数学八年级上册8.1《平均数》(北师大)教案
- 格式:doc
- 大小:23.82 KB
- 文档页数:2
北师大版数学八年级上册1《平均数》教学设计2一. 教材分析《平均数》是北师大版数学八年级上册第一单元的教学内容。
本节课的主要内容是让学生理解平均数的含义,掌握求平均数的方法,并能够运用平均数解决实际问题。
教材通过丰富的实例,引导学生探究平均数的性质和求法,培养学生的归纳能力和解决问题的能力。
二. 学情分析学生在七年级已经接触过平均数的概念,但对平均数的性质和求法还不够了解。
通过前面的学习,学生已经掌握了有理数的运算和方程的解法,这为本节课的学习打下了基础。
学生的思维方式以具体形象思维为主,因此需要通过大量的实例和实践活动来帮助学生理解和掌握平均数的概念。
三. 教学目标1.理解平均数的含义,掌握求平均数的方法。
2.能够运用平均数解决实际问题。
3.培养学生的归纳能力和解决问题的能力。
四. 教学重难点1.教学重点:理解平均数的含义,掌握求平均数的方法。
2.教学难点:平均数的性质和求法。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生探究平均数的性质和求法。
2.动手操作法:让学生通过实际操作,加深对平均数概念的理解。
3.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示平均数的性质和求法。
2.实例材料:准备一些实际问题,供学生练习和讨论。
3.练习题:准备一些有关平均数的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些与平均数相关的实际问题,引导学生思考:什么是平均数?为什么需要学习平均数?2.呈现(10分钟)介绍平均数的定义和性质,通过实例讲解平均数的求法。
让学生分组讨论,总结平均数的性质和求法。
3.操练(10分钟)让学生分组进行实践活动,运用平均数解决实际问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
教师选取部分答案进行讲解,巩固所学知识。
5.拓展(10分钟)出示一些有关平均数的拓展问题,让学生分组讨论。
北师大版数学八年级上册《8.1平均数》教学设计教学目标:(1)知识与技能:掌握算术平均数和加权平均数的概念,会求一组数据的算术平均数或加权平均数。
(2)过程与方法:体会算术平均数和加权平均数的联系与区别,并能利用它来解决一些实际问题,发展学生的计算能力。
(3)情感态度与价值观:通过小组合作的活动,培养学生的合作意识和能力,让学生初步认识数学与人类生活的密切联系及对人类历史发展的作用。
教学重点:掌握算术平均数和加权平均数的概念。
教学难点:理解加权平均数的概念,会求一组数据的加权平均数。
教学准备:多媒体课件,学生准备卷尺、计算器等。
教学过程:一、创设情境,激发兴趣学生活动一:师问:你们知道我班16个小组中,哪个小组同学的平均身高最高?怎样才能知道?(生答……)能计算出本小组4名成员的平均身高吗?请计算。
学生分组收集统计数据,并计算。
师问:你们是怎样计算的?统计各组平均身高并比较。
(这一环节从学生的实际生活出发,既有数据的收集,又有数据的处理、分析、推断)二、合作交流,探索新知学生活动二:师问:如果我想知道我们班同学的平均年龄,你们能较快地告诉我吗?你们准备怎样帮我?请大家想一想,讨论一下该怎么办。
合作交流:学生分组讨论。
先调查全班同学的年龄,可能会有学生说挨个统计,也可能有的应该统计13岁的几人、14岁的几人、15岁的几人……再计算。
大家达成共识后,采取后一种方法,以举手的形式,师生共同进行实际调查。
13岁的 a人,14岁的b人, 15岁的c人。
师:比一比看谁计算得快。
你是怎样计算的?展示学生练习。
(13a+14b+15c)÷(a+b+c)(即全班人数)=___(岁)。
你能说说这样做的道理吗?小组讨论。
(这一过程仍然从学生感兴趣的实际问题入手,先要考虑收集数据的方法,然后收集数据,再进行数据的处理,同时初步体会相同数据多次出现的简便计算方法。
)学生活动三:问:通过刚才我们的练习,你认为应该怎样求一组数据的平均数?生:合作交流,探索求解公式。
教学设计平均数一、教学内容分析1、教学内容:本课是北师大版八年级上册第六章《数据的分析》第一课的内容,教材内容为先通过具体问题的解决,回顾算术平均数的概念,然后通过算术平均数计算方法的变式和例题,引入加权平均数的概念.2、内容解析:由于学生在小学已经初步了解了算术平均数的概念及其应用,所以本节课的核心概念为加权平均数,体会“权”的作用.本课所蕴藏的数学思想方法主要是统计思想和比较思想,通过“平均”和“权”,体会统计思想中的均值思想,通过“算术平均数”和“加权平均数”的联系与区别,体会数学思想中的比较思想,“算术平均数”实际上是“加权平均数”的一种特殊情况(各项的权相等),体现了从特殊到一般的数学研究思想.平均数是统计与概率领域中的重要内容,它是研究现实生活中的数据,对数据进行描述和分析的重要工具.本课是继七上《数据的收集与整理》的学习,感受数据的收集方法,掌握数据的整理和表示之后的进一步延伸,是课程标准中统计与概率的一个重要组成部分.学生通过经历统计的活动过程,发展数据分析观念,为后面进一步学习中位数、众数等知识对数据进行分析奠定基础.二、学情分析学生在小学已经初步了解了算术平均数的概念及其应用,给出一组数据,可以算出这组数据的算术平均数,但小学仅给出“平均数”这个概念,并未提出“算术平均数”的概念,且未给出求算术平均数的公式.学生在小学已学过求算术平均数的简便算法,在此基础上能够较好地引出加权平均数的概念,但是教材中并未给出加权平均数的形式化定义和计算公式,学生不易理解,可采取“实例+说明”的方式给学生加以解释.同时,学生还处于以形象思维为主,向逻辑思维形成过渡的时期,对于“权”的内涵和形式不易理解,可通过实例让学生了解权有时表现为数据出现的次数,有时更侧重于表现数据的重要程度.三、教学目标核心素养:数据分析、数学建模.1、知识与技能:理解算术平均数、加权平均数的概念,会选用合适的方法求一组数据的算术平均数和加权平均数.2、过程与方法:经历用平均数描述数据集中趋势的过程,体会数据中所蕴含的信息,发展数据分析观念;3、情感、态度与价值观:体会算术平均数与加权平均数的联系与区别,发展应用意识. 四、教学重难点分析重点:加权平均数的求法,并利用平均数解决一些实际问题. 难点:理解“权”的内涵. 五、教学理念1、 让知识点自然生长.关注、唤醒学生的已有知识和经验——算术平均数,引导学生通过自主学习、小组合作学习,从算术平均数自然而然走向加权平均数.2、教师引导时要关注概念的数学本质特征.如,在体会算术平均数与加权平均数的联系与区别这一环节时,要揭示:“算术平均数”实际上是“加权平均数”的一种特殊情况(各项的权相等).加权平均数是平均数的推广,当一组数据中不同的数重复出现的次数不同时,我们用权数的大小来反映重复次数的多少. 六、教学用具教师用:课件、多媒体教学平台 学生用:导学案、检测题. 七、教学结构设计八、教学过程 (一)引入我们常说“某次考试中,甲班的成绩比乙班的成绩更好”,怎样理解“甲班的成绩比乙班的成绩更好”?问题:小明所在小组的12位学生在某次数学考试中成绩如下(单位:分):91,88,90,88,91,90,91,93,88,87,88,93.求小明所在小组学生的平均分(结果保留一位小数).思考:你有哪些方法求小明所在小组学生的平均分? (知识点:算术平均数;数学思想:统计思想) 学生可能有的解法:解法1:利用小学已学平均数的计算方法求解(91+88+90+88+91+90+91+93+88+87+88+93)÷12 ≈ 89.8(分). 解法2:以90分为基准,每个数据都减去90分得到12个新数据如下: 1,-2,0,-2,1,0,1,3,-2,-3,-2,3.求这组新数据的平均数为:17.0123)2()3()2(3101)2(0)2(1-≈+-+-+-+++++-++-+=x则8.899017.090≈+-≈+'=x x (分). 解法3:整理这组数据如下表:8.8912≈=x (分)在日常生活中,我们常用平均数描述一组数据的集中趋势. 提问:做完该题后,你能说一说算术平均数的定义和计算公式吗?如果有n 个数:n x x x x ......,,321,那么这组数据的平均数nx x x x x n++++=.......321,这个平均数叫做这组数据的算术平均数.(提问引导意图:与小学已有经验联系,得到算术平均数的定义和公式) 提问:解法2中以90分为基准,为什么选择90为基准?如何选择集中数据?(提问引导意图:让学生养成数据分析的观念,了解平均数可以描述一组数据的集中趋势.)提问:你能说一说解法3的道理吗?(提问引导意图:这一计算过程符合加权平均数的公式特征,这里同一个分数的人数可以认为是这个分数的权数) (二)合作探究例题:学校广播站招聘音乐鉴赏栏目策划人员一名,对A 、B 、C 三名候选人进行了三项素质测试,他们各项测试成绩如下表所示:(2)据实际需要,学校广播站将音乐知识、语言、普通话三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?(提问意图:让学生通过比较,感受权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用.)加权平均数的概念:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”.如上题中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称75.65188350472=⨯+⨯+⨯为A的三项测试成绩的加权平均数.教师提问:在此题中权的形式是什么?(提问意图:让学生体会,这里的权没有直接给出数量,而是以比的形式出现.)讨论:算术平均数与加权平均数的联系与区别.“算术平均数”实际上是“加权平均数”的一种特殊情况(各项的权相等).加权平均数是平均数的推广,当一组数据中不同的数重复出现的次数不同时,我们用权数的大小来反映重复次数的多少.变式一:如果学校广播站招聘的是播音员,学校广播站将音乐知识、语言、普通话三项测试得分按1:3:4的比例确定各人的测试成绩,此时谁将被录用?教师提问:你觉得广播站调整的三项测试得分的权是否合适?(提问意图:两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用.变式二、老师在计算学期总平均分的时候按如下标准:作业占5%、平时测验占20%、期中占30%、期末考试占45%,小明的成绩如下表:(提问意图:让学生体会,与例1的区别主要在于权的形式有变化,以百分数的形式出现,加深学生对权的意义的理解.让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权.)(三)总结:这节课学习了什么?你收获了什么?(1)加权平均数在数据分析中的作用是什么?(2)权的作用是什么?(3)权的形式主要有哪些?(四)课后作业:1、某校初二年级共有5个班,在数学期中考试中参考人数和成绩如下:求该校初二年级在这次期中数学考试中的平均成绩?2、某公司打算招聘一名工作人员,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?九、学生自我评价和教学评价十、课后反思在数学教学中,以问题为载体,通过设计引导学生数学思维的问题,可以充分调动学生学习的积极性和主动性,产生学习的内驱力.有效的课堂提问,既可以促进学生思考,激发学生求知欲望,又能及时地反馈学生的学习情况,促进学生的深度学习,从而大大地增强课堂教学的实效性.如,在加权平均数概念的提出阶段,设计了四个问题,唤醒学生的已有知识和经验——算术平均数,引导学生通过自主学习、小组合作学习,从算术平均数自然而然走向加权平均数,从而实现新知识的自然生长和促进学生的深度学习:问题1、你有哪些方法求小明所在小组学生的平均分?问题2:做完该题后,你能说一说算术平均数的定义和计算公式吗?让学生与小学已有经验联系,得到算术平均数的定义和公式问题3:解法2中以90分为基准,为什么选择90为基准?如何选择集中数据?让学生养成数据分析的观念,了解平均数可以描述一组数据的集中趋势.问题4:你能说一说解法3的道理吗?让学生感受这一计算过程符合加权平均数的公式特征,这里同一个分数的人数可以认为是这个分数的权数,让学生从算术平均数自然而然走向加权平均数. 在得到“加权平均数”的概念之后,进行了两个变式训练,让学生分别感受权对平均数的影响和权的不同表现形式,让学生在变式训练中领悟加权平均蕴含的思想,并将它们融入原有的平均数的认知结构中,且能将已有的加权平均数知识迁移到新的情境中.。
北师大版数学八年级上册1《平均数》教学设计4一. 教材分析《平均数》是北师大版数学八年级上册第一单元的教学内容。
本节课主要让学生理解平均数的含义,掌握求平均数的方法,并能够应用平均数解决实际问题。
教材通过实例引入平均数的概念,让学生在探究中发现平均数的性质和求法,培养学生的抽象思维能力。
二. 学情分析八年级的学生已经掌握了整数、分数和小数的基本知识,对平均数的概念有一定的生活经验。
但学生对平均数的理解和应用能力有限,需要通过实例和活动来进一步感悟平均数的含义,提高解决问题的能力。
三. 教学目标1.理解平均数的含义,掌握求平均数的方法。
2.能够应用平均数解决实际问题,提高解决问题的能力。
3.培养学生的抽象思维能力,提高学生的合作交流能力。
四. 教学重难点1.重点:理解平均数的含义,掌握求平均数的方法。
2.难点:平均数的性质和求法,应用平均数解决实际问题。
五. 教学方法1.情境教学法:通过实例引入平均数的概念,让学生在情境中感悟平均数的含义。
2.合作学习法:引导学生分组讨论,共同探究平均数的性质和求法。
3.问题解决法:让学生应用平均数解决实际问题,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示实例和练习题。
2.练习题:准备一些有关平均数的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用课件展示一个实际问题:某班有30名学生,一次数学考试的成绩如下:85, 90, 92, 88, 80, 82, 84, 86, 87, 95, 98, 100, 99, 97, 94, 89, 91, 93, 83, 81, 75, 78, 79, 76, 74, 73, 72, 71, 70。
问:这个班的平均成绩是多少?引导学生思考如何求解这个问题,引发学生对平均数的兴趣。
2.呈现(10分钟)展示教材中的实例,引导学生理解平均数的含义。
通过具体的例子,让学生了解平均数是表示一组数据集中趋势的量。
北师大版数学八年级上册1《平均数》教学设计1一. 教材分析《平均数》是北师大版数学八年级上册第一单元第一课的内容。
本节课的主要内容是让学生理解平均数的含义,掌握求平均数的方法,并能够应用平均数解决实际问题。
教材通过生活中的实例引入平均数的概念,让学生感受平均数在实际生活中的应用。
二. 学情分析学生在七年级已经学习了统计学的初步知识,对数据有一定的认识。
但是,对于平均数的概念和求法还不够清晰。
通过本节课的学习,学生应该能够理解平均数的含义,掌握求平均数的方法,并能够应用平均数解决实际问题。
三. 教学目标1.知识与技能:理解平均数的含义,掌握求平均数的方法,能够应用平均数解决实际问题。
2.过程与方法:通过实例引入平均数的概念,培养学生从实际问题中抽象出数学模型的能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学解决实际问题的能力。
四. 教学重难点1.重点:理解平均数的含义,掌握求平均数的方法。
2.难点:从实际问题中抽象出数学模型,应用平均数解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法。
通过实例引入平均数的概念,引导学生主动探索求平均数的方法,培养学生从实际问题中抽象出数学模型的能力。
同时,学生进行合作学习,提高学生的团队协作能力和沟通能力。
六. 教学准备1.教学PPT:制作教学PPT,包括教材中的实例、问题、练习等内容。
2.实例材料:准备一些生活中的实例,用于引导学生理解平均数的概念。
3.练习题:准备一些练习题,用于巩固学生对平均数的理解和掌握。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如班级同学的身高、体重等数据,引导学生关注这些数据,并提出问题:如何描述这些数据的平均水平?2.呈现(10分钟)通过PPT呈现平均数的定义和求法,让学生了解平均数的概念,并学习如何求平均数。
同时,引导学生思考:平均数在实际生活中有什么应用?3.操练(10分钟)让学生分组进行合作学习,每组选择一个实例,运用平均数的方法求解。
平均数(一)教案北师大版八年级上册一、学生起点分析学生的知识技能基础:学生在小学已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力。
二、学习任务分析本节课的学习任务是:理解算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标。
为此,本节课的教学目标是:1. 知识与技能:掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数。
2. 过程与方法:经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力。
3. 情感与态度:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。
三、教学过程设计本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。
第一环节:情境引入内容:用篮球比赛引入本节课题:NBA篮球运动是大家喜欢的一种运动项目,尤其是男生们更是倍爱有加。
下面播放一组照片,请同学们欣赏2008-2009赛季“洛杉矶湖人队”和“休斯顿火箭队”的比赛片段。
在学生观看了篮球比赛的片段后,请同学们思考:(1)影响比赛的成绩有哪些因素?(心理、技术、配合、身高、年龄等因素)平均年龄=(34×1+30×1+29×2+28×3+23×2+22×1+21×1)÷实际问题中,一组数据里的各个数据的“重要程度”未必相同。
《八年级上第八章第一节平均数》教案第1课时8.1平均数(1)【教学课型】:新课◆课程目标导航:【教学目标】:(一)知识目标:1、掌握算术平均数,加权平均数的概念。
2、会求一组数据的算术平均数和加权平均数。
(二)能力目标:1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。
2、根据有关平均数的问题的解决,培养学生的合作意识和能力。
(三)情感目标:1、通过小组合作的活动,培养学生的合作意识和能力。
2、通过解决实际问题,让学生体会数学与生活的密切联系。
【教学重点】:算术平均数,加权平均数的概念及计算【教学难点】:加权平均数的概念及计算。
【教学工具】:投影片教学情景导入师:同学们,在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)生:平均分师:这节课我们共同学习一组数据的平均数◆教学过程设计1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分: 95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92甲小组:X= =91(分)甲小组做得对吗?有不同求法吗?乙小组:X== 91(分)乙小组的做法可以吗?还有不同求法吗?丙小组:先取一个数90做为基准a ,则每个数分别与90的差为:5、9、-3、0、0、-4、……、2、2求出以上新的一组数的平均数X'=1所以原数组的平均数为X=X'+90=91想一想,丙小组的计算对吗?2、议一议:问:求平均数有哪几种方法?(1)X= (X 1+X 2+…+X n ) ——算术平均数 95+99…+92+92 30 95×4+99×4+87×4+90×5+86×5+88×2+92×3+100+94+80 30 n1(2)X= (f 1+f 2+…f k =n) ——利用加权求平均数(3)X=X'+a ——利用基准求平均数问:以上几种求法各有什么特点呢?公式(1)适用于数据较小,且较分散。
第八章数据的代表
8.1.平均数(二)
教学目标:
(一)知识目标:
1、会求加权平均数,并体会权的差异对结果的影响。
2、理解算术平均数和加权平均数的联系与区别,并能利用它们解决一些现实问题。
(二)能力目标:
1、通过利用平均数解决实际问题,发展学生的数学应用能力。
2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异的思维。
(三)情感目标:通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点:加权平均数中权对结果的影响及与算术平均数的联系与区别。
教学难点:探索算术平均数和加权平均数的联系和区别。
教学方法:探讨教学
教学过程:
一、引入新课:
1、什么是算术平均数?加权平均数?
2、算术平均数与加权平均数有什么联系与区别吗?(引入)
二、讲授新课:
1、例题讲解:
我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。
一天,三个班级的各项卫生成绩分别如下:
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?与同伴进行交流。
解:(1)一班的卫生成绩为:
95×15%+90×10%+90×35%+85×40%=88.75
二班的卫生成绩为:
90×15%+95×10%+85×35%+90×40%=88.75
三班的卫生成绩为:
85×15%+90×10%95×35%+90×40%=91
因此,三班的成绩最高。
(2)分组讨论交流
小结:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权
的差异对结果有影响。
2、议一议:
小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?
问:如何求今年的总支出比去年总支出的百分比呢? 百分比=今年总支出—去年总支出
去年总支出 以下是小明和小亮的两种解法?谁做得对?
小明: (9%+30%+6%)=15%
小亮: =9.3%
由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他
三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小美的求法是对的。
三、课堂练习:
1、小明骑自行车的速度是15千米/时,步行的速度是5千米/时。
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少? 2、某市七月中旬各天的最高气温统计如下:
求该市七月中旬的最高气温的平均数。
1
3
9%×3600+30%×1200+6%×7200 3600+1200+7200。