染色体显带原理与技术分析解析
- 格式:ppt
- 大小:3.93 MB
- 文档页数:80
医学遗传学实验报告【实验题目】人类显带染色体核型分析【实验目的】掌握染色体核型分析的常用方法及G分带的带型特征,会初步识别G分带人类染色体。
【实验原理】将一个细胞内的染色体按照一定的顺序排列起来构成的图像称为该细胞的核型(karyotype),这通常是用显微摄影得到的染色体相片剪贴而成。
在显带技术问世以前,人们主要根据染色体的大小、着丝粒的位置,将人类染色体顺次由1编到22号,并分为7组。
但要想精确、有把握地鉴别每条染色体是比较困难的。
70年代初出现了染色体显带技术,不仅解决了染色体识别困难的问题,而且为深入研究染色体异常及基因定位创造了条件。
将染色体标本用显带方法处理后,再用Giemsa染色,这类技术称为G分带,通过显微摄影,就可得到G带染色体的显微相片。
【实验方法和步骤】(1)胰酶液的配制:称取胰酶0.2g溶于100mlHanks液中,搅拌30min,用1mol/L NaOH调pH值至7.0~7.2,冷冻保存(最好现配现用)。
(2)先将胰酶液水浴加热到37℃。
(3)将染色体标本浸入胰酶液中,作用时间几秒到几十秒不等,依标本存放时间长短而定(标本需预先经60℃~70℃烤2h,或37℃恒温老化5~7d。
若标本太新鲜,则染色体有些毛糙)。
(4)取出玻片标本,在生理盐水中过一下,再用蒸馏水洗。
(5)Giemsa染液染色8min。
(6)自来水洗、晾干。
(7)镜检:选择分散及显带良好的分裂象,在油镜下观察。
如观察到染色体变粗并显得边缘毛糙,有时甚至呈糊状,是处理过度了。
观察细胞的标准:1)细胞完整,轮廓清晰,染色体在同一平面上均匀分布。
2)染色体形态和分散良好,最好无重叠现象,即使染色体个别重叠,也要能明显辨别。
3)所观察的染色体长短大致一样,处于同一有丝分裂时期。
4)在所观察的染色体周围没有多个或单个散在的染色体。
(8)显微摄影,将相片上的染色体逐个剪下,按丹佛和人类染色体遗传学命名的国际机制(ISCN)排列编号。
染色体显带技术的名词解释染色体显带技术,是一种通过特定的实验方法将染色体分解和染色,然后通过显微镜观察和分析染色体的带状图案,来揭示染色体结构和组成的一种分析技术。
该技术是生物学和遗传学领域中非常重要的实验手段之一,广泛应用于生物体的遗传分析、基因定位和重组等研究方向。
染色体显带技术的原理是通过染色剂将染色体进行染色,然后通过显微镜观察和记录染色体的带状图案。
常用的染色剂有吉姆萨染剂、醋酸酯染剂等。
这些染剂能够与染色体特定的结构和组成发生特定的反应,从而在显微镜下呈现出不同的带状图案。
这些带状图案是染色体的一种特征,通过对带状图案的分析,可以确定染色体的个数、结构和组成等信息。
染色体显带技术在生物学和遗传学中有着广泛的应用。
首先,它可以用于确定染色体的数量和形态。
通过观察染色体的带状图案,可以准确地确定染色体的个数。
同时,不同的染色体在带状图案上呈现出不同的形态,通过对形态的观察和分类,可以对染色体进行鉴定和区分。
其次,染色体显带技术可以用于研究基因的定位和重组。
通过对染色体显带图案的分析,可以确定某个基因位于染色体的哪个区域,从而帮助研究人员进行基因的定位。
此外,如果两个染色体上的带状图案发生了重组,也可以通过染色体显带技术来检测和确认重组的事件。
此外,染色体显带技术还可以用于进行遗传变异的分析。
在染色体显带图案中,可以观察到染色体的缺失、重复、倒位等变异。
通过对变异的分析,可以了解染色体结构的稳定性和遗传变异的机制。
总之,染色体显带技术是一种重要的实验手段,通过对染色体的染色和观察,可以揭示染色体的结构和组成,帮助研究人员进行遗传分析和基因定位等研究。
在生物学和遗传学研究中,染色体显带技术起着重要的作用,对我们深入了解生命的本质和遗传机制提供了有力的支持。
实验三染色体显带技术和带型分析一、实验目的学习和掌握植物染色体Giemsa显带技术和带型分析方法,进一步鉴别植物染色体组和染色体结构。
二、实验原理对植物有丝分裂中期染色体进行酶解,酸、碱、盐等处理,再经染色后,染色体可清楚地显示出很多条深浅、宽窄不同的染色带。
各染色体上染色带的数目、部位、宽窄、深浅、相对稳定,为鉴别染色体的形态提供依据,也为细胞遗传学和染色体工程提供新的研究手段。
植物染色体显带技术包括荧光分带和Giemsa(吉姆萨)分带两大类。
在植物染色体显带上最常用的是Giemsa分带技术,其中C带和N带较为常用。
C带的形成认为是高度重复序列的DNA(异染色质)经酸碱变性和复性处理后,易于复性,而低重复序列和单一序列DNA(常染色质)不复性,经Giemsa染色后呈现深浅不同的染色反应。
这种差异反映染色体结构的差异。
三、实验材料洋葱、蚕豆、大麦、黄麻的根尖。
四、实验仪器及用具多媒体系统(附显微演示),显微镜(附摄影装置),半异体致冷器,冰箱,恒温水浴锅,电子天平,液态氮装置,容量瓶,试剂瓶烧杯,染色缸,载玻片,盖玻片,剪刀,镊子,玻璃板,滤纸,标签,铅笔五、药品和试剂冰醋酸,无水酒精,甲醇,盐酸,柠檬酸钠,氢氧化钡,氯化钠,磷酸二氢钠,磷酸二氢钾,磷酸氢二钠,甘油,Giemsa粉剂,果胶酶,纤维素酶试剂1:Giemsa液:0.5克Giemsa,33ml甘油,33ml甲醇,用少量甘油将Giemsa粉末研磨至无颗粒,剩余甘油分次洗涤至棕色瓶内,置56℃恒温2h,加入甲醇,过滤后保存于棕色瓶中。
试剂2 :5%氢氧化钡:5gBa(OH)2加入100ml沸蒸馏水中溶解后过滤,冷却至18-28℃。
试剂3:2×SSC溶液:0.3M氯化钠+0.3M柠檬酸钠。
试剂4:1M NaH2PO4溶液。
试剂5:1%纤维素酶和果胶酶混合液。
试剂6:1/15磷酸二氢钾和1/15磷酸氢二钠缓冲液。
六、实验步骤(一)染色体分带1. 材料准备待洋葱鳞茎发根长2cm左右,切取根尖进行预处理。
[人体显微形态学]_实验:染色体G显带核型分析
人体显微形态学的染色体G显带核型分析是实验室里一项非常重要的实验。
它主要是
为了研究人体染色体G显带核型,以了解非常微小部分染色体结构和功能,从而可以准确
评估人体染色体安全性和染色体病变。
染色体G显带核型分析实验,是微生物学实验室中常用的分子生物技术之一。
它包括
用荧光原子瞳(FISH)技术来检测和辨识人体染色体G显带上的特定片段,是按比例放大
微小结构的,目的是在极端放大的条件下观察其形状和染色体结构,以调查染色体G显带
核型的特征。
实验之前,需要准备染色体DNA样本,采用逆转录聚合酶反应(RT-PCR)技术,提取
染色体DNA样本。
取染色体DNA样本,用供体核酸进行探针结合,以染色技术对染色体进
行染色,并在特定稀释条件下进行配对图谱比较,以得出染色体G显带核型分析的结果。
染色体G显带核型分析的过程中,要采用专业的放大技术,如荧光显微镜和电子显微
镜等,来放大染色体核酸片段的结构,以准确观察染色体G显带核型。
采用特定稀释技术,给出多种图形,作为染色体G显带核型分析的依据。
最后,运用解剖切片、拍片、再加以染色,用荧光显微镜染色,最后才得出染色体G
显带核型分析的结论。
比较同一组DNA样本中染色体G显带核型分析的结果,便可得出染
色体上显带特征的特点;进而确定人体染色体的安全性及疾病的分析结果。
染色体G显带核型分析是一种十分详细、复杂的实验,其实验步骤也十分耗时,但是
它为弄清染色体G显带的结构提供了最佳的依据,直接关系到人类健康,因此在临床实践中,染色体G显带核型分析实验备受重视,具有极为重要的意义。
染色体显带技术的概念:染色体异染色质和常染色质区段存在差异,序列AT和GC含量存在差异。
使用特定的染色体显色技术,使差异个体之间的染色体或同一个体不同染色体之间显现不同的显色条纹,进而进行核型分析。
染色体显带技术是核型分析的重要技术。
适用于更微观水平上鉴定染色体,并获取遗传信息。
是更精确的核型分析,在应用时往往带型分析与核型分析合二为一。
常见的染色体显带(分带)技术及其原理
1.Q带:喹吖因荧光染色技术。
中期染色体经氮芥因喹吖染色后,在紫外线下呈现的明暗带,DNA富含AT碱基区为明带,富含GC碱基区呈暗带。
2.G带:Giemsa带,中期染色体制片经胰酶或碱、尿素、去污剂等处理后,用Giemsa染色,呈现的染色体区带,一般与Q带相符(AT 区深色,GC区为浅色)。
3.R带:中期染色体磷酸盐缓冲液保湿处理,经吖啶橙或Giemsa染色呈明暗相见的带型,与G带正好相反又称反带(AT区为浅带,GC 区为深带)。
4.C带:主要显示着丝粒结构区异染色质以及染色体其它区段的异染色质部分,异染色质区染色较深。
5.T带:也称末端带,染色体端粒经吖啶橙染色后所呈现的区带。
6.N带:又称Ag-As染色法,主要用于核仁组织区的酸性蛋白质染色。