各种显带技术
- 格式:ppt
- 大小:2.24 MB
- 文档页数:81
基因在染色体上定位的基本方法1.遗传连锁分析:遗传连锁分析是通过对家族中的基因型和表型进行检测和分析,确定基因与染色体的位置关系。
这种方法通过比较不同的亲代和子代之间的遗传关系,可以推测基因位点在染色体上的相对位置。
2.染色体显带技术:染色体显带技术是将染色体进行染色处理后,通过显微镜观察染色体的特殊带状分布来确定基因或基因组的位置。
常用的染色体显带技术有吉姆萨染色法和Q-带染色法等。
3.倒位和缺失:倒位和缺失是指染色体片段的倒转和丢失,这种染色体异常通常说明被倒转或丢失的区域内含有对其中一基因的局部作用。
通过研究倒位和缺失的病人或动物模型,可以确定被破坏的基因在染色体上的位置。
4.分子标记和杂交技术:分子标记和杂交技术是基于DNA分子间的互补配对原理,通过标记和杂交技术可以在染色体上定位基因。
常用的分子标记技术包括PCR、限制性片段长度多态性(RFLP)、微卫星标记和单核苷酸多态性(SNP)等。
这些标记可以通过杂交技术与染色体上的特定区域发生互补配对,从而确定目标基因的位置。
5.整合遗传和物理图谱:整合遗传和物理图谱是一种将遗传信息与物理距离相连的方法。
遗传图谱是根据遗传连锁分析得到的基因距离关系,而物理图谱则是根据染色体的物理特性和DNA序列的物理位置建立的。
通过整合遗传和物理图谱,可以更准确地确定基因在染色体上的位置。
6.定位克隆技术:定位克隆技术主要利用染色体上已知的标记序列或已离体的基因进行探针筛选和杂交实验,进而确定目标基因的精确位置。
常见的定位克隆技术包括克隆定位、转录映射和比较基因组定位等。
7.基因组测序:基因组测序技术的发展为基因在染色体上的定位提供了新的工具和方法。
通过高通量测序技术,可以对染色体上的DNA序列进行全面的测定,从而获得准确的基因位置信息。
综上所述,基因在染色体上定位的基本方法包括遗传连锁分析、染色体显带技术、倒位和缺失、分子标记和杂交技术、整合遗传和物理图谱、定位克隆和基因组测序等。
常见带型的类型1、Q带(Q banding):Q显带是用荧光染料对染色体标本进行染色,然后在荧光显微镜下进行观察。
Q显带技术是最早建立的显带技术,它在观察染色体多态方面有重要的用途。
但Q带保存时间短,而且需要在荧光显微镜下进行观察,因而,限制了Q显带技术的应用。
2、G显带(G banding):染色体标本用热、碱、蛋白酶等预处理后,再用Giemsa染色,可以显示出与Q带相似的带纹。
在光学显微镜下,可见Q带亮带相应的部位,被Giemsa 染成深带,而Q带暗带相应的部位被Giemsa染成浅带。
这种显带技术称为G显带,所显示的带纹称为G带。
G显带克服了Q显带的缺点,G带标本可长期保存,而且可在光学显微镜下观察,因而得到了广泛的应用,是目前进行染色体分析的常规带型。
3、R显带(R banding):所显示的带纹与G带的深、浅带带纹正好相反,故称为R带(reversed band)。
G带浅带如果发生异常,不易发现和识别,而R显带技术可以将G带浅带显示出易于识别的深带,所以R显带对分析染色体G带浅带部位的结构改变有重要作用。
4、C显带(C banding):专门显示着丝粒的显带技术。
C显带也可使第1、9、16号和Y染色体长臂的异染色质区染色。
因而,C带可用来分析染色体这些部位的改变。
5、T显带(T banding):专门显示染色体端粒的显带技术,用来分析染色体端粒。
6、N显带(N banding):专门显示核仁组织区的显带技术。
7、高分辨显带(high-resolution banding):分裂中期一套单倍染色体一般显示320条带。
70年代后期,采用细胞同步化方法和改进的显带技术,获得细胞分裂前中期、晚前期或早前期的分裂相,可以得到带纹更多的染色体,能显示550-850条带,甚至2000条带以上。
这种显带技术称为高分辨显带技术。
8、姊妹染色单体互换(SCE):5-溴脱氧尿嘧啶核苷(5-bromodeoxy-uridine,BrdU)是脱氧胸腺嘧啶核苷的类似物,在DNA链的复制过程中,可替代胸腺嘧啶。
染色体核型分析三大技术介绍·概念是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间关系所不可缺少的重要手段。
经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因。
染色体核型分析技术,传统上是观察染色体形态。
但随着新技术的发现与应用,染色体核型分析三大技术包括:GRQ带技术、荧光原位杂交技术、光谱核型分析技术。
·三大技术介绍一、GRQ带技术人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。
显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。
每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。
根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。
染色体特定的带型发生变化,则表示该染色体的结构发生了改变。
一般染色体显带技术有G显带(最常用),Q显带和R显带等。
百奥赛图提供的小鼠染色体核型分析服务,就是利用Giemsa染色法,对染色体染色后进行显带分析,保证基因敲除小鼠在染色体水平阶段没有发生变异,从而确保基因敲除小鼠可以正常繁殖。
二、荧光原位杂交技术荧光原位杂交(fluorescenceinsituhybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子结合,杂交后再通过免疫细胞化学过程连接上荧光染料。
FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA 纤维切片上,再用与荧光素分子耦联的单克隆抗体与探针分子特异性结合,来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析,可判断单个碱基突变。
染色体带纹及命名人类染色体是以几届国际会议的结果予以命名的(1960的Denver会议,1963年的伦敦会议,1966年的芝加哥会议,1975年巴黎会议,1977年stockholm会议,1994年Memphis会议)。
1995年细胞遗传学标准委员会修改了自1985到1991年所发表的文件,把他们编撰成一个册子,名为《人类细胞遗传学国际命名体制》,常简称ISCN1995。
显带是一类分带技术,是一种方法学。
是把染色体标本经过特殊处理后染色,使染色体有深、浅或明、暗的区别带。
这里我们介绍几种常出现在文献中的带型。
1、G带:也叫G显带,这是临床上最常用的显带方法。
用胰酶,缓冲液处理中期染色体标本均可显带。
G带的特性是显带方法简单恒定,带型稳定,保存时间长。
染色体标本用热、碱、蛋白酶等预处理后,再用Giemsa染色,可以显示出与Q带相似的带纹。
在光学显微镜下,可见Q带亮带相应的部位,被Giemsa染成深带,而Q带暗带相应的部位被Giemsa 染成浅带。
这种显带技术称为G显带,所显示的带纹称为G带。
G显带克服了Q显带的缺点,G带标本可长期保存,而且可在光学显微镜下观察,因而得到了广泛的应用,是目前进行染色体分析的常规带型。
2、Q带:用喹吖因染料染中期染色体标本可出现一种特征性黄光亮暗带型,一般富含AT-DNA区段表现为亮带,富含GC-DNA区段黄光较暗,常用于人类Y染色体长臂的观察。
临床上较少用,不能长久保存。
3、C带:这种方法将结构异染色质和高度重复的DNA区域染色。
在人类染色体上这些区域位于着丝粒和Y染色体上。
常用于某一科题的研究。
专门显示着丝粒的显带技术。
C显带也可使第1、9、16号和Y染色体长臂的异染色质区染色。
因而,C带可用来分析染色体这些部位的改变。
4、R带:带型与G带相近,常用于染色体末端的研究。
所显示的带纹与G带的深、浅带带纹正好相反,故称为R带(reversed band)。
G带浅带如果发生异常,不易发现和识别,而R显带技术可以将G带浅带显示出易于识别的深带,所以R显带对分析染色体G带浅带部位的结构改变有重要作用。
1.目的:R显带可补充G显带末端浅染的缺点,加强染色体末端微小变异的识别;R显带适用于大批量实验以及较难处理的标本如骨髓。
2.应用范围外周血、骨髓等各种标本的染色体分析技术。
3.实验原理3.1.R显带法产生的带纹在染色强度上与G带相反,故也称为逆转显带。
R 显带染色体的末端为阳性染色,为了观察染色体的末端缺失,应当用R带。
在这一点上G带和Q带不如R带。
虽然有许多荧光素不必预处理就能在染色体上产生R带。
但标准的R带技术是把染色体放在高温(通常为87℃)的离子溶液中,再以Giemsa或吖啶橙染色。
这时原来为G带阴性的带,经Giemsa 染色后为阳性带,经吖啶橙染色者为绿色荧光,而原来G带的阳性带则呈现红色的吖啶橙荧光。
3.2.R带按制备方法的不同可分为荧光R带和姬母萨R带两类,但以Dutrillaux首创的热处理姬母萨R显带法为最基本的方法。
其显带机制尚未完全明了。
Dutrillaux认为是由于DNA受热变性的缘故。
此时富含AT碱基对的区段单链化,故不易为姬母萨液所染色,乃呈浅带;而富含GC碱基对的区段仍保持正常的双链结构,故易于为姬母萨液染色,乃呈深带。
但目前了解的Giemsa着色机制并不十分支持次假说。
3.3.R带与G带、Q带技术产生的大多数条带在整个染色体臂上显示出一系列阳性和阴性的染色带,但没有“间带”。
这些带的带型在不同组织中是恒定的,且在发育期间不发生变化。
在分裂的前期是许多的细微带出现在细长的染色体上,到了前中期由于它们彼此融合而成为稍大一点的带,带的数目也随之减少;在高度浓缩的中期染色体上,这些带几乎合并成一个带而占据着整条染色体。
可见这些带在有丝分裂过程中不断地改变其大小,故称为变动带。
变动带相当于粗线期的染色粒,而且代表了有丝分裂中染色体上的浓缩过程,蛋白质的巯基被氧化成二硫化物。
最先浓缩的染色体带一般是在S 期的后期复制的DNA,它们富含A-T碱基对,几乎没有活性基因。
阴性的G 带和阳性的R带通常是早复制的,浓缩得晚些,含有大多数活性基因,很易遭受染色体损伤。
染色体显带技术的概念:染色体异染色质和常染色质区段存在差异,序列AT和GC含量存在差异。
使用特定的染色体显色技术,使差异个体之间的染色体或同一个体不同染色体之间显现不同的显色条纹,进而进行核型分析。
染色体显带技术是核型分析的重要技术。
适用于更微观水平上鉴定染色体,并获取遗传信息。
是更精确的核型分析,在应用时往往带型分析与核型分析合二为一。
常见的染色体显带(分带)技术及其原理
1.Q带:喹吖因荧光染色技术。
中期染色体经氮芥因喹吖染色后,在紫外线下呈现的明暗带,DNA富含AT碱基区为明带,富含GC碱基区呈暗带。
2.G带:Giemsa带,中期染色体制片经胰酶或碱、尿素、去污剂等处理后,用Giemsa染色,呈现的染色体区带,一般与Q带相符(AT 区深色,GC区为浅色)。
3.R带:中期染色体磷酸盐缓冲液保湿处理,经吖啶橙或Giemsa染色呈明暗相见的带型,与G带正好相反又称反带(AT区为浅带,GC 区为深带)。
4.C带:主要显示着丝粒结构区异染色质以及染色体其它区段的异染色质部分,异染色质区染色较深。
5.T带:也称末端带,染色体端粒经吖啶橙染色后所呈现的区带。
6.N带:又称Ag-As染色法,主要用于核仁组织区的酸性蛋白质染色。
染色体核型分析系列之三大技术介绍Hessen was revised in January 2021染色体核型分析三大技术介绍·概念是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间关系所不可缺少的重要手段。
经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因。
染色体核型分析技术,传统上是观察染色体形态。
但随着新技术的发现与应用,染色体核型分析三大技术包括:GRQ带技术、荧光原位杂交技术、光谱核型分析技术。
·三大技术介绍一、GRQ带技术人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。
显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。
每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。
根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。
染色体特定的带型发生变化,则表示该染色体的结构发生了改变。
一般染色体显带技术有G显带(最常用),Q显带和R显带等。
百奥赛图提供的小鼠染色体核型分析服务,就是利用Giemsa染色法,对染色体染色后进行显带分析,保证基因敲除小鼠在染色体水平阶段没有发生变异,从而确保基因敲除小鼠可以正常繁殖。
二、荧光原位杂交技术荧光原位杂交(fluorescenceinsituhybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子结合,杂交后再通过免疫细胞化学过程连接上荧光染料。
FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA纤维切片上,再用与荧光素分子耦联的单克隆抗体与探针分子特异性结合,来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析,可判断单个碱基突变。
染色体显带技术的名词解释染色体显带技术,是一种通过特定的实验方法将染色体分解和染色,然后通过显微镜观察和分析染色体的带状图案,来揭示染色体结构和组成的一种分析技术。
该技术是生物学和遗传学领域中非常重要的实验手段之一,广泛应用于生物体的遗传分析、基因定位和重组等研究方向。
染色体显带技术的原理是通过染色剂将染色体进行染色,然后通过显微镜观察和记录染色体的带状图案。
常用的染色剂有吉姆萨染剂、醋酸酯染剂等。
这些染剂能够与染色体特定的结构和组成发生特定的反应,从而在显微镜下呈现出不同的带状图案。
这些带状图案是染色体的一种特征,通过对带状图案的分析,可以确定染色体的个数、结构和组成等信息。
染色体显带技术在生物学和遗传学中有着广泛的应用。
首先,它可以用于确定染色体的数量和形态。
通过观察染色体的带状图案,可以准确地确定染色体的个数。
同时,不同的染色体在带状图案上呈现出不同的形态,通过对形态的观察和分类,可以对染色体进行鉴定和区分。
其次,染色体显带技术可以用于研究基因的定位和重组。
通过对染色体显带图案的分析,可以确定某个基因位于染色体的哪个区域,从而帮助研究人员进行基因的定位。
此外,如果两个染色体上的带状图案发生了重组,也可以通过染色体显带技术来检测和确认重组的事件。
此外,染色体显带技术还可以用于进行遗传变异的分析。
在染色体显带图案中,可以观察到染色体的缺失、重复、倒位等变异。
通过对变异的分析,可以了解染色体结构的稳定性和遗传变异的机制。
总之,染色体显带技术是一种重要的实验手段,通过对染色体的染色和观察,可以揭示染色体的结构和组成,帮助研究人员进行遗传分析和基因定位等研究。
在生物学和遗传学研究中,染色体显带技术起着重要的作用,对我们深入了解生命的本质和遗传机制提供了有力的支持。