周期是___________;初相是___________。
(2)写出该质点简谐运动的表达式,并求出当t=1s时质点的位移。
举一反三【变式】做简谐运动的弹簧振子振动图象如图所示,下列说法中正确的是:()A.t=0时,质点位移为零,速度为零,加速度为零B.t=1s时,质点位移最大,速度为零,加速度最大C.t1和t2时刻振子具有相同的速度和动能D.t3和t4时刻振子具有相同的加速度E.5s振子通过的路程是25cm,而位移是5cm,回复力为零,加速度为零,但速度为最大值,动能最大,势能为零,选项A错误。
类型四——简谐运动的周期性和对称性4、一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M 点,再经0.1s第二次通过M点,则质点振动周期为多大?举一反三【变式】质点在O点附近做简谐运动,从质点经过O点时开始计时,质点第一次经过O附近的M点需时3s,又经过2s再一次经过M点,求质点第三次经过M点还需经过多长时间?举一反三【变式】水平放置的弹簧振子做简谐运动,周期为T,t1时刻振子不在平衡位置,且速度不为零;t2时刻振子速度与t1时刻的速度大小相等、方向相同;t3时刻振子的速度与t1时刻的速度大小相等、方向相反。
若t2-t1=t3-t2,则:()A.t1时刻、t2时刻与t3时刻弹性势能都相等B.t1时刻与t3时刻,弹簧的长度相等C.t3-t1=(2n+)T n=0,1,2,……D.t3-t1=(n+)T n=0,1,2,…6、如图所示,弹簧下面挂一质量为m的物体,物体向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好为原长。