Waves PAZ Analyzer频谱分析器使用说明
- 格式:doc
- 大小:130.00 KB
- 文档页数:3
Waves PAZ Analyzer频谱仪使用说明声音频率的单位是赫兹,英文简写为Hz。
赫兹 (1857-1894),是德国物理学家,他发现了电磁波,为了纪念他,人们用它的名字来做为频率的单位。
所谓一赫兹,就是一秒钟振动一次。
那么440Hz呢,当然就是每秒振动440次。
这个声音就是音乐中的标准A音,是乐器定音的标准。
而钢琴中央C的频率则是261.63Hz。
我们人的耳朵能够听到的频率范围,是20Hz到20000Hz。
也就是说,这个范围内的声音是人类能够听到的所有声音。
低于这个频率范围的声音叫次声波,而高于这个频率范围的声音叫做超声波,这些声音,人类都已经不能听到了。
次声波可以用来制造杀人武器,因为人体内脏的固有的振动频率是0.01?20赫兹之间,属于次声波,如果发射振动频率与人体内脏的振动频率相同或接近的次声波,就会引起各种脏器的共振,杀人于无形。
所谓现在的那些治病的“频谱仪”,要是真的能发出和人体相同频谱的波,那这种东东肯定很受恐怖分子的喜爱。
呵呵,幸好那是哄不懂科学知识的老百姓用的。
高于20KHz的超声波,已经广泛地应用于医学、军事等等各方面。
比如潜艇使用的声纳、超声波碎结石等等技术。
比如下面的表格中是我们常见的一些人声的基频范围:男低音 80-320Hz男中音 96-387Hz男高音 122-488Hz女低音 145-580Hz女高音 259-1034Hz如图所示,插件上半部是频谱仪,显示声音频率的音量变化,右边的按钮分别可以调整显示的范围大小及移动显示区域。
下半部左边是声相的显示区,也就是普遍意义的声音左右位置;最右下角是音量的显示区。
我们在播放音频的时候,可以看到清晰的频谱曲线、声相位置和音量的变化。
如图所示,播放音频的时候,我们就能从视觉上了解整个音频的情况。
在频率显示屏中,横轴代表声音的频率,纵轴代表该频率的电平(通俗的说音量)。
黄色的线条代表实时的频率曲线,而橘黄色的线条代表一段时间内最大频率峰值的显示曲线。
频谱分析仪的正面图如下:下面介绍这些按键的功能:第三章按键功能硬键硬键是指在面板上用黑色和蓝色标注的按键,他们有着特殊的功能。
功能硬键有四种,他们位于下端,而右端则有17个硬键,这17个硬键中有12个硬键有着双重的功能,这就要看当前所使用的模式而决定它们的功能了。
功能硬键模式按一下“MODE(模式)”键,然后用“UP/DOWN(上下)”键来选择所要操作的模式,然后再按“ENTER(回车)”键来确认所选的模式。
FREQ/SPAN(频率/频宽)按一下“FREQ/SPAN(频率/频宽)”键后便会出现“CENTER(中心)、FREQUENCY(频率)、SPAN(频宽)、START(开始频率)和STOP(截至频率)的选项。
我们可以通过相应的软键来选择相应的功能。
AMPLITUDE(幅度)按一下“AMPLITUDE(幅度)”键后便会出现“REFLEVEL(参考电平)、SCALE(刻度)、ATTEN(衰减)、REF LEVEL OFFSET(参考电平偏移)、和UNITS(单位)”选项,我们可以通过相应的软键来选择相应的功能。
BW/SWEEP(带宽/扫描)按一下“BW/SWEEP(带宽/扫描)”键后便会出现“RBW、VBW、MAXHOLD(保持最大值)、A VERAGE(平均值)和DETECTION(检测)”选项,我们可以通过相应的软键来选择相应的功能。
KEYPAD HARD KEYS(面板上的硬键)下面的这些按键是用黑色字体标注的0~9是当需要进行测量或修改数据时用来输入数据的。
+/-这个键可以使被操作的数值的符号发生变化即正负变化。
.入小数点。
ESCAPECLEAR这个键的功能是退出当前操作或清楚显示。
如果您在进行参数修改时按一下这个键,则该参数值只保存最后一次操作的有效值,如果再按一次该键则关闭该参数的设置窗口。
再正常的前向移动(就是进入下层目录)中,按一下这个键则返回上层目录。
如果在开该仪器的时候一直按下该键则仪器将恢复出厂时的设置。
频谱分析仪操作规程频谱分析仪操作规程一、概述频谱分析仪是一种用于分析信号频谱特性的仪器设备,广泛应用于电子通信、无线电、音频等领域。
正确操作频谱分析仪,能够有效地获取信号频谱信息,提高工作效率和结果准确性。
本操作规程旨在规范频谱分析仪的使用方法,确保安全、准确地完成工作任务。
二、安全操作1. 在使用频谱分析仪前,要仔细阅读并理解设备的操作手册,熟悉各个操作按钮和功能。
2. 使用频谱分析仪时,应穿戴好防护装备,包括护目镜、防静电手套等。
3. 频谱分析仪使用过程中需保持工作区域整洁,禁止在测量和分析时乱放杂物。
4. 频谱分析仪禁止进行未经授权的维修和拆卸,若设备故障应将其送至专业的维修机构。
三、基本操作1. 开机准备a. 检查设备连接:确保频谱分析仪与待测信号源正确连接,并检查连接线缆是否良好。
b. 打开电源:按下电源按钮,待设备启动完成后等待几秒钟进入工作状态。
c. 设定参数:根据测量需求,在仪器面板上设置所需的频率范围、带宽等参数。
确保参数设置正确。
2. 信号测量a. 将待测信号输入频谱分析仪后,可以通过观察仪器面板上的频谱显示,获取信号频谱信息。
b. 调节中心频率和跨距:根据测量需求,通过仪器面板上的旋钮调节中心频率和跨距,确保能够观察到感兴趣的频率范围。
c. 设置参考电平和衰减器:在观察信号时,可以根据信号强度调节参考电平和衰减器,确保信号不超出仪器的测量范围。
d. 频谱峰值测量:通过仪器面板上的峰值功率测量功能,可以测量信号的峰值功率,并记录相应的频率和功率值。
e. 保存数据:如果需要保存测量结果,可以将数据存储在仪器内部存储器或通过外部存储设备保存。
四、高级操作1. 频谱分析a. 选择合适的窗口函数:在频谱分析时,可以根据信号的特性选择合适的窗口函数,以减小频谱泄漏和谱分辨能力的折损。
b. 调节扫描速率和数据点数:根据测量需求和所测试信号的特性,合理设置扫描速率和数据点数,以保证能够捕获到信号的细节。
频谱分析仪的实用方法和操作流程英文回答:Spectrum analyzers are widely used in various fields such as telecommunications, audio engineering, and RF testing. They are essential tools for analyzing and measuring the frequency spectrum of signals. In this response, I will explain the practical methods and operating procedures of a spectrum analyzer.To begin with, the first step in using a spectrum analyzer is to connect the device to the signal source. This can be done using a coaxial cable or other appropriate connectors. Once the connection is established, the next step is to power on the spectrum analyzer and set the desired frequency range. This can be done by using the frequency control knob or entering the specific frequency range through the keypad or touchscreen.After setting the frequency range, it is important toadjust the resolution bandwidth (RBW) and video bandwidth (VBW) parameters. The RBW determines the frequencyresolution of the spectrum analyzer, while the VBW affects the displayed video output. These parameters can beadjusted based on the specific requirements of the analysis.Once the basic settings are configured, the spectrum analyzer can be used to measure and analyze the signal.This can be done by selecting the appropriate measurement mode, such as peak hold, average, or normal mode. The spectrum analyzer will then display the frequency spectrumof the signal in real-time.In addition to basic measurements, spectrum analyzers also offer advanced features such as marker functions,which allow users to measure specific frequencies or bandwidths of interest. This can be useful for identifying and analyzing specific signal components.Furthermore, spectrum analyzers often provide various display options such as logarithmic or linear scale, amplitude or power measurement, and different windowingfunctions. These options can be adjusted to enhance the visibility and accuracy of the displayed spectrum.In summary, the practical methods and operating procedures of a spectrum analyzer involve connecting the device to the signal source, setting the frequency range, adjusting the RBW and VBW parameters, selecting the measurement mode, and utilizing advanced features anddisplay options. By following these steps, users can effectively analyze and measure the frequency spectrum of signals.中文回答:频谱分析仪在电信、音频工程和射频测试等各个领域广泛应用。
频谱分析仪操作规程频谱分析仪操作规程一、设置1 打开ON/OFF 开关2 设置频率范围,即图形界面的横坐标,选择按下正下方一排键中的FREQ/SPAN键,右上方的CENTER 键,此处设置为930MHZ,再选择频谱的宽度,此处可以选择7MHZ(频谱宽度的选择只要是能包含所要测试信号的所有频段,可根据情形而定)。
此处也可选择START 和STOP 键设置你所需要的起始和终止频率。
3 设置信号的振幅,即图形界面的纵坐标,按下最下排功能键AMPLITUDE 键,选择右上方REF LEVEL 设置参考电平值,此处设置为10dbm,然后按下SCALE 键设置电平值的间隔,此处可以取值为10db.然后在设置UNITS 键,单位为dbm,最后选中ATTEN 键,设置衰减值,此处的值选择手动设置,其值比参考电平的二倍大一些,如可以选择30.4 设置带宽参数,选中最下方的功能键中的BW/SWEEP 键,设置带宽参数值,选择RBW 键,设置扫描带宽的宽度,此处的值定要小于信号频点的最小间隔值,建议取值为30khz,如果仅测试一束波形,此处可以忽略设置。
二测试流程到此基本所需要的参数设置完毕,可以对信源进行测试啦,我们所要测试的数据主要从两点入手,(一)MU 侧信号电平值的测试1)测试HDL 输出地电平值,理论值趋近于0dbm,用双工头1/2 跳线于频谱仪的RF 口对接,打开频谱仪开关,按回车,在屏幕显示出波形图,再按回车,然后按MARKER 键,选中M1(此时M1 是出于ON 状态,其他的M 处于OFF 状态),再选择MARKER TO PEAK 键读取此时的峰值,就是你所要测试的信号电平值。
然后按下回车键正下方的SINGLE CONT 键锁定峰值,如需要可以将其保存下来,按下SAVE DISPLY 键将其保存为容易识别的名字。
以此类推,分别测试光模块的主备信号值,和从信号的电平值,测试光模块主备信号值时射频跳线接在IN 口对应点,测量从信号时射频线接在从光模块对应的IN(如有衰减器,测量时包含在内)口处,测试结果两者之间的差值在6db 左右。
本人新手,错误之处请指点,笔者QQ 290818860 。
降噪:Restoration->X-Noise Mono选中噪音部分,点学习播放一两次,关闭学习试听整轨。
阀值为最大噪音的门限,门限曲线为白色,衰减值越大降噪想过越明显。
起始和释放时间为降噪处理的频率,可设置为1-100。
解析度低中高可自由选择,理论上越高失真越大。
右侧音乐和噪音分别为处理后的效果和去除的噪音,可切换试听。
注意:实时降噪对CPU影响较大,试听降噪后保存参数,可在单轨进行破坏性处理。
另外Z-Noise Mono也可用来降噪,比X-Noise Mono效果好,有均衡器,有自适应功能。
齿音消除:Dynaamics->RDeEsser Mono配合频谱分析仪(Analyzer->Stereo)选中齿音部分播放,使用频谱分析仪的,记住大约的赫兹值。
设置RDeEsser频率点为分分析仪中的赫兹值,拉动阀值推子去除齿音。
简单的变调效果器:Pitch Shift->SoundShifter Pitch Stereo可实时挂载,在半音文本框处直接写入数字即可。
实时挂载有一定延迟,损耗CPU。
将伴奏挂载升降调,在第二轨录音,然后第二轨挂载伴奏同样的音调。
如果某首歌唱不上去,可在用在人声轨道上可以进行升降掉后再还原。
不过人声会变得很奇怪,需要后期修复,如使用共振峰。
通常升降调在3-4个半音以内音质受损较小。
建议对伴奏进行破坏性处理,实时挂载非常耗损CUP。
音高修正:参考七线阁Adobe Audition CS6二十一集教程效果->Waves-Tune(Lite后缀的为现场使用)挂在录音的轨道上,播放一遍会自动获取音调。
绿线为修正的,橙色为原人声的,可通过工具细调音准。
中间两个旋钮可以调节,往右边调自然,接近人性化,如果做电音效果可按照图下方调节。
Auto-Tune_Evo(参考七线阁Adobe Audition CS6二十集教程)可以挂载使用,适合现场实时处理,延迟低。
频谱分析仪的使用方法频谱分析仪是一种用于测量信号频谱的仪器,它可以帮助我们分析信号的频率成分和功率分布,对于电子、通信、无线电等领域的工程师和技术人员来说,频谱分析仪是一种非常重要的工具。
在本文中,我们将介绍频谱分析仪的基本使用方法,希望能够帮助读者更好地掌握这一工具的操作技巧。
首先,使用频谱分析仪之前,我们需要确保设备的连接是正确的。
通常情况下,频谱分析仪会有一个输入端和一个输出端,我们需要将待测信号连接到输入端,并将输出端连接到显示设备或者记录设备上。
在连接好设备之后,我们需要打开频谱分析仪,并进行一些基本的设置。
接下来,我们需要设置频谱分析仪的中心频率和带宽。
中心频率是我们希望观测的信号频率,而带宽则是我们希望观测的频率范围。
通过设置这两个参数,我们可以确保频谱分析仪能够准确地捕捉到我们感兴趣的信号。
在设置好中心频率和带宽之后,我们需要调整频谱分析仪的分辨率带宽。
分辨率带宽是指频谱分析仪在测量信号时的频率分辨能力,通常情况下,分辨率带宽越小,频谱分析仪的测量精度就越高。
因此,我们需要根据实际情况来调整分辨率带宽,以确保我们能够获得准确的测量结果。
在进行测量之前,我们还需要注意一些其他的设置,比如参考电平、RBW(分辨率带宽)、VBW(视频带宽)等参数的设置。
这些参数会影响到频谱分析仪的测量结果,因此我们需要根据实际情况来进行调整。
当所有的设置都完成之后,我们就可以开始进行信号的测量和分析了。
在测量过程中,我们需要注意观察频谱分析仪的显示屏,以确保我们能够及时地发现信号的变化。
同时,我们还可以通过调整频谱分析仪的参数,比如RBW和VBW,来获得更加详细和准确的测量结果。
除了基本的测量功能之外,一些先进的频谱分析仪还具有其他的功能,比如谐波分析、调制解调功能、无线电频谱监测等。
这些功能可以帮助我们更加全面地了解信号的特性,对于一些特定的应用场景来说,可能会有非常重要的意义。
总的来说,频谱分析仪是一种非常重要的测量工具,它可以帮助我们分析信号的频率成分和功率分布,对于电子、通信、无线电等领域的工程师和技术人员来说,掌握频谱分析仪的使用方法是非常重要的。
的使用方法(第一页)13MHz信号。
一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。
然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。
同时它还可以判断信号,特别是VCO信号是否纯净。
可见频谱分析仪在手机维修过程中是十分重要的。
另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。
一、使用前须知在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。
1.分贝(dB)分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下:分贝数:101g(dB)分贝数=201g(dB)分贝数=201g(dB)例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB,2.分贝毫瓦(dBm)分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为:分贝毫瓦=101g(dBm)例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。
如果发射功率为40mw,则10g40w/1mw--46dBm。
二、频谱分析仪介绍生产频谱分析仪的厂家不多。
我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。
相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。
,按他对应屏幕右侧的键盘此时屏幕会进入校准画面,如图就可以自动校准了。
按进入更多进入更多按进入更多进入更多进入更多进入更多平滑和直观,可以进行设置。
通过简单的步骤就能实现。
其中第三项就是检波方式,这是按右边的数字键进入另一个对话框,如下图其中第五项Average会对这些波形以平均值的方式表现处理,按就选择了这个方式,这时就可以得到一个干净的波形图因为我们是以频谱仪内置的信号源做为参考,所以我们知道我,中心频率就选择20M,我们先按+ + ,我们就把频率选在+ + +了,如下图到自动扫频的功能。
按会出现上图,其中第七项有一个按就会进行自动扫频了,得到下图,当我们得到想要的波形时,我们需要查看频谱的最大值,就可以把当前波形上的功率最大点找出来,找出来后也可以用旋钮2,我们也可以按这时如图第一项为选择标识点,按一次通过第二项按来打开或关闭选择的标识点,如下图个标识点,可以通过旋钮来选择自己需要的点。
按Clear All,把所有marker消除.再按按,第四项是来打开两个标识点的功率和频率的差值。
在上图位置按找到两个需要的标识点,此时在屏幕上就会显示这两个点的频率差和功率差。
如下图测试谐波按功能键,按打开谐波测试功能。
按选择测试谐波数量,通过旋钮来改变。
这次就打开次谐波。
按,这样就能看到里面的菜单,这里可以进行模板的设置。
此时按进入设置画面,里面有些参数说明一下,显示只个频率段,但是实际写完这返回上一个画面后,选择。
然后按打开Show在图中橙色线就是刚才设定的频谱发射模板,红色线显示峰值键,把Ref Power改为CHN,那麽红色线显示的就是通道功率Channel Power了.因为我们输把频率选到20MHz按进入设置,和模板设置相似,设置好后按,按然后按按退回频谱画面.请注意,这时频谱画面是停止扫描的,要按右上角的,按再按口就是刚才设定的邻信道范围.,按, .输入20MHzCAL OUT 信号.把中心频率设定为20MHz,Span为。
频谱分析仪的操作步骤频谱分析仪是一种用于测量信号频谱的仪器,广泛应用于无线通信、音频处理、噪声分析等领域。
下面将介绍频谱分析仪的操作步骤,以帮助使用者正确高效地使用这一仪器。
一、仪器准备在进行频谱分析之前,首先需要对仪器进行一些准备工作:1. 确保频谱分析仪已经连接到待测试的信号源或设备。
2. 检查仪器的电源状态并保证正常通电。
3. 调整仪器的频率范围,以适应待测信号的频率。
二、信号输入正确的信号输入是频谱分析的关键。
以下是信号输入的步骤:1. 确认待测信号的输出接口,并将其连接到频谱分析仪的输入端口。
2. 调整信号源的输出功率,使其适应频谱分析仪的输入范围。
3. 检查信号源的输出频率,并确认其与仪器的频率范围一致。
三、设置尺度和参考电平在进行频谱分析之前,需要进行尺度和参考电平的设置:1. 选择合适的尺度设置,以便能够清晰地观察信号的幅度变化。
2. 调整参考电平,使其适应待测信号的幅度范围。
四、选择分析窗口频谱分析仪一般提供多种分析窗口供用户选择,常见的有矩形窗、汉宁窗、布莱克曼窗等。
根据需要选择合适的窗口类型,并设置相应的窗口函数。
五、进行频谱分析接下来,开始进行频谱分析:1. 打开频谱分析仪的显示功能,使其能够实时显示频谱信息。
2. 调整仪器的分析参数,包括起始频率、终止频率、分辨率带宽等,以便满足测试需求。
3. 开始采集信号并进行频谱分析。
4. 观察频谱显示,并根据需要进行数据记录或分析。
六、结果分析与应用频谱分析仪可以提供有关信号频谱的详细信息,根据所分析的结果,可以进行以下操作:1. 根据频谱分析结果评估信号质量,如带宽、功率、杂散等。
2. 进行信号调整和优化,以提高信号质量。
3. 根据频谱分析结果检测和定位干扰源。
4. 进行频率选择和信号过滤,以提取关注频段内的信号。
七、仪器维护与存储频谱分析仪的维护和存储是保证其长期稳定性和可靠性的重要步骤:1. 定时清洁仪器,确保其内部的元件和连接器干净、无尘。
Waves PAZ Analyzer频谱分析器
首先先告诉大家,这个插件不是处理声音的,只是反应你的声音特性的,通过图形显示,找到你声音的问题所在。
它是和EQ一起用的,建议用10段EQ.因为可调节的点比较精确。
Waves PAZ Analyzer频谱分析器使用说明
(
如图所示,插件上半部是频谱仪,显示声音频率的音量变化,右边的按钮分别可以调整显示的范围大小及移动显示区域。
下半部左边是声相的显示区,也就是普遍意义的声音左右位置;最右下角是音量的显示区。
我们在播放音频的时候,可以看到清晰的频谱曲线、声相位置和音量的变化。
如图所示,播放音频的时候,我们就能从视觉上了解整个音频的情况。
在频率显示屏中,横轴代表声音的频率,纵轴代表该频率的电平(通俗的说音量)。
黄色的线条代表实时的频率曲线,而橘黄色的线条代表一段时间内最大频率峰值的显示曲线。
在声相显示屏中,横轴代表声音的相位,纵轴代表该相位的电平(通俗的说音量),蓝色的线条代表实时的声相曲线,而橘黄色的线条代表一段时间内最大相位峰值的显示曲线。
在音量显示屏中,橘黄色的地方分别显示的左右声道实时音量的变化,中间蓝色的部分默认显示的是Peak音量,也就是峰值音量。
这个我们后面再说。
在声相显示屏和音量显示屏中间,还有八个选项按钮,我们简略地来说一下具体的作用。
LF res
设置低频的解析精度;
Weight
设置一个额外的弧度对频谱仪显示进行调节;
Freeze
锁定显示曲线;
Show
可以分别显示左右声道的频率曲线;
Peak Hold
可以选择是否显示峰值的显示情况;
Clear
可以清除峰值的显示情况;
Detect
这里有两个选项,分别是Peak和RMS。
Peak是一段时间内音量电平显示的峰值,而RMS则是一段时间内音量电平显示的均方根值,也可以理解为有效值。
将这里更改为RMS,可以同时作用在频谱显示屏和音量显示屏中间的蓝色部分。
通过监控RMS,我们可以更好的理解一段时间内音频音量的平均变化,更好的为我们接下来在动态处理中选择门限(Threshhold)做参照。
Response
设置监视的起始反应时间,越小的数值,插件在进行分析时候精度就越高。