平面与平面垂直的性质和判定
- 格式:docx
- 大小:148.67 KB
- 文档页数:4
面面垂直的判定定理及性质定理
性质定理:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内等。
定义:
若两个平面的二面角为的直二面角(平面角就是直角的二面角),则这两个平面互相横向。
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的.直线垂直于另一个平面。
2、如果两个平面相互横向,那么经过第一个平面内的一点并作旋转轴第二个平面的直线在第一个平面内。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4、如果两个平面互相横向,那么一个平面的垂线与另一个平面平行。
(认定定理推断1的逆定理)。
面面垂直的基本定义与性质在几何学中,面面垂直是指两个平面之间的相对关系。
当两个平面互相垂直时,它们的法线向量之间的夹角为90度。
本文将详细探讨面面垂直的基本定义和性质。
一、基本定义面面垂直的定义可以用如下方式描述:给定两个平面P和Q,如果P与Q的法线向量垂直,则称P与Q是面面垂直的。
二、性质1.垂直平面的法线向量根据定义,当两个平面互相垂直时,它们的法线向量也垂直。
设P 的法线向量为n1=(a1, b1, c1),Q的法线向量为n2=(a2, b2, c2),则有以下关系:a1*a2 + b1*b2 + c1*c2 = 02.平面的垂直性与法线向量对于给定的平面P,任意一条与P垂直的直线的方向向量都与P的法线向量平行。
也就是说,如果v=(x, y, z)是P的法线向量,那么对于任意一条在P上的点A,向量OA=(x1, y1, z1)也与v平行。
3.平面的垂直性与交线如果两个平面P和Q是面面垂直的,那么它们的交线与它们的法线向量垂直。
设P与Q的交线为L,则L与P的法线向量n1以及L与Q的法线向量n2都垂直。
4.垂直平面的距离对于两个垂直平面P和Q,它们之间的距离可以通过以下公式计算:d = |(D1-D2)·n1/|n1||其中D1和D2分别表示平面P和Q到原点的距离,n1是P的法线向量。
5.垂直平面的投影当两个平面相互垂直时,它们的投影也相互垂直。
设平面P的法线向量为n1,点A在平面Q上,设Q的法线向量为n2,则A在Q上的投影点B与P的法线向量垂直。
6.垂直平面的内角两个垂直平面的夹角为90度。
由于两个平面的法线向量垂直,它们之间的夹角是90度。
总结:面面垂直是几何学中的一个重要概念,涉及到两个平面之间的相对关系。
本文介绍了面面垂直的基本定义和性质,包括垂直平面的法线向量、平面的垂直性与法线向量、平面的垂直性与交线、垂直平面的距离、垂直平面的投影以及垂直平面的内角等方面。
对于深入理解几何学中的垂直关系以及应用到实际问题中具有重要意义。
线面、面面垂直的判定与性质知识回顾1.直线与平面垂直的判定(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α垂直,记作l ⊥α.(2)判定定理文字表述:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号表述:⎭⎪⎬⎪⎫l ⊥a l ⊥b⇒l ⊥α. 2.直线与平面垂直的性质文字表述:垂直于同一个平面的两条直线平行。
符号表述:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒ a ∥b 3. 直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.4.平面与平面的垂直的判定(1)定义:如果两个平面相交,且它们所成的二面角是直角,就说这两个平面互相垂直.(2)面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β⇒α⊥β. 5.平面与平面垂直的性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号表示为:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 6.二面角二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角.题型讲解题型一例1、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交 B.相交但不一定垂直C.垂直但不相交 D.不垂直也不相交答案:C例2、如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.1答案:A例3、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.证明在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.题型二例4、若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( ) ①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒M ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α.A .1B .2C .3D .4答案:C例5、如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1. ∵A 1D∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC . ∴ON12CD 12AB , ∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.题型三例6、直线a 与平面α所成的角为50°,直线b ∥a ,则直线b 与平面α所成的角等于( )A .40°B .50°C .90°D .150°答案:B例7、在正方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与平面ABCD 所成的角是________; (2)直线A 1B 与平面ABC 1D 1所成的角是________; (3)直线A 1B 与平面AB 1C 1D 所成的角是________. 答案:(1)45° (2)30° (3)90° 题型四例6、在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( ) A .13 B .12 C .223 D .32答案:B [如图所示,由二面角的定义知∠BOD 即为二面角的平面角. ∵DO =OB =BD =32, ∴∠BOD =60°.]例7、过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.答案:45° 题型五例8、下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC.若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β答案:C例9、如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.9.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.在Rt△PAB中,tan∠PBA=PAAB=3,则∠PBA=60°.故二面角A—BE—P的大小是60°.题型六例10、平面α⊥平面β,直线a∥α,则()A.a⊥β B.a∥βC.a与β相交 D.以上都有可能答案:D例11、如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD 是等边三角形,已知BD=2AD=8,AB=2DC=45.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.11.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD2+BD2=AB2.∴AD⊥BD.又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD⊂面ABCD,∴BD⊥面PAD,又BD⊂面BDM,∴面MBD⊥面PAD.(2)解过P作PO⊥AD,∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO为四棱锥P—ABCD的高.又△PAD是边长为4的等边三角形,∴PO=23.在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.在Rt△ADB中,斜边AB边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=163.跟踪训练1.正方体A 1B 1C 1D 1-ABCD 中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值等于( )A .33B .22C . 2D . 3答案:C[解析] 设AC 、BD 交于O ,连A 1O ,∵BD ⊥AC ,BD ⊥AA 1,∴BD ⊥平面AA 1O ,∴BD ⊥A 1O ,∴∠A 1OA 为二面角的平面角. tan ∠A 1OA =A 1AAO=2,∴选C.2.过两点与一个已知平面垂直的平面( ) A .有且只有一个 B .有无数个 C .有且只有一个或无数个 D .可能不存在答案:C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]3.如图,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段 答案:A[解析] ∵DD 1⊥平面ABCD , ∴D 1D ⊥AC ,又AC ⊥BD ,∴AC ⊥平面BDD 1, ∴AC ⊥BD 1.同理BD 1⊥B 1C. 又∵B 1C ∩AC =C , ∴BD 1⊥平面AB 1C.而AP ⊥BD 1,∴AP ⊂平面AB 1C.又P ∈平面BB 1C 1C ,∴P 点轨迹为平面AB 1C 与平面BB 1C 1C 的交线B 1C.故选A. 4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN =________.答案:90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M .∴∠C 1MN =90°.5.如图所示,平面α⊥平面β,A ∈α,B ∈β,AA′⊥A′B′,BB′⊥A′B′,且AA′=3,BB′=4,A′B′=2,则三棱锥A -A′BB′的体积V =________.答案: 4[解析] ∵α⊥β,α∩β=A′B′,AA′⊂α,AA′⊥A′B′, ∴AA′⊥β,∴V =13S △A′BB′·AA′=13×(12A′B′×BB′)×AA′=13×12×2×4×3=4.6. 如图所示,已知PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过点A 作AE ⊥PC 于点E .求证:AE ⊥平面PBC .证明 ∵PA ⊥平面ABC ,∴PA ⊥BC . 又∵AB 是⊙O 的直径,∴BC ⊥AC . 而PA ∩AC =A ,∴BC ⊥平面PAC . 又∵AE ⊂平面PAC ,∴BC ⊥AE .又∵PC ⊥AE ,且PC ∩BC =C ,∴AE ⊥平面PBC .7.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE.证明 取CE 的中点G ,连接FG ,BG ,AF. ∵F 为CD 的中点, ∴GF ∥DE ,且GF =12DE.∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE.则GF ∥AB. 又∵AB =12DE ,∴GF =AB.则四边形GFAB 为平行四边形.于是AF ∥BG. ∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD.∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF. 又∵CD ∩DE =D ,CD ,DE ⊂平面CDE , ∴AF ⊥平面CDE.∵BG ∥AF ,∴BG ⊥平面CDE.∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE.8.如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面PAC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.证明(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2.∴PD⊥DC.同理可证PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(2)由(1)知PD⊥平面ABCD,∴PD⊥AC.而四边形ABCD是正方形,∴AC⊥BD.又BD∩PD=D,∴AC⊥平面PBD.又AC⊂平面PAC,∴平面PAC⊥平面PBD.(3)由(1)知PD⊥BC,又BC⊥DC,∴BC⊥平面PDC.∴BC⊥PC.∴∠PCD为二面角P-BC-D的平面角.在Rt△PDC中,PD=DC=a,∴∠PCD=45°.∴二面角P-BC-D是45°的二面角.6.如图,在直三棱柱ABC—A1B1C1中,AA1=AC,且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)若D、E分别是A1C1和BB1的中点,求证:DE∥平面ABC1.11解析: (1)∵直三棱柱ABC -A 1B 1C 1中,AA 1=AC , ∴ACC 1A 1为正方形, ∴A 1C ⊥AC 1.又∵BC 1⊥A 1C ,AC 1∩BC 1=C 1,∴A 1C ⊥平面ABC 1, 又∵A 1C ⊂平面A 1ACC 1, ∴平面A 1ACC 1⊥平面ABC 1.(2)如图,取AA 1的中点F ,连接DF 、EF.∵D 、E 、F 分别为A 1C 1、BB 1、AA 1的中点, ∴DF ∥AC 1,EF ∥AB ,DF∩EF =F , ∴平面DEF ∥平面ABC 1, ∴DE ∥平面ABC 1.。
判定定理:如果一个平面经过另一个平面的 ,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
面面垂直的判定方法
① 面面垂直的定义:两个平面相交所成的二面角是
②面面平行的性质结论:γαβα⊥,//⇒βγ⊥
平面与平面垂直的性质
一、 选择题:
1、下列命题中,不正确的是( )
A. 一条直线垂直于平面内无数条直线,则这条直线垂直于这个平面
B. 平面的垂线一定与平面相交
C. 过一点有且只有一条直线与已知平面垂直
D. 过一点有且只有一个平面与已知直线垂直
2、已知平面a ⊥平面β,l =βα ,点P ∈l ,则给出下面四个结论:
①过P 和l 垂直的直线在平面α内; ②过P 和平面β垂直的直线在平面α内;
③过P 和l 垂直的直线必与β垂直; ④过P 和平面β垂直的平面必与l 垂直。
其中真命题是:( )
A. ②
B. ③
C. ①、④
D. ②、③
3、夹在直二面角两个半平面间的一条线段与两个平面所成的角分别是30°和45°,如果这条线段的长是5,则它在二面角棱上的射影长为( )
A. 2.5
B. 5
C. 10
D. 8
4、关于直线m 、n 与平面α、β,有下列四个命题:
①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥;
③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //. 其中真命题的序号是( )
A. ①、②
B. ③、④
C. ①、④
D. ②、③
5、设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )
A .βαβα⊥⇒⊥⊂⊥n m n m ,,
B .n m n m ⊥⇒⊥βαβα//,,//
C .n m n m ⊥⇒⊥⊥βαβα//,,
D .ββαβα⊥⇒⊥=⊥n m n m ,,
6、若m n ,是两条不同的直线,α、β、γ三个不同的平面,则下列命题中的真命题是( )
A .若m βαβ⊂⊥,,则m α⊥
B .若m αγ=,n βγ=,m n ∥,则αβ∥
C .若m β⊥,m α∥,则αβ⊥
D .若αγ⊥,αβ⊥,则βγ⊥
二、填空题
7、两个平面互相垂直,一条直线与其中一个平面平行,则这条直线与另一个平面的位置关系是
8、设直线l 和平面βα、,且βα⊄⊄l l ,,给出如下三个论证:①α⊥l ;②βα⊥;③l ∥β
从中任取两个作条件,余下一个作为结论,在构成的诸命题中,写出你认为正确的一个命题是
9、下面四个命题: ①三个平面两两互相垂直,则它们的交线也两两互相垂直;
②三条共点的直线两两互相垂直,分别由每两条直线所确定的平面也两两互相垂直;
③分别与两条互相垂直的直线垂直的平面互相垂直;④分别经过两条互相垂直的直线的两个平面互相垂直。
其中正确命题的序号是
三、解答题:
10、已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90
底面ABCD ,且PA=AD=DC=2
1AB=1,M 是PB 的中点。
(Ⅰ)证明:面PAD ⊥面PCD ;(Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小。
③面面垂直的判定定理:a
a
α
β
⊂
⊥
⇒αβ
⊥
平面与平面垂直的判定
一、选择题:
1、若三条直线OA、OB、OC两两垂直,则直OA垂直于()
A 平面OA
B B 平面OA
C C 平面OBC
D 平面ABC
2、设α、γ
β、为不同的平面,l、m为两条不同的直线,则下列条件中不能推出α⊥β的是()
A l⊥m,l⊥α,m⊥β
B l⊥m,l⊆α,m⊆β
C α⊥γ,β∥γ
D l∥m,l⊥α,m⊆β
在四棱锥P-ABCD中,底面ABCD是矩形,若PA⊥平面ABCD,则在此四棱锥的五个面中互相垂直的平面共有()
A 3对
B 4对
C 5对
D 6对
4、已知直线m、n与平面α、β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命
题的个数是()
A 0
B 1
C 2
D 3
5、设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则
l∥m;②若l⊥m,则α⊥β.那么( )
A ①是真命题,②是假命题
B ①是假命题,②是真命题
C ①②都是真命题
D ①②都是假命题
6、在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立
...的是()
A BC//平面PDF
B DF⊥平面P AE
C 平面PDF⊥平面ABC
D 平面P AE⊥平面ABC
二、填空题
7、已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.
(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m .(填所选条件的序号)
8、已知直线AO ⊥平面α于O ,直线OB ⊥AO ,则OB 与平面α的关系是 。
9、直角三角形ABC 的斜边在平面内,两条直角边分别与平面α成30°和45°,则这个直角三角形所在的平面与平面α所成二面角为 。
三、解答题:
10、在矩形ABCD 中,已知AB=2,BC=2,E 为BC 中点,把⊿ABE 和⊿CDE 分别沿AE 、DE 折起,使点B 与点C 重合于点P 。
(1)求证:平面PDE ⊥平面APD ;(2)求二面角P-AD-E 的大小。