脑梗塞TOST分型-中国改良
- 格式:pdf
- 大小:1.49 MB
- 文档页数:19
2023中国急性脑梗死后出血诊治专家共识要点脑梗死出血转化的诊断标准脑梗死出血转化是指急性脑梗死后缺血区血管重新恢复血流灌注导致的出血。
包括:自然发生的出血(自发性出血转化)采取干预措施后(包括溶栓、取栓和抗凝等)的出血(继发性/治疗性出血转化)。
出血的部位既可在梗死灶内,也可在梗死灶远隔部位。
目前多数研究采用的诊断标准是:脑梗死后首次头颅CT/MRI未发现出血,而再次头颅CT/MRI检查时发现有颅内出血,或根据首次头颅CT/MRI可以确定的出血性梗死。
出血转化的诊断流程1)根据上述诊断标准和流程进行出血转化诊断。
是否为出血转化?采用前述诊断标准。
是否为症状性出血转化?根据NIHSS评分或其他公认标准评估患者临床症状是否加重,考虑是否为症状性出血转化。
出血转化影像分型:可采用ECASS分型或Heide1berg分型(表I ECASS分型方法举例如下:HI:出血性脑梗死;PH:脑实质出血出血转化发生的原因(自发性或继发性出血转化):结合患者病史、用药情况、出血转化发生时间和影像学检查等确定。
2)多数自发性出血转化发生在发病7~14d内,准确时间有待研究;溶栓后出血转化一般发生在溶栓后36h内,可结合病史、临床症状和可行性等因素个体化选择影像检查时间。
对于出血转化高风险的患者,有条件时可考虑将每30分钟1次的神经功能和生命体征监测延长至溶栓后12h。
3)对于重症脑梗死患者(如NIHSS评分≥12分)可更积极地安排影像学复查。
出血性转化的处理1)出血转化的一般处理原则与自发性脑出血的治疗类似,包括:必要时行循环和呼吸支持血压管理监测神经功能恶化情况预防血肿扩大治疗颅内高压处理出血引起的其他并发症包括癫痫发作等对症处理同时应注意寻找导致出血的可调节原因并进行处理,例如血压的控制、凝血功能检测及合并用药情况等。
2)症状性出血转化应停用抗栓和H-PA等致出血药物:溶栓后症状性出血转化必要时可考虑辅助使用逆转凝血功能紊乱的药物,包括冷沉淀、纤维蛋白原、抗纤维蛋白溶解剂(凝血酸或E-氨基己酸)。
脑梗死医疗质量控制指标(2020 年版)指标一、脑梗死患者神经功能缺损评估率(NEU-STK-01)定义:单位时间内,入院时采用美国国立卫生研究院卒中量表(NIHSS)进行神经功能缺损评估的脑梗死患者数,占同期住院脑梗死患者总数的比例。
计算公式:脑梗死患者=入院时行神经功能缺损NIHSS 评估的脑梗死患者数 100%神经功能缺损评估率同期住院脑梗死患者总数意义:反映医疗机构收住院脑梗死患者病情评估开展情况。
说明:(1)美国国立卫生研究院卒中量表(NIHSS)参照《中国脑血管病临床管理指南》的中文翻译版本。
(2)脑梗死即缺血性卒中,采用《中国脑血管病临床管理指南》定义,是指因脑部血液循环障碍,缺血、缺氧所致的局限性脑组织缺血性坏死或软化。
指标二、发病 24 小时内脑梗死患者急诊就诊 30 分钟内完成头颅 CT 影像学检查率(NEU-STK-02)定义:单位时间内,发病24小时内急诊就诊行头颅CT 影像学检查的脑梗死患者中,30 分钟内获得头颅 CT 影像学诊断信息的患者所占的比例。
计算公式:发病24 小时内急诊就诊的脑梗死患者30 分钟内发病24 小时内脑梗死患者急诊就诊30 分=获得头颅CT 影像学诊断信息的人数⨯100%同期发病24钟内完成头颅CT 影像学检查率小时内急诊就诊行头颅CT 影像学检查的脑梗死患者总数意义:反映医疗机构对发病24小时内脑梗死患者及时检查评估的能力。
指标三、发病 24 小时内脑梗死患者急诊就诊 45 分钟内临床实验室检查完成率(NEU-STK-03)定义:单位时间内,发病24小时内到急诊就诊行实验室检查(包括血常规、血糖、凝血、电解质、肝肾功能)的脑梗死患者中,45 分钟内获得临床实验室诊断信息的患者所占的比例。
计算公式:发病24 小时内急诊就诊脑梗死患者发病24 小时内脑梗死患者急诊就诊=45分钟内获得临床实验室诊断信息的人数⨯100%45 分内临床实验室检查完成率同期发病24小时内急诊就诊行实验室检查的脑梗死患者总数意义:反映医疗机构对急性脑梗死患者及时评估检查的能力。
急性缺血性卒中患者头颅核磁DWI-FLAIR不匹配与侧枝循环的相关性周芬莉; 樊东升【期刊名称】《《中国CT和MRI杂志》》【年(卷),期】2016(014)001【总页数】5页(P10-14)【关键词】DWI-FLAIR不匹配; 急性缺血性卒中; 侧枝循环; 远端血管高信号征【作者】周芬莉; 樊东升【作者单位】北京大学第三医院神经内科北京 100191【正文语种】中文【中图分类】R816.1时至今日,脑卒中仍具高发病率、高致残率、高死亡率及高复发率。
溶栓治疗是目前唯一循征医学证实的有效治疗。
缺血半暗带的概念是溶栓治疗的理论基础。
事实上缺血半暗带的时间窗存在较大的个体差异,其中侧枝循环是重要影响因素。
侧支循环可增加卒中后缺血半暗带血供。
PROACT II试验(the Prolyse in Acute Cerebral Thromboembol ism II t rial)表明,侧支循环的建立程度越好,急性缺血性卒中(AIS)患者头颅影像上显示梗死灶体积越小,临床症状越轻;侧支循环的建立与患者预后明显相关。
侧支代偿好的患者较代偿差的患者在给予动/静脉溶栓后临床预后更好。
血管再通治疗的效果与侧支循环状况相关。
即使没有实现血管再通的AIS也可从静脉溶栓获益,可能与开通了侧支循环有关,侧支循环的开通可能推后溶栓组织时间窗。
侧枝循环较好的病人发生溶栓后出血转化的几率也较低。
侧枝循环正成为溶栓治疗外的重要的治疗靶点。
脑的侧枝循环分为三级:一级侧支循环即Wi l l is环;二级侧支循环主要包括眼动脉和一级软脑膜侧支;三级侧支循环即新生血管。
在急性卒中早期起作用的主要是一、二级侧枝循环。
但是发生于wi l l is环以远的闭塞如大脑中动脉M1段的闭塞,wi l l is环无法起侧枝代偿作用,主要依靠软脑膜侧枝。
侧枝循环的评估方法主要有:数字减影血管造影(DSA)、CT 血管造影(CTA)、磁共振血管造影(MRA)、磁共振动脉自旋标记(ASL)、经颅多普勒超声(TCD)。
脑血管科常用分级、评分目录GCS评分(格拉斯哥昏迷指数) (2)NIHSS评分 (2)mRS评分 (4)ABCD评分(TIA早期卒中风险预测工具) (4)Hunt-Hess分级 (5)世界神经外科医师联盟(WFNS)委员会的蛛网膜下腔出血(SAH)分级:WFNS-SAH分级 (5)改良Fisher分级 (5)SPETZLER动静脉畸形(AVM)分级: (6)TOAST分型 (6)脑灌注分期 (7)ASPECTS评分 (7)前循环ASEPECTS评分 (7)后循环ASPECTS评分 (8)rLMC评分 (8)侧支循环分级/评分 (9)ASITN/SIR侧支循环分级(基于DSA,广泛应用) (9)ASITN/SIR改良评分 (9)CTA-CS(COLLATERALSCORE 脑血管侧支评分) (10)后循环侧支代偿相关评分 (10)BATMAN评分 (10)PC-CS评分 (10)ACGS-BAO分级 (10)mTICI分级与eTICI分级 (11)欧洲急性卒中协作中心(ECASS)-出血转化分型 (12)CHA2DS2-VASC评分(房颤患者的抗凝治疗评分) (12)HAS-BLEDS(房颤患者抗凝出血风险评分) (13)Essen评分(卒中复发风险评分) (13)KPS评分 (14)GOS 评分 (14)GCS评分(格拉斯哥昏迷指数)●睁眼反应4分:自然睁眼(spontaneous)3分:呼唤会睁眼(to speech)2分:有刺激或痛楚会睁眼(to pain)1分:对于刺激无反应(none)C分:肿到睁不开●语言反应5分:说话有条理(oriented)。
4分:可应答,但有答非所问的情形(confused)。
3分:可说出单字(inappropriate words)。
2分:可发出声音(unintelligible sounds)。
1分:无任何反应(none)。
T分:插管或气切无法正常发声●肢体运动(M, Motor response)6分:可依指令动作(obey commands)。
急性脑梗死血管再通的现状、思考和策略江苏省南京军区南京总医院作者:刘新峰文章号:W0947472013-11-5 9:40:10文字大小:大中小脑卒中已超过心血管病和肿瘤,成为世界上第二位,我国第一位死亡原因,同时也是最容易导致残疾的疾病,具有高发病率、高致残率和高死亡率的“三高”特点。
世界卫生组织倡导每年10月29日为“世界卒中日”,它向世人提出了“one in six”的警示,即世界上每6秒钟,就有一个人死于卒中,我们中每6个人就有一个人在一生中会罹患卒中。
据统计,我国每年新发脑卒中250万,因脑卒中死亡160万,幸存患者约750万人,其中7 0%患者遗留不同程度的残疾。
我国每年的脑血管病直接医疗费用达400亿元,间接费用高达1000亿元,给家庭和社会带来沉重的负担。
尽快开通闭塞血管,实现缺血脑组织再灌注是目前公认的急性脑梗死的最有效治疗手段。
美国FDA批准阿替普酶(rt-PA)用于发病3小时以内的急性脑梗死静脉溶栓治疗已有16年历史,但迄今为止,发达国家的静脉溶栓率仍不到10%[1]我国则只有2%左右[2]。
因此,目前真正从静脉溶栓中获益的患者仍非常少。
近十年来,血管内机械再通治疗急性脑梗死有了显著进步,在临床实践中也取得明显效果,已成为当前急性脑梗死治疗的研究热点和希望所在。
本文试图通过总结脑梗死急性期血管再通治疗的有关证据,分析存在的问题,并提出解决问题的策略。
1 血管再通的证据和思考1.1 静脉溶栓1995年,NINDS临床试验证实阿替普酶(rt-PA)可用于发病3h内急性脑梗死病人的静脉溶栓治疗[3]。
2009年,根据欧洲急性卒中协作试验ECASS-Ⅲ的结果[4],静脉溶栓时间窗延长至4.5小时。
我国指南还推荐发病6h 内的急性脑梗死患者可用尿激酶溶栓治疗[5]。
迄今为止,阿替普酶静脉溶栓治疗急性脑梗死已积累了大量的循症医学证据[6]。
最近,关于rt-PA静脉溶栓的荟萃分析主要结果为:1) 时间窗(4.5 h)内阿替普酶静脉溶栓治疗可使急性脑梗死患者获益;2)获益大小随着发病到治疗的时间(onset to treatment,OTT)延长快速下降;3) 静脉溶栓的开通率比较低,约35%左右(颈内动脉T型闭塞的开通率<10%);4)总体上,90天转归良好率(mR S评分≤2分)比较低:OTT为90分钟时只有22%,90-180分钟时只有11%,180-270分钟时只有7.1%[6]。
脑梗死质量控制指标脑梗死是指由于脑部供血不足引起脑细胞缺血、缺氧和坏死的疾病,是造成脑功能障碍和死亡的主要原因之一。
为了保证脑梗死患者的诊断和治疗质量,制定一系列质量控制指标是非常重要的。
以下是常见的脑梗死质量控制指标。
1. 门到针时间(Door-to-needle time)门到针时间是指患者到达急诊科门诊或接受急诊科评估的时间到给予溶栓治疗的时间的间隔。
这是评估急性脑梗死溶栓治疗效果的重要指标之一。
通常门到针时间应控制在60分钟以内,以最大限度地减少脑梗死患者神经功能损害。
2. 溶栓治疗前DSI评估(Decision Support Instrument,DSI)溶栓治疗前DSI评估是指对脑血栓患者进行临床评估以确定是否适合溶栓治疗。
这种评估辅助工具能够根据一系列的临床指标,患者的年龄、病史、病情等,帮助医生决定是否进行溶栓治疗,以提高治疗的安全性和有效性。
3. 溶栓治疗后恢复情况评估溶栓治疗后恢复情况评估是指对脑梗死患者进行系统评估,了解溶栓治疗的疗效和神经功能恢复情况。
常用的评估方法包括国际卒中评估量表(NIHSS)评分、功能恢复随访等。
这些评估指标可以帮助医生判断治疗是否有效,及时调整治疗方案。
4. 住院后抗血小板治疗脑梗死后的抗血小板治疗可以有效预防发生脑梗死和其他血栓栓塞事件。
对于适合抗血小板治疗的患者来说,要及时给予适当的药物治疗,并根据患者的具体情况进行监测和调整剂量。
5. 抗凝治疗的监测和控制对于需要抗凝治疗的脑梗死患者,要进行定期的国际标准化比值(INR)监测,以确保抗凝治疗的安全和有效。
还需关注患者的凝血功能,避免出现出血等副作用。
6. 完善的多学科团队管理脑梗死患者的治疗需要多学科团队的协作和管理。
这包括神经科医生、介入放射科医生、护士、康复师等多个专业的参与,以确保脑梗死患者能够得到全面、个体化的治疗和康复服务。
7. 定期的质量评估和改进对于脑梗死质量控制指标的有效实施,需要定期开展质量评估和改进工作。
HypotHesis and tHeory articlepublished: 15 February 2011doi: 10.3389/fneur.2011.00006Chinese ischemic stroke subclassificationS. Gao 1, Y . J. Wang 2*, A. D. Xu 3, Y . S. Li 4 and D. Z. Wang 51 Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China 2Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China 3Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China 4Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 5Illinois Neurological Institute Stroke Network, OSF Healthcare Systems, Department of Neurology, University of Illinois College of Medicine at Peoria, Peoria, IL, USAAccurate classification of stroke has significant impact on patient care and conduction of stroke clinical trials. The current systems such as TOAST , SSS-TOAST , Korean TOAST , and A–S–C–O have limitations. With the advent of new imaging technology, there is a need to have a more accurate stroke subclassification system. Chinese ischemic stroke subclassification (CISS) system is a new two step system aims at the etiology and then underlying mechanism of a stroke. The first step classify stroke into five categories: large artery atherosclerosis (LAA), including atherosclerosis of aortic arch and intra-/extracranial large arteries, cardiogenic stroke, penetrating artery disease, other etiology, and undetermined etiology. The second step is to further classify the underlying mechanism of ischemic stroke from the intracranial and extracranial LAA into the parent artery (plaque or thrombosis) occluding penetrating artery, artery-to-artery embolism, hypoperfusion/impaired emboli clearance, and multiple mechanisms. Although clinical validation of CISS is being planned, CISS is an innovative system that offers much more detailed information on the pathophysiology of a stroke.Keywords: ischemic stroke, subclassification, etiology, mechanism, Chineseantithrombotics as the treatment but often ineffective. This kind of presentation has prompted many clinicians to explore that the true pathology may be is at the origin of these penetrating arteries. Therefore, the stroke symptoms would be related to local hemody-namic or perfusion deficiency.With the advent of imaging technology such as 64-slice CT scan-ners, contrast enhanced MRA (CEMRA), CT angiography (CTA), CT and MRI perfusion, high resolution MRI/MRA (HR-MRI/MRA), TCD–microembolic signal (TCD–MES) detection, trans-esophageal echocardiography (TEE), and MRI of the heart, more previously non-visible underlying pathology and ambiguous lesions can now be clearly visualized. Utilizing the information from these new imaging studies, Chinese ischemic stroke subclassifica-tion (CISS) attempts to subclassify a stroke with greater accuracy. It is an improved approach to ischemic stroke subtyping.USING CISS, THE TWO STEPS (FIGUrES 1–3)THE FIrST STEP , DEFINING FIvE CaTEGOrIES OF STrOkE TyPESLarge artery atherosclerosis (LAA)In CISS, LAA includes atherosclerosis of aortic arch and intra-/extracranial large arteries.1. Aortic arch atherosclerosis(1) Acute multiple infarcts, especially involving bilateral anterior and/or anterior and posterior circulations; (2) No evidence of atherosclerosis of relevant intracranial or extracranial large arter-ies (vulnerable plaques or stenosis ≥50% or occlusion); (3) No evi-dence of potential cause of cardiogenic stroke (CS); (4) No evidence of other etiologies that can cause multifocal acute ischemic inf-arcts such as vasculitidies, hemostatic disturbances, and tumorousINTrODUCTIONAccurate subclassification of acute ischemic stroke has significant impact on patient care, secondary stroke prevention, and stroke research (conducting clinical trials, epidemiological studies, and genetic studies). Currently the most popular stroke classification system is the TOAST criteria (Adams et al., 1993) which derived from the Harvard Stroke Registry classification (Mohr et al., 1978) and the National Institute of Neurological Disorders and Stroke (NINDS) Stroke Data Bank (Sacco et al., 1989). Recently two newer subclassification systems, the SSS-TOAST (Ay et al., 2005, 2007) and the Korean TOAST (Han et al., 2007) were made available. Both upgraded and optimized diagnostic criteria for the subtypes of atherosclerosis and small artery occlusions. The newly published A–S–C–O classification (Amarenco et al., 2009) is more suitable for secondary stroke prevention, conducting clinical trials, and genetic studies. However, all of these criteria neglected intracranial atheromatous branch disease affecting penetrating arteries. Furthermore, none explored further the underling mechanisms of ischemic strokes caused by large artery atherosclerosis (LAA).Here is an example of why these criteria have their limitations in the accuracy in discerning the cause of a stroke. In clinical practice, we often encounter patients diagnosed with small vessel disease stroke. Their MRIs often show a singular lacunar infarction that is less than 1.5 cm in diameter in the territory of the penetrating artery. Vascular imaging show no abnormality in the parenting arteries where this diseased vessel derived from. Clinicians would lump this kind of stroke into either small vessel disease, small artery disease, or small artery occlusion. They would consider that the underlying pathology is lipohylization. Patients would receiveEdited by:David S. Liebeskind, University of California Los Angeles, USA Reviewed by:Jose G. Merino, Suburban Hospital, USANerses Sanossian, University of Southern California, USAWengui Yu, University of T exas Southwestern Medical Center at Dallas, USA*Correspondence:Y . J. Wang, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100053, China.e-mail: yongjunwang111@of stenosis in the parent artery (detected by TCD, MRA, CTA, or DSA); (3) No evidence of potential cardiac-origin embolic cause; (4) Other possible causes have also been excluded.3. Cardiogenic stroke(1) Acute multiple infarcts, especially involving bilateral anterior and/or anterior and posterior circulations (including cortical infarcts) that have occurred closely in time; (2) No evidence of atherosclerosis on relevant intracranial or extracranial large arteries (vulnerable plaques or stenosis ≥50% or occlusion); (3) No evi-dence of other etiologies that can cause multifocal acute ischemic infarcts such as vasculitidies, hemostatic disturbances, and tumor-ous embolism; (4) Evidence of cardiac disease that has a potential for embolism; (5) If the possibility of aortic arch atherosclerosis has been excluded, CS is definite. Otherwise, the category should be possible CS.The potential lesions included under this category are: mitral stenosis, prosthetic heart valve, myocardial infarction within the past 4 weeks, mural thrombus in the left cavities, left ventricularaneurysm, any documented history of permanent or transient atrial fibrillation or flutter with or without spontaneous echo contrast orleft atrial thrombus, sick sinus syndrome, dilated cardiomyopathy, ejection fraction <35%, endocarditis, intracardiac mass, PFO plus in situ thrombosis, PFO plus concomitant PE, or DVT preceding the brain infarction (Amarenco et al., 2009).4. Penetrating artery diseaseAcute isolated infarct in the territory of one penetrating artery caused by atherosclerosis at the proximal segment of the penetrat-ing arteries or lipohyalinotic degeneration of arterioles is called penetrating artery disease (PAD).e mbolism; (5) Evidence of significant aortic arch atherosclerosis (aortic plaques >4 mm and/or aortic thrombi, detected by HR-MRI/MRA and/or TEE; Reynolds et al., 2003; Harloff et al., 2008).2. Intra- and extracranial large arteries atherosclerosis(1) Any distribution of acute infarcts (except isolated infarct in the territory of one penetrating artery), with evidence of atherosclero-sis involving intracranial or extracranial large arteries (vulnerable plaques or stenosis ≥50%) that supply the area of infarction; (2) Concerning isolated penetrating artery territory infarct, the follow-ing circumstance should also be included in LAA: with evidence of atherosclerotic plaque (detected by HR-MRI) or anydegreeFigure 1 | illustration of large artery atherosclerosis, cardiogenic stroke, and penetrating artery disease.Figure 2 | Detailed illustration for intracranial large arteryatherosclerosis and penetrating artery disease.1. Parent artery (plaque or thrombus) occluding penetratingartery : Isolated acute infarct in penetrating artery territory, the parent artery has evidence of plaque or any degree of stenosis. For example, an isolated acute infarct located in the basal ganglia, and no other acute infarct in the territory supplied by the ipsilateral MCA; or an isolated acute infarct located in the pons, and no other acute infarct in the terri-tory supplied by the basilar artery. The acute isolated infarct is posited to be caused by the plaque of the parent artery protruding and subsequently occluding blood flow to the p enetrating artery.2. Artery-to-artery embolism: Imaging shows small cortical infarcts or a single territory infarct in the area supplied by the relevant intracranial or extracranial artery atherosclerosis. No borderzone infarct related to this diseased artery. This diagno-sis is confirmed if the infarcts are multiple, or the single infarct is accompanied by TCD–MES on TCD. However, a single cor-tical or territorial infarct without obtaining MES can also be diagnosed as artery-to-artery embolism.3. Hypoperfusion/impaired emboli clearance: the acute infarcts occur solely in the borderzone area. No acute cortical or terri-tory infarcts related to this diseased artery. The degree of steno-sis of the clinically relevant intracranial or extracranial artery is usually >70% with or without evidence of hypoperfusion or poor collateral compensation in the related region of perfusion.4. Multiple mechanism: two or more underlying mechanisms mentioned above combined together.ILLUSTraTIONS OF CISS Comparing to other classification systems, CISS has the followingmajor differences: (1) aortic arch atherosclerosis belongs to LAA. Given that the intrinsic lesion is atherosclerosis, it is more reason-able to classify aortic arch atherosclerosis into LAA (Amarenco et al., 2009). (2) In acute isolated penetrating artery territory inf-arcts, they would be classified into LAA if there was atherosclerotic plaque or stenosis of the parent artery regardless of the presence of any plaques or stenosis. (3) PAD is a new concept. Excluding other diseases, acute isolated penetrating artery territory infarcts are(1) Acute isolated infarct in clinically relevant territory of one penetrating artery, regardless of the size of infarct; (2) No evidenceof atherosclerotic plaque (detected by HR-MRI) or any degreeof stenosis in the parent artery (detected by TCD, MRA, CTA, orDSA). (3) With evidence of vulnerable plaques or stenosis ≥50%in ipsilateral proximal intracranial or extracranial large arteries,isolated penetrating artery infarct is classified in undeterminedetiology (UE; multiple etiology); (4) With evidence of cardiacdisease that has a potential for embolism, isolated penetratinginfarct is classified in UE (multiple etiology); (5) Other possiblecauses has been excluded.5. Other etiologiesEvidence of other specific diseases (e.g., vascular related disease,infective disorder, inherited disease, hematological system disorder,vasculitis), that are relevant to the index stroke and can be demon-strated by blood tests, cerebrospinal fluid (CSF) tests, and vascularimaging. The possibility of LAA or CS has been excluded.6. Undetermined etiologyNo evidence of any specific potential etiology that is clinically rel-evant to the index stroke.Multiple: Evidence of more than one potential cause, but difficultto determine which was the relevant cause of the index stroke.Unknown: No determined cause is responsible for the indexstroke unless more investigations would be performed.Inadequate evaluation: Routine assessments of intracranial andextracranial arteries or heart are not completed, which makes theetiology undetermined.THE SECOND STEP , DEFINING THE UNDErLyING MECHaNISM FOr ISCHEMIC STrOkE OF INTraCraNIaL Or ExTraCraNIaL LarGE arTEry aTHErOSCLErOSIS (FIGUrE 3)In the CISS system, the underlying mechanisms of ischemic stroke caused by intracranial or extracranial LAA are further defined as the parent artery (plaque or thrombus) occluding penetrating artery, artery-to-artery embolism, hypoperfusion/impaired emboli clear-ance, and multiple mechanism.Figure 3 | Overview of CiSS.J. Y., Koroshetz, W. J., and Sorensen, A. G. (2007). A computerized algo-rithm for etiologic classification of ischemic stroke: the causative clas-sification of stroke system. Stroke 38, 2979–2984.subtyping: the A-S-C-O (phenotypic) classification of stroke. Cerebrovasc. Dis. 27, 502–508.Ay, H., Benner, T., Arsava, E. M., Furie, K. L., Singhal, A. B., Jensen, M. B., Ayata, C., Towfighi, A., Smith, E. E., Chong,in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24, 35–41.Amarenco, P ., Bogousslavsky, J., Caplan, L. R., Donnan, G. A., and Hennerici, M. G. (2009). New approach to strokerEFErENCESAdams, H. P . Jr., Bendixen, B. H., Kappelle, L. J., Biller, J., Love, B. B., Gordon, D. L., and Marsh, E. E. III. (1993). Classification of subtype of acute ischemic stroke. Definitions for useet al., 2002; Bang et al., 2004; Lee et al., 2005; Caplan et al., 2006): (1) The fragments of plaques or thrombi do not dislodge, the pen-etrating artery is not blocked by plaques or thrombi, there is a well- c ompensated pia mater collateral circulation and the newly generated collateral arteries can supply the territory of the penetrat-ing arteries. This MCA territory can endure long-term ischemia and there will be no infarcts in this region even after the MCA is completely occluded. (2) The fragments of plaques or thrombi do not dislodge, the penetrating artery is not blocked by atherosclerosis and there is poorly established collateral circulation. Borderzone infarction may occur if cerebral perfusion is compromised due to hypoperfusion. This mechanism is called hypoperfusion. (3) If the orifice of one or more penetrating arteries are blocked by plaque or thrombi, infarction will occur in the regions of the penetra-tor. This mechanism is called parent artery occluding penetrating artery. (4) If the fragments of plaques or thrombi are dislodged and travel to distal branches, this mechanism is labeled artery-to-artery embolism or impaired emboli clearance based on the location of the infarcts. The underlying mechanism of infarction related to the basilar artery is similar to that of MCA.The mechanism of hypoperfusion refers to borderzone inf-arction from compromised hemodynamics. The mechanism of impaired emboli clearance means that the borderzone infarct is posited to result from impaired clearance of emboli due to both hypoperfusion and embolism. Actually, it is difficult to completely separate these two mechanisms. For a patient with ICA or MCA stenosis (>70%), develop a borderzone infarct and TCD also detects MES, then the underlying mechanism would be impaired emboli clearance. On the other hand, we cannot exclude the existence of impaired emboli clearance mechanism even though there is no MES detected by TCD. Therefore, it would be more appropriate to combine the two mechanisms together.CONCLUSIONChinese ischemic stroke subclassification introduces a new way of subclassifying acute ischemic stroke that takes into considera-tion of both etiological and pathophysiological information. In CISS, aortic arch atherosclerosis is classified into LAA, and a new subclassification of PAD has been created. The underling mecha-nism of ischemic stroke from the intracranial and extracranial LAA has been subclassified into four categories: the parent artery (plaque or thrombus) occluding penetrating artery, artery-to-artery embolism, hypoperfusion/impaired emboli clearance, and mul-tiple mechanisms. CISS is an improved and more rational way of stroke subtyping. It has deepened our understanding into the pathophysiology of stroke.aCkNOWLEDGMENTThe authors would like to express their sincere gratitude to Dr. Louis R. Caplan for his time, expertise and advise on editing, and final-izing this manuscript.considered to be caused by the penetrating artery lesions. Pathology has shown that atheromatous disease at the proximal segment of the penetrating arteries mainly lead to symptomatic infarcts, while fibrohyalinosis of arterioles is mainly associated with asymptomatic lacunes or diffuse white matter hyperintensities (Fisher, 1969, 1979; Fisher and Caplan, 1977).Caplan (1989) noted that intracranial branch atheromatous disease was a neglected, understudied, and underused concept. Unfortunately, in the past 20 years, it has been rare to find vascu-lar pathology studies that trace the entire penetrating arteries and their parent arteries. Researchers either studied the parent artery (leading to the finding of atherosclerosis of parent artery) or more distal segment of the penetrating artery and the arteriole (leading to the finding of arteriolar fibrohyalinosis; Lammie et al., 1979; Chen et al., 2008; Klein et al., 2010). Fibrohyalinosis of small arteries and arterioles causes symptomatic acute penetrating artery infarcts less often than atheromatous branch disease. Therefore, the current opinion that symptomatic penetrating artery territory lesions are equivalent to intrinsic small vessel disease is inappropriate.Even if atherosclerotic lesions involving the proximal segment of the penetrating arteries was not considered the main cause of symptomatic penetrating artery territory infarcts, it should be taken into account as well as arteriolar fibrohyalinosis. Diffuse white matter hyperintensities can reflect arteriolar fibrohyalino-sis, but atherosclerotic lesions and fibrohyalinosis often coexist (Fisher, 1965), and current imaging technology can not show the penetrating artery wall directly. Therefore, clinically it is difficult to distinguish between the two. With further improvements in imag-ing, there could develop further PAD subclassifications. In addition, the introduction of the concept of PAD not only avoids confusion with intrinsic small vessel disease, but also avoids confusion with the “lacunar” concept.In LAA, several outcomes of atherosclerotic stenosis or occlusion of the carotid artery may occur: (1) There is no infarct or ischemic symptoms because the fragments of plaques or thrombi do not dislodge and there is a well-compensated Willis’ circle. (2) The fragments of plaques or thrombi do not dislodge, but borderzone infarction may occur if there is a poorly compensated Willis’ circle. Cerebral perfusion may be compromised due to hypoperfusion events such as sudden drop in blood pressure or in other systemic hypoperfusion events (Momjian-Mayor and Baron, 2005). (3) If the fragments of plaques or thrombi dislodge and travel to distal branches, this may lead to a mechanism of artery-to-artery embo-lism or impaired emboli clearance depending on the location of the infarcts (Fisher and Caplan, 1977; Derdeyn et al., 2001; Chaves et al., 2003). The mechanism of vertebral artery infarction is similar to that of the extracranial carotid artery.For intracranial large arteries (MCA ’s), thrombosis on atheroma will make the stenosis more severe and may lead to complete occlusion of the artery. There are several processes and outcomes of atherothrombotic stenosis or occlusion of the MCA (WongW ong, K. S., Gao, S., Chan, Y . L., Hansberg, T., Lam, W. W., Droste, D. W., Kay, R., and Ringelstein, E. B. (2002). Mechanisms of acute cerebral infarc-tions in patients with middle cerebral artery stenosis: a diffusion-weighted imaging and microemboli monitoring study. Ann. Neurol. 52, 74–81.Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-mercial or financial relationships that could be construed as a potential conflict of interest.Received: 02 October 2010; accepted: 31 January 2011; published online: 15 February 2011.Citation: Gao S, Wang YJ, Xu AD, Li YS and Wang DZ (2011) Chinese ischemic stroke subclassification. Front. Neur. 2:6. doi: 10.3389/fneur.2011.00006This article was submitted to Frontiers in Stroke, a specialty of Frontiers in Neurology.Copyright © 2011 Gao, Wang, Xu, Li and Wang. This is an open-access article subject to an exclusive license agreement between the authors and Frontiers Media SA, which permits unrestricted use, distri-bution, and reproduction in any medium, provided the original authors and source are credited.a c oincidental finding in ischemic stroke? Cerebrovasc. Dis. 29, 140–mmie, G. A., Brannan, F ., Slattery, J., and Warlow, C. (1979). Nonhypertensive cerebral small-vessel disease an autopsy study. Stroke 28, 2222–2229.Lee, D. K., Kim, J. S., Kwon, S. U., Yoo, S. H., and Kang, D. W. (2005). Lesion patterns and stroke mechanism in atherosclerotic middle cerebral artery disease: early diffusion-weighted imag-ing study. Stroke 36, 2583–2588.Mohr, J. P ., Caplan, L. R., Melski, J. W., Goldstein, R. J., Duncan, G. W., Kistler, J. P ., Pessin, M. S., and Bleich, H. L. (1978). The Harvard Cooperative Stroke Registry: a prospective registry. Neurology 28, 754–762.Momjian-Mayor, I., and Baron, J. C. (2005). The pathophysiology of water-shed infarction in internal carotid artery disease: reviews of cerebral per-fusion studies. Stroke 36, 567–557.Reynolds, H. R., Tunick, P. A., and Kronzon, I. (2003). Role of trans-esophageal echocardiography in the evaluation of patients with stroke. Curr. Opin. Cardiol. 18, 340–345.Sacco, R. L., Ellenberg, J. H., Mohr, J. P ., Tatemichi, T. K., Hier, D. B., Price, T. R., and Wolf, P . A. (1989). Infarcts of undetermined cause: the NINCDS Stroke Data Bank. Ann. Neurol. 25, 382–390.R. L. Jr., and Powers, W. J. (2001). Sever hemodynamic impairment and bor-der zone-region infarction. Radiology 220, 195–201.Fisher, C. M. (1965). Lacunes: small, deep cerebral infarcts. Neurology 15, 774–784.Fisher, C. M. (1969). The arterial lesions underlying lacunes. Acta Neuropathol. 12, 1–15.Fisher, C. M. (1979). Capsular infarcts. Arch. Neurol. 36, 65–73.Fisher, C. M., and Caplan, L. R. (1977). Bilateral occlusion of basilar artery branches. J. Neurol. Neurosurg. Psychiatr. 40, 1182–1189.Han, S. W., Kim, S. H., Lee, J. Y ., Chu, C. K., Y ang, J. H., Shin, H. Y ., Nam, H. S., Lee, B. I., and Heo, J. H. (2007). A new sub-type classification of ischemic stroke based on treatment and etiologic mechanism. Eur. Neurol. 57, 96–102.Harloff, A., Dudler, P ., Frydrychowicz, A., Strecker, C., Stroh, A. L., Geibel, A., Weiller, C., Hetzel, A., Hennig, J., and Markl, M. (2008). Reliability of aortic MRI at 3 T esla in patients with acute cryptogenic stroke. J. Neurol. Neurosurg. Psychiatr. 79, 540–546.Klein, I. F., Labreuche, J., Lavallée, P . C., Mazighi, M., Duyckaerts, C., Hauw, J. J., and Amarenco, P . (2010). Is mod-erate atherosclerotic stenosis in the middle cerebral artery a cause of or Ay, H., Furie, K. L., Singhal, A., Smith, W. S., Sorensen, A. G., and Koroshetz, W. J. (2005). An evidence-based causative classification system for acute ischemic stroke. Ann. Neurol. 58, 688–697.Bang, O. Y ., Joo, S. Y ., Lee, P . H., Joo, U. S., Lee, J. H., Joo, I. S., and Huh, K. (2004). The course of patients with lacunar inf-arcts and a parent arterial lesion: simi-larities to large artery vs small artery disease. Arch. Neurol. 61, 514–519.Caplan, L. R. (1989). intracranial branch atheromatous disease: a neglected, understudied, and underused concept. Neurology 39, 1246–1250.Caplan, L. R., Wong, K. S., Gao, S., and Hennerici, M. G. (2006). Is hypop-erfusion an important cause of strokes? If so, how. Cerebrovasc. Dis. 21, 145–153.Chaves, C. J., Silver, B., Schlaug, G., Caplan, L. R., and Warach, S. (2003). Diffusion- and perfusion-weighted MRI patterns in borderzone infarcts. Stroke 31, 1091–1096.Chen, X. Y., Wong, K. S., Lam, W. W. M., Zhao, H.-L., and Ng, H. K. (2008). Middle cerebral artery atherosclero-sis: histological comparison between plaques associated with and not asso-ciated with infarct in a postmortem study. Cerebrovasc. Dis. 25, 74–80.Derdeyn, C. P ., Khosla, A., Videen, T. O., Fritsch, S. M., Carpenter, D. L., Grubb,中国缺血性卒中亚型(Chinese Ischemic Stroke Subclassification, CISS)(原文来自:S.Gao, Y.J.Wang, A.D.Xu, Y.S.Li, D.Z.Wang, Chinese Ischemic Stroke Subclassification. Frontiers in Neurology.2011,2(6),1-5.)急性缺血性卒中正确的临床分型对患者的急性期治疗、二级预防以及卒中相关研究如临床试验、流行病学和基因学研究都至关重要。