染色体显带原理与技术
- 格式:pdf
- 大小:1.53 MB
- 文档页数:80
实验十植物染色体Giemsa分带技术一、实验目的1. 掌握植物染色体Giemsa的C带、G带分带技术和方法。
2. 学习染色体带型分析方法。
二、实验原理植物染色体显带是借助于特殊的处理程序后,进行Giemsa染色,使染色体某些结构成分发生特异反应而出现深浅不同的带纹,从而使核型分析中更准确地识别染色体的每个成员以及其结构变异。
通过改变Giemsa分带处理程序可产生不同带型,因此有C带、G带、N带、Q带、T带等不同技术。
C带(组成异染色质带):C带技术是应用最广泛的技术,它主要显示着丝粒、端粒、核仁组成区域或染色体臂上某些部位的组成异染色质而产生相应的着丝粒带、端粒带、核仁组成区带、中间带等,这些带可以在一条染色体上同时出现,也可以只有其中的一条或几条带。
G带(Giemsa带):显示染色粒,G带分布于染色体的全部长度上。
以深浅相间的横纹形式出现。
G带能清楚地反映染色体的纵向分化,能提供较多的鉴别标志。
因此,G带是分带技术中最有价值的一种。
R带(反带):与G带相反的染色带.由于处理程序不同,染色体在同一部位染色效果相反。
N带:专一地显示出核仁组织区。
T带:专一地显示出端粒区域。
以上几种带型在植物上应用最多的为C带和G带,本次实验主要介绍这两种分带技术。
三、实验材料(一)材料大麦(Hordeum spp.2n=14)的种子、蚕豆(Vicia faba 2n=12)的种子、洋葱(Allium cepa 2n=16)的鳞茎。
以上材料可任选一种。
(二)器材培养箱、恒温水浴锅、分析天平、小台秤(200g) 、量简(50ml、100ml、1000ml、10m1) 、烧杯(200m1) 、容量瓶(1000m1) 、棕色试剂瓶(200m1)、滴瓶、染色缸、载玻片、盖玻片、显微镜、显微照相及冲洗放大设备、剪刀、镊子、刀片、滤纸、玻璃板、牙签、切片盒。
(三)试剂Giemsa母液、磷酸缓冲液、氯化钠、柠檬酸钠、甲醇、乙醇、冰醋酸、氢氧化钡、秋水仙素或对二氯苯、α-溴萘、纤维素酶、果胶酶、胰蛋白酶、醋酸洋红、45% 醋酸等。
一、实训目的1. 理解显带染色体技术的原理和应用。
2. 掌握显带染色体技术的操作步骤。
3. 学会观察和分析染色体带纹特征。
4. 培养实验室操作技能和科研思维。
二、实训时间2023年X月X日三、实训地点XX大学细胞生物学实验室四、实训内容1. 显带染色体技术原理2. 显带染色体技术操作步骤3. 显带染色体带纹观察与分析4. 实验结果与讨论五、实训原理显带染色体技术是一种通过特殊染色方法,使染色体上的带纹更加清晰、明显,从而便于观察和分析的技术。
其主要原理是利用胰蛋白酶、NaOH、柠檬酸盐或尿素等试剂处理染色体标本,破坏染色质的结构,使染色体上的DNA与组蛋白分离,然后使用Giemsa染料染色,使染色体上出现深浅不同的带纹。
六、实训操作步骤1. 准备材料:中期分裂细胞标本、胰蛋白酶溶液、Giemsa染液、生理盐水、蒸馏水、载玻片、盖玻片、显微镜等。
2. 制备染色体标本:(1)取中期分裂细胞标本,加入适量胰蛋白酶溶液,置于37℃水浴中消化。
(2)消化至细胞分散成单个细胞,加入生理盐水终止消化。
(3)将细胞悬液滴于载玻片上,盖上盖玻片,轻压使细胞均匀分布。
3. 染色:(1)将载玻片放入烤箱,60℃烘烤30分钟。
(2)用蒸馏水冲洗载玻片,去除多余水分。
(3)将载玻片放入Giemsa染液中染色30分钟。
(4)用蒸馏水冲洗载玻片,去除多余染液。
4. 干燥:将载玻片放入烤箱,60℃烘烤30分钟,使染色体标本干燥。
5. 观察:使用显微镜观察染色体标本,观察带纹特征。
七、显带染色体带纹观察与分析1. 带纹特征:(1)深带:染色较深,DNA含量较高。
(2)浅带:染色较浅,DNA含量较低。
(3)异带:染色体上出现不同深浅的带纹。
2. 分析方法:(1)观察染色体带纹的宽度和深度。
(2)分析带纹的位置和数量。
(3)根据带纹特征判断染色体结构。
八、实验结果与讨论1. 实验结果:通过观察染色体标本,发现染色体上存在深浅不同的带纹,其中深带和浅带分布较为均匀,异带较少。
染色体核型分析三大技术介绍·概念是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间关系所不可缺少的重要手段。
经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因。
染色体核型分析技术,传统上是观察染色体形态。
但随着新技术的发现与应用,染色体核型分析三大技术包括:GRQ带技术、荧光原位杂交技术、光谱核型分析技术。
·三大技术介绍一、GRQ带技术人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。
显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。
每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。
根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。
染色体特定的带型发生变化,则表示该染色体的结构发生了改变。
一般染色体显带技术有G显带(最常用),Q显带和R显带等。
百奥赛图提供的小鼠染色体核型分析服务,就是利用Giemsa染色法,对染色体染色后进行显带分析,保证基因敲除小鼠在染色体水平阶段没有发生变异,从而确保基因敲除小鼠可以正常繁殖。
二、荧光原位杂交技术荧光原位杂交(fluorescenceinsituhybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子结合,杂交后再通过免疫细胞化学过程连接上荧光染料。
FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA 纤维切片上,再用与荧光素分子耦联的单克隆抗体与探针分子特异性结合,来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析,可判断单个碱基突变。
西南大学《细胞遗传学》课程论文论文题目:染色体显带技术与运用学院:农学与生物科技学院专业:农学年级: 2010级学号:姓名:指导老师:二零一二年十二月十八日染色体显带技术摘要:染色体(Chromosome )染色体是细胞核中载有遗传信息(基因)的物质,在显微镜下呈圆柱状或杆状,主要由脱氧核糖核酸和蛋白质组成,在细胞发生有丝分裂时期容易被碱性染料(例如龙胆紫和醋酸洋红)着色,因此而得名。
关键词:染色体;分带;类型;应用一、染色体带型的介绍染色体显带(chromosome banding) 用特殊的染色方法, 使染色体产生明显的色带(暗带)和未染色的明带相间的带型(banding patterns), 形成不同的染色体个性, 以此作为鉴别单个染色体和染色体组的一种手段。
染色体显带技术最重要的应用就是能够明确鉴别一个核型中的任何一条染色体, 乃至某一个移位片段, 同时也可用于核型进化及可能的进化机制研究。
借助细胞学的特殊处理程序,使染色体显现出深浅不同的染色带。
染色带的数目、部位、宽窄和着色深浅均具有相对稳定性,所以每一条染色体都有固定的分带模式,即称带型。
染色体带型是鉴别染色体的重要依据。
通过分带机理的研究,可获得染色体在成分、结构、行为和功能等方面的许多信息。
常用的显带技术所显示的带有Q带、G带、C带、R带、T带、N带等。
就每一种分带技术而言,每一染色体的带型是高度专一和恒定的。
Q带技术是1968年瑞典细胞化学家卡斯珀松(T.Caspersson)建立的,所显示的是中期染色体经芥子喹吖因染色后在紫外线照射下所呈现的荧光带,这些区带相当于DNA分子中AT碱基对成分丰富的部分。
G带即吉姆萨带,是将处于分裂中期的细胞经胰酶或碱、热、尿素等处理后,再经吉姆萨染料染色后所呈现的区带。
C带又称着丝粒异染色质带,由(M.L.Pardue)在1970年建立,是将中期染色体先经盐酸,后经碱(如氢氧化钡)处理,再用吉姆萨染色,显示的是紧邻着丝粒的异染色质区。
染色体显带技术的名词解释染色体显带技术,是一种通过特定的实验方法将染色体分解和染色,然后通过显微镜观察和分析染色体的带状图案,来揭示染色体结构和组成的一种分析技术。
该技术是生物学和遗传学领域中非常重要的实验手段之一,广泛应用于生物体的遗传分析、基因定位和重组等研究方向。
染色体显带技术的原理是通过染色剂将染色体进行染色,然后通过显微镜观察和记录染色体的带状图案。
常用的染色剂有吉姆萨染剂、醋酸酯染剂等。
这些染剂能够与染色体特定的结构和组成发生特定的反应,从而在显微镜下呈现出不同的带状图案。
这些带状图案是染色体的一种特征,通过对带状图案的分析,可以确定染色体的个数、结构和组成等信息。
染色体显带技术在生物学和遗传学中有着广泛的应用。
首先,它可以用于确定染色体的数量和形态。
通过观察染色体的带状图案,可以准确地确定染色体的个数。
同时,不同的染色体在带状图案上呈现出不同的形态,通过对形态的观察和分类,可以对染色体进行鉴定和区分。
其次,染色体显带技术可以用于研究基因的定位和重组。
通过对染色体显带图案的分析,可以确定某个基因位于染色体的哪个区域,从而帮助研究人员进行基因的定位。
此外,如果两个染色体上的带状图案发生了重组,也可以通过染色体显带技术来检测和确认重组的事件。
此外,染色体显带技术还可以用于进行遗传变异的分析。
在染色体显带图案中,可以观察到染色体的缺失、重复、倒位等变异。
通过对变异的分析,可以了解染色体结构的稳定性和遗传变异的机制。
总之,染色体显带技术是一种重要的实验手段,通过对染色体的染色和观察,可以揭示染色体的结构和组成,帮助研究人员进行遗传分析和基因定位等研究。
在生物学和遗传学研究中,染色体显带技术起着重要的作用,对我们深入了解生命的本质和遗传机制提供了有力的支持。
显带染色体检验非显带染色体制备技术不能将每一条染色体的特征完全显示出来,只能根据各染色体的大致特征(大小、着丝粒位置)来识别。
对于染色体结构畸变的诊断和研究受到很大限制。
染色体显带技术是在非显带染色体的基础上发展起来的,它能显示染色体本身更细微的结构,有助于准确识别每一条染色体及诊断染色体异常疾病。
自20世纪60年代末以来各种染色技术的应用,染色体显带技术得到了很大的发展。
可以将染色体的个体特征显现出来,据此可准确识别23对不同类型的染色体,从而提高了染色体核型分析的精确度,为临床染色体疾病的诊断提供了更有效的手段。
染色体经过一定程序处理并用特定染料染色后,在普通光学显微镜或荧光显微镜下可显现出不同深浅颜色的带纹或不同强度的荧光节段叫做染色体带,各号染色体带的形态不同,称带型。
染色体显带的分类通常是按能产生某种带型的方法来划分的。
如用C、G、Q或T 显带技术产生的带分别称为C带、G带、Q带或T带。
按此显带技术可分成两大类:一类是产生的带分布在整条染色体上,如Q、G和R 带;另一类只能使染色体上少数特定的带或结构着色,如C带、T带和N带等。
1971年巴黎会议确定的四种显带技术是:胰酶Giemsa法(G显带)、氮芥喹吖因荧光法(Q显带)、逆向Giemsa法(R显带)和着丝粒区异染色质法(C显带),其中G显带是目前通常采用的显带技术之一,Q显带、R显带和C显带等技术也被用于染色体研究。
四种常用显带技术各具优缺点,有不同的应用。
(一)染色体G显带检验技术G显带是一种广泛应用的技术。
它是用胰蛋白酶处理染色体标本,使染色体蛋白质变性,然后用Giemsa染色,染色体吸收染料,各条染色体上显出深色和浅色相间的带型——G带。
G带在普通光学显微镜下即可观察分析。
G显带法包括四种处理技术,即醋酸-钠盐-Giemsa法、碱处理和磷酸缓冲液温育方法以及胰蛋白酶处理Giemsa染色法等,目前多采用胰蛋白酶处理Giemsa染色法。
染色体显带技术的概念:染色体异染色质和常染色质区段存在差异,序列AT和GC含量存在差异。
使用特定的染色体显色技术,使差异个体之间的染色体或同一个体不同染色体之间显现不同的显色条纹,进而进行核型分析。
染色体显带技术是核型分析的重要技术。
适用于更微观水平上鉴定染色体,并获取遗传信息。
是更精确的核型分析,在应用时往往带型分析与核型分析合二为一。
常见的染色体显带(分带)技术及其原理
1.Q带:喹吖因荧光染色技术。
中期染色体经氮芥因喹吖染色后,在紫外线下呈现的明暗带,DNA富含AT碱基区为明带,富含GC碱基区呈暗带。
2.G带:Giemsa带,中期染色体制片经胰酶或碱、尿素、去污剂等处理后,用Giemsa染色,呈现的染色体区带,一般与Q带相符(AT 区深色,GC区为浅色)。
3.R带:中期染色体磷酸盐缓冲液保湿处理,经吖啶橙或Giemsa染色呈明暗相见的带型,与G带正好相反又称反带(AT区为浅带,GC 区为深带)。
4.C带:主要显示着丝粒结构区异染色质以及染色体其它区段的异染色质部分,异染色质区染色较深。
5.T带:也称末端带,染色体端粒经吖啶橙染色后所呈现的区带。
6.N带:又称Ag-As染色法,主要用于核仁组织区的酸性蛋白质染色。