小学奥数公式全
- 格式:docx
- 大小:82.60 KB
- 文档页数:11
学习小学奥数的必备十大公式:一、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数二、和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)三、差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)四、植树问题的公式1.非封闭线路上的植树问题主要可分为以下三种情形:1.1.如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)1.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数1.3.如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数五、盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数六、相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间七、追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间八、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2九、浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量十、利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。
小学奥数公式大全一、基本运算符号:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a二、数的性质:1.奇数与奇数相加等于偶数:奇数+奇数=偶数2.奇数与偶数相加等于奇数:奇数+偶数=奇数3.偶数与偶数相加等于偶数:偶数+偶数=偶数4.0与任何数相乘等于0:0×a=05.1与任何数相乘等于原数:1×a=a6. 除零是不存在的:a ÷ 0 = undefined三、算术运算公式:1.两个数相加:a+b=c2.两个数相减:a-b=c3.两个数相乘:a×b=c4.两个数相除:a÷b=c四、公约数与最大公约数:1.求两个数的公约数:a、b的公约数有d2.求两个数的最大公约数:a、b的最大公约数为d五、倍数与最小公倍数:1.求一个数的倍数:a的倍数有b2.求两个数的最小公倍数:a、b的最小公倍数为c六、平方与平方根:1.一个数的平方:a的平方是b,即a²=b2.开平方:一个数的平方根:√a=b,b²=a七、百分数与比例:1.百分数转换为小数:百分数÷100=小数2.小数转换为百分数:小数×100=百分数3.比例换算:a:b=c:d八、平均数:1.n个数的平均数:(a₁+a₂+...+aₙ)÷n=平均数九、等差数列:1.等差数列的通项公式:第n个数aₙ=a₁+(n-1)×d2.求等差数列前n项和:前n项和Sn=(a₁+aₙ)×n÷2十、等比数列:1.等比数列的通项公式:第n个数aₙ=a₁×q^(n-1)2.求等比数列前n项和:前n项和Sn=a₁(1-q^n)÷(1-q),(q≠1)十一、三角形:1.三角形的周长:周长=边1+边2+边32.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为直角边)3. 正弦定理:a/sinA = b/sinB = c/sinC4. 余弦定理:a² = b² + c² - 2bc × cosA。
小奥数公式定理大全
小学奥数公式定理如下:
1. 每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
2. 1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。
3. 速度×时间=路程,路程÷速度=时间,路程÷时间=速度。
4. 单价×数量=总价,总价÷单价=数量,总价÷数量=单价。
5. 工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率。
6. 加数+加数=和,和-一个加数=另一个加数。
7. 被减数-减数=差,被减数-差=减数,差+减数=被减数。
8. 因数×因数=积,积÷一个因数=另一个因数。
9. 被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
以上是小奥数的公式定理,仅供参考,可以查阅奥数书籍获取更多公式定理。
小学奥数常用公式大全2021年小学奥数常用公式大全一:常用图形运算公式(一)圆柱1圆柱的认识圆柱的上下两个面叫做底面。
圆柱有一个曲面叫做侧面。
圆柱两个底面之间的距离叫做高。
进一法:实际中,使用的材料都要比运算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
2运算公式s侧=chs表=s侧+s底×2v=sh/3(二)圆锥1 圆锥的认识圆锥的底面是个圆,圆锥的侧面是个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
把圆锥的侧面展开得到一个扇形。
2运算公式v= sh/3(三)球1 认识球的表面是一个曲面,那个曲面叫做球面。
球和圆类似,也有一个球心,用O表示。
从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。
通过球心同时两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。
2 运算公式d=2r(四)长方体1 特点六个面差不多上长方形(有时有两个相对的面是正方形)。
相对的面面积相等,12条棱相对的4条棱长度相等。
有8个顶点。
相交于一个顶点的三条棱的长度分别叫做长、宽、高。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点小学奥数公式整理大全小学奥数公式整理大全。
把长方体放在桌面上,最多只能看到三个面。
长方体或者正方体6个面的总面积,叫做它的表面积。
2 运算公式s=2(ab+ah+bh)V=shV=abh(五)正方体1 特点六个面差不多上正方形六个面的面积相等12条棱,棱长都相等有8个顶点正方体能够看作专门的长方体2 运算公式S表=6a2v=a?(六)圆(1) 圆的认识平面上的一种曲线图形。
圆中心的一点叫做圆心。
一样用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
§1 等差数列公式:1、末项 =首项 +(项数 -1)×公差2、an=a1+(n- 1) ×d3、项数 =(末项 -首项)÷公差 +14、n =(an-a1) ÷d +15、中项定理:和 =中间数×项数6、S =中间数×n7、(仅奇数列可用)注意:连续的奇数(或偶数)必定是等差数列,公差必定是 2.平方差公式:a2-b2=(a+b ) × (a-b )(a+b )(a-b )=a2-b2§2 兼顾与最优化时间兼顾:单列和多列排队排序:快的在前,慢的在后(注意:每列不一样地点的等候人数)。
过河问题(绘图)快去快回,慢者结伴(5 人以下常用, 7 人以上可试试)。
地址兼顾:1、点无大小奇数点选中间点,偶数点选中间段。
2、点有大小(一段法)轻往重移,小往大移§3 整除特点:四大金刚:变形金刚:2×5=100.2×5=14×25=1004×2.5=108×125=10008×1.25=1016×625=10000㈠末端系:1、末 1位:2、52、末 2位: 4、253、末 3位: 8、125㈡和系:1、数字和(弃 9 法): 3、92、两位一截乞降: 33、99(要点)㈢差系: 11欢迎阅读奇数位数字和-偶数位数字和㈣截位系(三位一截)7、11、13奇段和-偶段和。
㈤试除法(合用于末端未知)二部曲1、用最大数试;992、查验。
综合就用:⑴拆数(拆成学过的数)⑵先考虑末端系,再考虑其余。
§4 加乘原理:1、加法原理:分类相加(类类独立)2、乘法原理:分步相乘,步步有关。
惯例题型:1、排数字:⑴注意有无重复;⑵特别地点优先办理;⑶“ 0”的出现① 0 不可以放在首位②0 和偶数同时出现必分类2、插旗帜:按次序分类议论。
染色问题:1、排序:从邻圈最多开始排;2、染色:颜色数目。
小学奥数公式大全1 、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 、速度×时间=路程路程÷速度=时间路程÷时间=速度4 、单价×数量=总价总价÷单价=数量总价÷数量=单价5 、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 、加数+加数=和和-一个加数=另一个加数7 、被减数-减数=差被减数-差=减数差+减数=被减数8 、因数×因数=积积÷一个因数=另一个因数9 、被除数÷除数=商被除数÷商=除数商×除数=被除数1 、正方形C周长 S面积 a边长周长=边长× 4C=4a面积=边长×边长S=a×a表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 、三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 、平行四边形s面积 a底 h高面积=底×高s=ah7 、梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28、圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 、圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 、圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量--------------------------------------------------------------------------------奥数网每周专题训练(四)1、甲、乙两车分别从A、B两地出发相向而行。
(一) 时钟问题一.追及距离(格数)÷速度差(1-121)= 时间 1.两针重合公式:格数÷(1-121) 2.两针垂直公式:(格数±15)÷(1-121) 3.两针成直线公司:(格数±30)÷(1-121)推广:两针成30°公式:(格数±5)÷(1-121) 两针成60°公式:(格数±10)÷(1-121)两针成120°公式:(格数±20)÷(1-121)4.两针与某时刻距离相等(假设为相遇问题)公式:格数÷(1+121) 5.镜子中的时刻:镜子中与实际时针只需将分针与时针互换。
例:镜子中6点20分即现实中的5点40分。
6.时针与分针成多少度公式:时针点数×5×6°- 分针点数×5.5° 7.从0点到12点时针与分针共重合11次。
(二) 整数的计算公式:1.求和公式:和=(首项+末项)×项数÷2 2.项数公式:项数=(末项-首项)÷公差+13.末项公式:末项=首项+(项数-1)×公差 另有:奇数个数的和除以项数等于中间数 4.从1开始的连续自然数的平方求和公式:21+22+23+ (2)n =6)12()1(+⨯+⨯n n n从1开始的连续奇数的求平方和公式:21+23+25+……(2n -1)2= 61×n ×(n+1)×(n+2)从2开始的连续偶数的平方求和公式:22+24+26+……+2n 2= 61×n ×(n+1)×(n+2)5.连续自然数的立方求和公式:13+23+33+……+n 3 = (1+2+3+……+n )26.平方差公式:a 2-b 2=(a +b )×(a -b ) a -1=(a +1)×(a -1) 7.公比是2的等比数列求和公式:S=2+22+23+24……+2n = 21+n -28.等差数列的平均数公式:(首项+末项)÷2 9.裂项公式:①)1(1+⨯n n =n 1-11+n 211⨯+321⨯+431⨯=1-21+21-31+31-41②)(1k n n +⨯=(n 1-k n +1)×k 1有公差的分母,分拆成首项与末项的差乘以公差的倒数。
目录计算板块 (2)计数板块 (5)数论板块 (7)应用题板块 (11)几何板块 (15)行程板块 (21)计算板块1、加法交换律: a b b a , a b c a c b2、加法结合律: a b c a bc3、乘法交换律: a b b a , a b c a cb4、乘法结合律: ab c ab c5、乘法分配律: a bcabac6、“除法分配律”: a b c a c b c7、减法性质: a b c a b c8、除法性质: a bc a bc9、商不变性质: a b a m b m an b n,m 0,n 010、积不变性质: ab amb m,m 011、等差数列相关:项数n,公差d ,首项a ,第 n 项a,前 n 项和S , 1nn通项公式: aa 1 nd , aa n m dn1n,m项数公式:1 nn1,aad若 mn p q , m a aaanpq求和公式:2 S1a a nn,n中项定理,奇数项等差数列: S nann 1从 1 开始连续自然数求和:21 1 2n n n2从 1 开始连续奇数求和:1 32n 1n2从 2 开始连续偶数求和: 2 42n n n 112、多位数乘法:99101MMnM 99时,积的数字和为 9n当n个9n 个913、a,ba b 2a2abb2a 2 2ab b 222a,a 1b 1 ab a b 1b a b a 2 b2a 3a3a b3abbb3223a,3ba b aab b332222a 3b a b a abb114、平方求和:12 11222n 2 n n n 61立方求和:132n12nn n12 2 3324115、整数裂项:1 212 23n n 1 n n n 3 1123 23 4 n n 1 n 2 n n n n1 2 34 113 352n 1 2n 1 n n n2 3 2 1 2 1 36 11 11分数裂项:111 2 23n n 1n1111 1112 3 23 4 n n1 n 22 1 2 n 1 n 216、缺 8 数:123456799 111111111,1234567918 222222222 ,···,1234567981 999999999;123456798 98765432 17、走马灯数:1, ··0.142857 7 4, ··0.57142872·, ·0. 2 857147 5··,0.714285 73 ··,0.4 28571 76··0.8571427142857 2 285714,142857 3 428571,142857 4 571428, 1428575 714285,1428576 857142,1428577 999999.18、山顶数:1111121,11111112321, ······山顶数列求和:12n 1 n n1 2 1n2121,1 2 1 22 1232112 32 1333 , ······22奇数山顶数列求和:132219、重码数: ab 101 abab , ab 1001 ab 0ababc 1001 abcabc , ab 10101 ababab20、车轮数:12342341341241231 23 4111121、循环小数化分数:·a a, 9 0.· ·ab0. a b,99· ·0.a b ca bc a990附:若一个最简分数,它的分母仅含质因数 2 和 5,则它可化为有限小数,反之必为无 限循环小数;若分母仅含 2,5 以外的质因数,则必可化为纯循环小数,若分母含质因数 2 或 5,且含 2,5 以外的质因数,则必可化为混循环小数.a a qn1n122、等比数列相关:S na q1n1a 1 q n aqaS11q 1nn1 q 1 q23、常用数列:1,4,9,16,25,36,······,a n n 2 0,3,8,15,24,35,······,an 2 1n1,3,7,13,21,31,······,an 2 n 1n1,2,4,8,16,32,······,2n 1an1,1,2,3,5,8,13,······,a naan 1n211,3,6,10,15,21,······,1an n n2计数板块1、 容斥原理二元容斥: A B =A +B -A B 三元容斥: A BC =A +B +C -A B -B C -A C +A B C2、 抽屉原理苹果数÷抽屉数 (n) =商……余数 余数:(1)余数= x(1≤x ≤n -1) ,结论:至少有“商+1”个苹果在同一个抽屉里 (2)余数=0,结论:至少有“商”个苹果在同一个抽屉里3、 排列组合n!排列: Pmm=A =n(n -1)(n -2)(n -m +1)=n- n (n m)!组合:n n 2)(n -m 1)n!(n -1)( -+C m== n-m(m -1)(m -2) ××1(nm)!×m!n -其他: CC n1 C +C +C +=20n == , C n m =C nm,12 nn -nnnnn常用方法:捆绑法;插空法;隔板法;排除法;枚举法.4、 几何计数① 线段:一条线段被分成 n 个互不重叠的小线段,那么这条线段共包含的线段数1为:1+2+3++ = 2( 1) 条。
小学奥数所有公式在小学奥数中,有很多常用的公式可以帮助我们解决问题。
下面是一些常见的小学奥数公式。
1.直角三角形的勾股定理:直角三角形的两条直角边长度分别为a和b,斜边长度为c,则有a^2+b^2=c^22.线段外一点到线段两端点的距离公式:设点P(x,y)为线段AB的外一点,则点P到线段AB的距离d为:d=,(Ax-Bx)y-(Ay-By)x+(AxBy-AyBx),/√((Ax-Bx)^2+(Ay-By)^2)3.等差数列的通项公式:等差数列的第n项An可以表示为An=A1+(n-1)d,其中A1为首项,d为公差。
4.等差数列的前n项和公式:等差数列的前n项和Sn可以表示为Sn=n(A1+An)/2,其中A1为首项,An为第n项。
5.等比数列的通项公式:等比数列的第n项An可以表示为An=A1*r^(n-1),其中A1为首项,r为公比。
6.等比数列的前n项和公式:等比数列的前n项和Sn可以表示为Sn=A1*(1-r^n)/(1-r),其中A1为首项,r为公比。
7.二次方程的求根公式:对于二次方程ax^2 + bx + c = 0,其中a、b、c为实数且a ≠ 0,它的两个根可以表示为:x1 = (-b + √(b^2 - 4ac)) / (2a)x2 = (-b - √(b^2 - 4ac)) / (2a)8.立方和公式:连续n个自然数的立方和可以表示为:1^3+2^3+3^3+...+n^3=(n(n+1)/2)^29.立方差公式:连续n个自然数的立方差可以表示为:(1^3-2^3)+(2^3-3^3)+...+[(n-1)^3-n^3]=(n-1)^2*n^210.两点间距离公式:设平面上两点A(x1,y1)和B(x2,y2),则两点间的距离d可以表示为:d=√((x2-x1)^2+(y2-y1)^2)11.小数和分数的关系公式:小数0.abc...可以表示为分数a/9 + b/9^2 + c/9^3 + ...这些是小学奥数中常用的一些公式,通过掌握和灵活运用这些公式,我们可以更便捷地解决数学问题。
姓名:1、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数2、和倍问题的公式和÷(倍数-1)=小数×倍数=大数(或者和-小数=大数) 3、差倍问题的公式差÷(倍数-1)=小数×倍数=大数(或小数+差=大数)3、植树问题的公式⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数4、盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数5、相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间6、流水问题顺水路程=顺水速度×时间逆水路程=逆水速度×时间顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷27、过桥问题过桥问题的一船的数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长8、浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量9、圆形S面积C周长d直径r (1)周长=直径×圆周率=2×圆周率×半径C=∏d=2∏r d= C (2)面积=半径×半径×∏半径∏圆周率÷(2∏)r= d÷∏÷2 r= C。
1、和倍差问题2、年龄问题的基本特征①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题(点击查看大图)5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8、周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9、平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10、抽屉问题抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
11、质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N= ,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
12、约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法13、数的整除基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;整除判断方法:1.能被2、5整除:末位上的数字能被2、5整除。
2.能被4、25整除:末两位的数字所组成的数能被4、25整除。
3.能被8、125整除:末三位的数字所组成的数能被8、125整除。
4.能被3、9整除:各个数位上数字的和能被3、9整除。
5.能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6.能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7.能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
整除的性质:1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3.如果a能被b整除,b又能被c整除,那么a也能被c整除。
4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
14、分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。
最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。
常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。
有以下三种情况:A、分量发生变化,总量不变。
B、总量发生变化,但其中有的分量不变。
C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
15、分数大小的比较基本方法:①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。
②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。
③基准数法:确定一个标准,使所有的分数都和它进行比较。
④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。
⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。
(具体运用见同倍率变化规律)⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。
⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。
⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。
⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。
⑩基准数比较法:确定一个基准数,每一个数与基准数比较。
16、比和比例比:两个数相除又叫两个数的比。
比号前面的数叫比的前项,比号后面的数叫比的后项。
比值:比的前项除以后项的商,叫做比值。
比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
比例:表示两个比相等的式子叫做比例。
a:b=c:d或比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。