3.1.1 排列及排列数的计算
- 格式:pptx
- 大小:1.82 MB
- 文档页数:22
3.1.3 组合与组合数第1课时组合与组合数学习任务核心素养1.理解组合与组合数的概念.(重点)2.会推导组合数公式,并会应用公式求值.(重点) 3.理解组合数的两个性质,并会求值、化简和证明.(难点、易混点)1.通过学习组合与组合数的概念,培养数学抽象的素养.2.借助组合数公式及组合数的性质进行运算,培养数学运算的素养.高考不分文理科后,思想政治、历史、地理、物理、化学、生物这6大科目是选考的,如果考生任选3科作为自己的考试科目,那么选考的组合方式一共有多少种可能的情况?问题:其中选物理不选历史和选历史不选物理的情况又分别有几种?[提示]这几个问题都与顺序无关,学完本节内容便能顺利求解.一般地,从n个不同对象中取出m(m≤n)个对象并成一组,称为从n个不同对象中取出m 个对象的一个组合.提醒:(1)所谓并成一组是指与顺序无关,例如组合a,b与组合b,a是同一组合,可以把一个组合看成一个集合.(2)组合概念的两个要点:①n个对象是不同的;②“只取不排”,即取出的m个对象组成的组合与取出对象的先后顺序无关,无序性是组合的特征性质.(3)如果两个组合中的对象完全相同,那么不管对象的顺序如何,它们都是相同的组合.如果两个组合中的对象不完全相同(即使只有一个对象不同),那么它们就是不同的组合.拓展:排列与组合的异同排列组合相同点从n个不同对象中取出m(m≤n)个对象不同点按照一定的顺序排成一列不管顺序地并成一组1.思考辨析(正确的打“√”,错误的打“×”)(1)两个组合相同的充要条件是组成组合的元素完全相同.()(2)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.()(3)从甲、乙、丙3名同学中选出2名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.()(4)从甲、乙、丙3名同学中选出2名,有3种不同的选法.()[答案](1)√(2)√(3)×(4)√知识点2组合数的概念、公式定义从n个不同对象中取出m个对象的所有组合的个数,称为从n个不同对象中取出m个对象的组合数表示C m n(n,m∈N+且m≤n)组合数公式乘积式C m n=A m nA m m=n(n-1)·(n-2)…(n-m+1)m!阶乘式C m n=n!m!(n-m)!“组合”与“组合数”是同一个概念吗?[提示]同“排列”与“排列数”是两个不同的概念一样,“组合”与“组合数”也是两个不同的概念.例如,从3个不同对象a,b,c中每次取出2个对象的所有组合为ab,ac,bc,共3种,其中每一种情况都是一个组合,而组合数是3.拓展:(1)组合数公式C m n=n(n-1)…[n-(m-1)]m×(m-1)×…×2×1的形式特点:①分子是m个数相乘,且第一个因数是n,后面每一个因数比它前面一个因数少1,最后一个因数是n-m+1;②分母是m的阶乘.(2)组合数公式C m n=A m nA m m体现了组合数与相应排列数的关系,一般在计算具体的组合数时会用到.(3)组合数公式C m n =n !(n -m )!m !的主要作用有:①用于计算m ,n 较大时的组合数;②对含有字母的组合数的式子进行变形和证明.2.C 218=________,C 1718=________.153 18[C 218=18×172=153, C 1718=18!17!(18-17)!=18.]3.从3,5,7,11这四个数中任取两个相乘,可以得到不相等的积的个数为________.6[从四个数中任取两个数的取法为C 24=6.]类型1 组合的概念【例1】 判断下列各事件是排列问题还是组合问题.(1)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次? (2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能? (3)从10个人里选3个代表去开会,有多少种选法? (4)从10个人里选出3个不同学科的课代表,有多少种选法?[思路点拨]要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关. [解](1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别. (2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序的区别.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表有顺序的区别.1.根据排列与组合的定义进行判断,区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.2.区分有无顺序的方法把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[跟进训练]1.(对接教材P 22练习AT 2)从5个不同的元素a ,b ,c ,d ,e 中取出2个,写出所有不同的组合.[解]要想写出所有组合,就要先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出来,如图所示:由此可得所有的组合为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de . 类型2 组合数公式的应用【例2】 (1)式子n (n +1)(n +2)…(n +100)100!可表示为( )A .A 100n +100B .C 100n +100 C .101C 100n +100D .101C 101n +100(2)求值:C 5-n n +C 9-n n +1.[思路点拨] 根据题目的特点,选择适当的组合数公式进行求值或证明.(1)D [分式的分母是100!,分子是101个连续自然数的乘积,最大的为n +100,最小的为n ,故n (n +1)(n +2)…(n +100)100!=101·n (n +1)(n +2)…(n +100)101!=101C 101n +100.] (2)[解] 由组合数定义知:⎩⎪⎨⎪⎧0≤5-n ≤n ,0≤9-n ≤n +1,所以4≤n ≤5,又因为n ∈N +, 所以n =4或5.当n =4时,C 5-n n +C 9-n n +1=C 14+C 55=5;当n =5时,C 5-n n +C 9-n n +1=C 05+C 46=16.关于组合数计算公式的选取1.涉及具体数字的可以直接用公式C mn =A m n A m m=n (n -1)(n -2)…(n -m +1)m !计算.2.涉及字母的可以用阶乘式C m n =n !m !(n -m )!计算.[跟进训练]2.(1)计算:C 410-C 37·A 33; (2)求证:C m n =m +1n +1C m +1n +1. [解] (1)C 410-C 37·A 33=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:右边=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C m n =左边.即等式成立.类型3 简单的组合问题解答简单组合问题的关键是什么?[提示] 关键是把实际问题模型化,在此基础上选择组合数公式求解.【例3】 现有10名教师,其中男教师6名,女教师4名. (1)现要从中选2名去参加会议,有多少种不同的选法?(2)选出2名男教师或2名女教师参加会议,有多少种不同的选法? (3)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45(种).(2)可把问题分两类情况:第1类,选出的2名是男教师有C 26种方法; 第2类,选出的2名是女教师有C 24种方法.根据分类加法计数原理,共有C26+C24=15+6=21种不同选法.(3)从6名男教师中选2名的选法有C26种,从4名女教师中选2名的选法有C24种,根据分步乘法计数原理,共有不同的选法C26×C24=15×6=90(种).(变结论)本例其他条件不变,问题变为从中选2名教师参加会议,至少有1名男教师的选法是多少?最多有1名男教师的选法又是多少?[解]至少有1名男教师可分两类:1男1女有C16C14种,2男0女有C26种.由分类加法计数原理知有C16C14+C26=39种.最多有1名男教师包括两类:1男1女有C16C14种,0男2女有C24种.由分类加法计数原理知有C16C14+C24=30种.解简单的组合应用题的策略1.解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.2.要注意两个基本原理的运用,即分类与分步的灵活运用.提醒:在分类和分步时,一定注意有无重复或遗漏.[跟进训练]3.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“━━”和阴爻“━━”,如图就是一重卦.如果某重卦中有2个阳爻,则它可以组成________种重卦.(用数字作答)15[由题设知,“重卦”的种数为C26=15.]1.下列四个问题属于组合问题的是()A.从4名志愿者中选出2人分别参加导游和翻译的工作B.从0,1,2,3,4这5个数字中选取3个不同的数字,组成一个三位数C.从全班同学中选出3名同学出席运动会开幕式D.从全班同学中选出3名同学分别担任班长、副班长和学习委员C [A 、B 、D 项均为排列问题,只有C 项是组合问题.] 2.若A 3n =12C 2n ,则n 等于( )A .8B .5或6C .3或4D .4 A [A 3n =n (n -1)(n -2),C 2n =12n (n -1),所以n (n -1)(n -2)=12×12n (n -1).由n ∈N +,且n ≥3,解得n =8.]3.从7名男生和5名女生中选4人参加夏令营,规定男、女同学至少各有1人参加,则选法总数应为( )A .C 17C 15C 210 B .C 17C 15A 210C .C 412-C 47-C 45D .C 17C 15(C 26+C 14C 16+C 24)C [任选4人的方法数为C 412,减去其中全部为男生或全部为女生的方法数C 47+C 45,故选法总数应为C 412-C 47-C 45.]4.从9名学生中选出3名参加“希望英语”口语比赛,有______种不同的选法. 84[由题意可知共有C 39=9×8×73×2×1=84种.]5.6个朋友聚会,每两人握手1次,一共握手________次.15[每两人握手1次,无顺序之分,是组合问题,故一共握手C 26=15次.]回顾本节内容,自我完成以下问题: 试比较排列与组合的区别与联系. [提示] 名称 排列组合相同点 都是从n 个不同元素中取m (m ≤n )个元素,元素无重复名称排列组合不同点1.排列与顺序有关;2.两个排列相同,当且仅当这两个排列的元素及其排列顺序完全相同1.组合与顺序无关;2.两个组合相同,当且仅当这两个组合的元素完全相同联系 A m n =C m n A mm。
初中数学排列组合教案设计参考第一章:排列组合的基本概念1.1 排列的概念:排列是指从n个不同元素中,取出m(m≤n)个元素,按照一定的顺序排成一列的过程。
1.2 组合的概念:组合是指从n个不同元素中,取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。
第二章:排列的计算方法2.1 排列数公式:排列数A(n,m)表示从n个不同元素中取出m个元素的所有排列的数量,计算公式为A(n,m) = n! / (n-m)!,其中n!表示n的阶乘。
2.2 排列的计算实例:通过具体实例,让学生掌握排列数的计算方法。
第三章:组合的计算方法3.1 组合数公式:组合数C(n,m)表示从n个不同元素中取出m个元素的所有组合的数量,计算公式为C(n,m) = A(n,m) / m!,其中A(n,m)为排列数。
3.2 组合的计算实例:通过具体实例,让学生掌握组合数的计算方法。
第四章:排列组合的综合应用4.1 排列组合在实际问题中的应用:通过实际问题,让学生了解排列组合在生活中的应用,如抽奖、比赛分组等。
4.2 排列组合问题的解决策略:引导学生学会解决排列组合问题的方法和技巧。
第五章:练习与提高5.1 针对本章内容的练习题:设计一些有关排列组合的练习题,让学生巩固所学知识。
5.2 练习题解答:为学生提供练习题的解答,帮助学生巩固知识,提高解题能力。
第六章:排列组合的拓展应用6.1 错位排列:介绍错位排列的概念和计算方法,分析错位排列在实际问题中的应用。
6.2 循环排列:讲解循环排列的概念和计算方法,探讨循环排列在实际问题中的应用。
第七章:排列组合的易错题分析7.1 分析学生常见的排列组合错误类型:如概念混淆、公式运用错误等。
7.2 举例讲解易错题:针对常见错误类型,给出相应的例题,并讲解正确解题方法。
第八章:排列组合在生活中的应用8.1 排列组合在日常生活场景中的应用:如排列组合在排座位、比赛分组等场景中的应用。
8.2 案例分析:分析实际生活中的排列组合问题,引导学生运用所学知识解决实际问题。
排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )个个个个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )种种种种解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6 在(x- )10的展开式中,x 6的系数是( )-27C B.27C 410 -9C D.9C 410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0. (五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )种种种种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
排列组合公式/排列组合计算公式排列A------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示.A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Anm(n为下标,m为上标))Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Anm/Amm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式A是指排列,从N个元素取R个进行排列。
数字的组合与排列认识组合数和排列数的计算方法数字的组合与排列:认识组合数和排列数的计算方法数字的组合与排列是概率与统计学中非常基础而重要的概念。
通过理解组合数和排列数的计算方法,我们能够更深入地认识数字的组合和排列。
本文将详细介绍组合数和排列数的概念、计算方法以及实际应用。
一、组合数的概念与计算方法1.1 组合数的定义组合数是指从n个不同元素中取出m个元素(m≤n),不考虑元素的顺序,所能组成的不同组合的个数。
组合数通常用C(n,m)表示。
1.2 组合数的计算方法计算组合数可以使用数学公式,即组合数公式:C(n,m) = n! / (m! * (n-m)!),其中n!表示n的阶乘。
1.3 组合数的实际应用举例组合数在实际问题中有广泛应用,例如:- 从一群人中选出几个人组成小组的方法数- 从若干种颜色中选出几种颜色组成调色盘的方法数- 从一副扑克牌中选出几张牌组成特定牌型的方法数二、排列数的概念与计算方法2.1 排列数的定义排列数是指从n个不同元素中取出m个元素(m≤n),考虑元素的顺序,所能组成的不同排列的个数。
排列数通常用A(n,m)表示。
2.2 排列数的计算方法计算排列数可以使用数学公式,即排列数公式:A(n,m) = n! / (n-m)!,其中n!表示n的阶乘。
2.3 排列数的实际应用举例排列数在实际问题中也有广泛应用,例如:- 从若干本书中选出几本书排列在书架上的方法数- 从若干个字母中选出几个字母排列成不同的单词的方法数- 从一副扑克牌中选出几张牌按照一定顺序排列的方法数三、组合数与排列数的联系与区别3.1 联系组合数和排列数都是从一组元素中选出若干个元素的计算方法,但不同的是,组合数不考虑元素的顺序,而排列数考虑元素的顺序。
3.2 区别组合数的计算不考虑元素的顺序,只关注选取的元素集合是否相同;而排列数的计算则将元素的顺序作为计算的要素。
因此,在某些情况下,组合数和排列数的计算结果是不同的。
排列组合问题(教案)第一章:排列与组合的基本概念1.1 排列的概念:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。
1.2 组合的概念:组合是指从n个不同元素中取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。
1.3 排列数与组合数的表示:排列数用符号A(n,m)表示,组合数用符号C(n,m)表示。
第二章:排列数的计算方法2.1 排列数的直接计算方法:A(n,m) = n ×(n-1) ×(n-2) ××(n-m+1),当n≥m时成立。
2.2 排列数的递推计算方法:A(n,m) = A(n-1,m-1) ×(n-m+1),当n≥m时成立。
2.3 排列数的周期性:对于任意的正整数n和m,A(n,m)与A(n,n-m)相等。
第三章:组合数的计算方法3.1 组合数的直接计算方法:C(n,m) = A(n,m) / m!,当n≥m时成立。
3.2 组合数的递推计算方法:C(n,m) = C(n-1,m-1) + C(n-1,m),当n≥m时成立。
3.3 组合数的性质:C(n,m) = C(n,n-m),且C(n,m) = C(n-1,m-1) + C(n-1,m)。
第四章:排列组合的应用实例4.1 人员选拔问题:从n个人中选拔m个人,有多少种不同的选拔方式?4.2 活动安排问题:有n个活动,每个活动可以独立进行或进行,有多少种不同的安排方式?4.3 物品分配问题:有n个相同的物品,需要分成m组,每组至少有一个物品,有多少种不同的分配方式?第五章:排列组合问题拓展5.1 错位排列问题:将一个长度为n的序列中的每个元素错位排列,求错位排列的总数。
5.2 循环排列问题:将一个长度为n的序列进行循环排列,求循环排列的总数。
5.3 限制条件的排列组合问题:在排列组合问题中,添加一些限制条件,如元素不可重复使用等,求解符合条件的排列组合总数。
1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同[例题分析]排列组合思维方法选讲1.首先明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。
分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。
排列与组合的计算排列与组合是数学中重要的概念和计算方法,广泛应用于概率论、统计学、信息论等领域。
通过排列与组合的计算,我们可以解决很多实际问题,如计算可能的组合情况、选取特定条件下的排列次序等。
本文将介绍排列与组合的概念、计算公式及应用案例。
一、排列的计算排列是从给定的元素中选出若干个进行排列,考虑元素的顺序。
例如有4个元素A、B、C、D,从中选取3个元素进行排列,可能的排列结果有ABC、ACB、BAC、BCA、CAB、CBA共6种。
1. 无重复元素的排列当待排列元素没有重复时,排列的计算公式为:P(n, k) = n! / (n-k)!,其中n表示元素的总个数,k表示选取的元素个数。
2. 有重复元素的排列当待排列元素中存在重复元素时,排列的计算方法需要考虑重复元素的情况。
以4个元素A、B、B、C为例,从中选取3个元素进行排列,可能的排列结果有ABB、BAB、BBA、ABC、ACB、BAC、BCA、CAB、CBA共9种。
此时,排列的计算公式为:P'(n, k) = n! / (n1! * n2! * ... * nk!),其中n表示所有元素的总个数,n1、n2、...、nk分别表示每个重复元素的个数。
二、组合的计算组合是从给定的元素中选出若干个进行组合,不考虑元素的顺序。
例如有4个元素A、B、C、D,从中选取2个元素进行组合,可能的组合结果有AB、AC、AD、BC、BD、CD共6种。
组合的计算公式为:C(n, k) = n! / (k! * (n-k)!),其中n表示元素的总个数,k表示选取的元素个数。
三、排列与组合的应用案例排列与组合的计算方法在实际问题中有广泛的应用。
以下是几个经典案例:1. 彩票选号彩票选择号码可以看作是从给定的号码中选取若干个元素进行排列。
例如双色球彩票,从红球中选取6个号码,蓝球中选取1个号码,可以计算出共有多少种可能的中奖组合。
2. 课程选修学生在选修课程时,可以根据排列与组合的计算方法计算出有多少种选修课程的不同组合情况。
probability theory and examples 课后解答1. 引言1.1 概述概率论是一门研究随机事件发生的可能性及其规律的数学分支。
随机性存在于我们日常生活中的各个方面,从天气预报到股市波动,从飞机失事的概率到买彩票中奖的概率,无处不在。
因此,了解和应用概率论对我们做出正确决策、推断和预测至关重要。
本篇长文旨在深入讲解概率论的基本理论和主要计算方法,并通过实际应用例子进行解析。
文章将介绍概率论的基本概念和定义,探讨概率公理化系统及其在随机变量与概率分布中的应用。
同时,我们将详细介绍组合与排列的计算方法、条件概率和全概率公式、独立事件和乘法法则等重要内容。
另外,我们还将深入讨论常见的概率分布模型,包括二项分布、泊松分布、正态分布等连续型和离散型随机变量,并探讨它们的特征参数与统计推断方法。
最后,我们将通过实际案例展示如何应用所学知识进行数据分析和推断。
1.2 文章结构本文共分为五个主要部分。
首先,在概率论的概述中,我们将介绍本文的背景和目的,解释概率论在现实生活中的重要性。
其次,在概率理论概述部分,我们将详细讨论概率论的基本定义和基本概念,并介绍随机变量与概率分布的关系。
然后,在概率计算方法部分,我们将深入探讨组合与排列的计算方法、条件概率和全概率公式以及独立事件和乘法法则等内容。
接下来,在常见的概率分布模型部分,我们将详细介绍二项分布、泊松分布、正态分布等常见模型,并说明它们在实际应用中的意义。
最后,在结论部分,我们将总结文章主要观点和发现,并提出对未来研究的展望和建议。
1.3 目的本篇长文旨在帮助读者全面了解并掌握概率论及其应用方法。
通过学习本文所述内容,读者将能够理解概率论相关术语和定理,并能够应用这些知识进行数据统计、推断和预测。
无论是从事科学研究、金融投资还是进行决策分析,概率论都提供了一种强大而必不可少的工具。
在完成本篇长文阅读后,我们相信读者将能够更加自信地应对各种概率相关问题,并在实践中获得更好的成果。
排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个 D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种 解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6 在(x- )10的展开式中,x 6的系数是( )A.-27C 610B.27C 410C.-9C 610D.9C 410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0. (五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种 D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
第2课时排列数的应用学习任务核心素养1.进一步理解排列的概念,掌握一些排列问题的常用解题方法.(重点)2.能应用排列知识解决简单的实际问题.(难点)1.通过排列知识解决实际问题,提升数学建模、逻辑推理的素养.2.借助排列数公式计算,提升数学运算的素养.类型1无限制条件的排列问题【例1】(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?[思路点拨](1)从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;(2)给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.[解](1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是A35=5×4×3=60,所以共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的每本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是5×5×5=125,所以共有125种不同的送法.1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.[跟进训练]1.(1)将3X电影票分给10人中的3人,每人1X,则共有________种不同的分法.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,不同的选法共有________种.(1)720(2)60[(1)问题相当于从10X电影票中选出3X排列起来,这是一个排列问题.故不同分法的种数为A310=10×9×8=720.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,应有A35=5×4×3=60种选法.]类型2排队问题元素“相邻”与“不相邻”问题【例2】3名男生、4名女生按照不同的要求排队,求不同的排队方法的种数.(1)全体站成一排,男、女各站在一起;(2)全体站成一排,男生必须站在一起;(3)全体站成一排,男生不能站在一起;(4)全体站成一排,男、女各不相邻.[解](1)男生必须站在一起是男生的全排列,有A33种排法;女生必须站在一起是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法.由分步乘法计数原理知,共有A33·A44·A22=288种排队方法.(2)三个男生全排列有A33种方法,把所有男生视为一个元素,与4名女生组成5个元素全排列,有A55种排法.故有A33·A55=720种排队方法.(3)先安排女生,共有A44种排法;男生在4个女生隔成的五个空中安排,共有A35种排法,故共有A44·A35=1 440种排法.(4)排好男生后让女生插空,共有A33·A44=144种排法.“相邻”与“不相邻”问题的解决方法处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.[跟进训练]2.5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为()A.18B.24C.36D.48C[5人站成一排,甲、乙两人之间恰有1人的不同站法有3A33×A22=36(种).]元素“在”与“不在”问题【例3】六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙站在两端;(3)甲不站最左端,乙不站最右端.[解](1)法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A14种站法,然后其余5人在另外5个位置上作全排列有A55种站法,根据分步乘法计数原理,共有站法A14·A55=480种.法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A25种站法,然后其余4人有A44种站法,根据分步乘法计数原理,共有站法A25·A44=480种.法三:若对甲没有限制条件共有A66种站法,甲在两端共有2A55种站法,从总数中减去这两种情况的排列数,即得所求的站法数,共有A66-2A55=480种.(2)首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,有A44种,根据分步乘法计数原理,共有A22·A44=48种站法.(3)法一:甲在最左端的站法有A55种,乙在最右端的站法有A55种,且甲在最左端而乙在最右端的站法有A44种,共有A66-2A55+A44=504种站法.法二:以元素甲分类可分为两类:a.甲站最右端有A55种,b.甲在中间4个位置之一,而乙不在最右端有A14·A14·A44种,故共有A55+A14·A14·A44=504种站法.“在”与“不在”问题的解决方法[跟进训练]3.4名运动员参加4×100接力赛,根据平时队员训练的成绩,甲不能跑第一棒,乙不能跑第四棒,则不同的出场顺序有()A.12种B.14种C.16种D.24种B [用排除法,若不考虑限制条件,4名队员全排列共有A 44=24种排法,减去甲跑第一棒有A 33=6种排法,乙跑第四棒有A 33=6种排法,再加上甲在第一棒且乙在第四棒有A 22=2种排法,共有A 44-2A 33+A 22=14种不同的出场顺序.]定序问题【例4】 将A ,B ,C ,D ,E 这5个字母排成一列,要求A ,B ,C 在排列中的顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻).则有多少种不同的排列方法?[解]5个不同元素中部分元素A ,B ,C 的排列顺序已定,这种问题有以下两种常用的解法.法一:(整体法)5个元素无约束条件的全排列有A 55种,由于字母A ,B ,C 的排列顺序为“A ,B ,C ”或“C ,B ,A ”,因此,在上述的全排列中恰好符合“A ,B ,C ”或“C ,B ,A ”排列方式的排列有A 55A 33×2=40(种). 法二:(插空法)若字母A ,B ,C 的排列顺序为“A ,B ,C ”,将字母D ,E 插入,这时形成的4个空中,分两类:第一类,若字母D ,E 相邻,则有A 14·A 22种排法;第二类,若字母D ,E 不相邻,则有A 24种排法.所以有A 14·A 22+A 24=20(种)不同的排列方法.同理,若字母A ,B ,C 的排列顺序为“C ,B ,A ”,也有20种不同的排列方法. 因此,满足条件的排列有20+20=40(种).在有些排列问题中,某些元素的前后顺序是确定的(不一定相邻),解决这类问题的基本方法有两种:1.整体法:即若有m +n 个元素排成一列,其中m 个元素之间的先后顺序确定不变,先将这m +n 个元素排成一列,有A m +n m +n 种不同的排法;然后任取一个排列,固定其他n 个元素的位置不动,把这m 个元素交换顺序,有A mm 种排法,其中只有一个排列是我们需要的,因此共有A m +n m +n A m m种满足条件的不同排法. 2.插空法:即m 个元素之间的先后顺序确定不变,因此先排这m 个元素,只有一种排法,然后把剩下的n 个元素分类或分步插入由以上m 个元素形成的空隙中.[跟进训练]4.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有________个七位数符合条件.210[若1,3,5,7的顺序不定,有A 44=24(种)排法,故1,3,5,7的顺序一定的排法数只占总排法数的124.故有124A 77=210(个)七位数符合条件.] 类型3 数字排列问题1.偶数的个位数字有何特征?从1,2,3,4,5中任取两个不同数字能组成多少个不同的偶数?[提示]偶数的个位数字一定能被2整除.先从2,4中任取一个数字排在个位,共2种不同的排法,再从剩余数字中任取一个数字排在十位,共4种排法,故从1,2,3,4,5中任取两个数字,能组成2×4=8(个)不同的偶数.2.在一个三位数中,身居百位的数字x 能是0吗?如果在0~9这十个数字中任取不同的三个数字组成一个三位数,如何排才能使百位数字不为0?[提示]在一个三位数中,百位数字不能为0,在具体排数时,从元素0的角度出发,可先将0排在十位或个位的一个位置,其余数字可排百位、个位(或十位)位置;从“位置”角度出发可先从1~9这9个数字中任取一个数字排百位,然后再从剩余9个数字中任取两个数字排十位与个位位置.【例5】 (对接教材P 12例6)用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)六位奇数?(2)个位数字不是5的六位数?[思路点拨]这是一道有限制条件的排列问题,每一问均应优先考虑限制条件,遵循特殊元素或特殊位置优先安排的原则.另外,还可以用间接法求解.[解] (1)法一:从特殊位置入手(直接法)分三步完成,第一步先填个位,有A 13种填法,第二步再填十万位,有A 14种填法,第三步填其他位,有A 44种填法,故共有A 13A 14A 44=288(个)六位奇数.法二:从特殊元素入手(直接法)0不在两端有A14种排法,从1,3,5中任选一个排在个位有A13种排法,其他各位上用剩下的元素作全排列有A44种排法,故共有A14A13A44=288(个)六位奇数.法三:排除法6个数字的全排列有A66个,0,2,4在个位上的六位数为3A55个,1,3,5在个位上,0在十万位上的六位数有3A44个,故满足条件的六位奇数共有A66-3A55-3A44=288(个).(2)法一:排除法0在十万位的六位数或5在个位的六位数都有A55个,0在十万位且5在个位的六位数有A44个.故符合题意的六位数共有A66-2A55+A44=504(个).法二:直接法十万位数字的排法因个位上排0与不排0而有所不同,因此需分两类:第一类:当个位排0时,符合条件的六位数有A55个.第二类:当个位不排0时,符合条件的六位数有A14A14A44个.故共有符合题意的六位数A55+A14A14A44=504(个).(变结论)用0,1,2,3,4,5这六个数取不同的数字组数.(1)能组成多少个无重复数字且为5的倍数的五位数?(2)能组成多少个无重复数字且比1 325大的四位数?(3)若所有的六位数按从小到大的顺序组成一个数列{a n},则240 135是第几项?[解](1)符合要求的五位数可分为两类:第一类,个位上的数字是0的五位数,有A45个;第二类,个位上的数字是5的五位数,有A14·A34个.故满足条件的五位数的个数共有A45+A14·A34=216(个).(2)符合要求的比1 325大的四位数可分为三类:第一类,形如2□□□,3□□□,4□□□,5□□□,共A14·A35个;第二类,形如14□□,15□□,共有A12·A24个;第三类,形如134□,135□,共有A12·A13个.由分类加法计数原理知,无重复数字且比1 325大的四位数共有:A14·A35+A12·A24+A12·A13=270(个).(3)由于是六位数,首位数字不能为0,首位数字为1有A55个数,首位数字为2,万位上为0,1,3中的一个有3A44个数,∴240 135的项数是A55+3A44+1=193,即240 135是数列的第193项.解数字排列问题常见的解题方法1.“两优先排法”:特殊元素优先排列,特殊位置优先填充.如“0”不排“首位”.2.“分类讨论法”:按照某一标准将排列分成几类,然后按照分类加法计数原理计算,要注意以下两点:一是分类标准必须恰当;二是分类过程要做到不重不漏.3.“排除法”:全排列数减去不符合条件的排列数.4.“位置分析法”:按位置逐步讨论,把要求数字的每个数位排好.[跟进训练]5.用1,2,3,4,5,6这六个数字组成无重复数字的六位数,则5和6在两端,1和2相邻的六位数的个数是()A.24 B.32 C.36 D.48A[先排5,6,有A22种排法;将1,2捆绑在一起有A22种排法;将1,2这个整体和3以及4全排列,有A33种排法.所以符合题意的六位数的个数为A22A22A33=24.]1.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.240C[由于6人排两排,没有什么特殊要求的元素,故排法种数为A66=720.]2.某段铁路所有车站共发行132种普通车票,那么这段铁路共有的车站数是()A.8B.12C.16D.24B[设车站数为n,则A2n=132,n(n-1)=132,∴n=12.]3.从0,1,3,5,7,9六个数中,任取两个做除法,可得到不同的商的个数是()A.30 B.25 C.20 D.19D[当选出的数字有一个是0时,0只能做分子,不能做分母,有1种结果为0;当选出数字没有0时,五个数字从中任选两个,共有A25种结果,而在这些结果中,有相同的数字重复出现,13和39,31和93,∴可以得到不同的商的个数是A 25-2+1=19.] 4.用1,2,3,4,5,6,7这7个数字排列组成一个七位数,要求在其偶数位上必须是偶数,奇数位上必须是奇数,则这样的七位数有________个.144[先排奇数位有A 44种,再排偶数位有A 33种,故共有A 44A 33=144个.]5.A ,B ,C ,D ,E 五人并排站成一排,如果A ,B 必须相邻且B 在A 的右边,那么不同的排法种数有________种.24[把A ,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,共A 44=24种.]回顾本节内容,自我完成以下问题:1.求解排列问题的基本思路是什么?[提示]实际问题――→化归(建模)排列问题―――――――→求数学模型的解求排列数―――――――→得实际问题的解实际问题2.求解排列问题的主要题型及方法有哪些?[提示]直接法把符合条件的排列数直接列式计算 优先法优先安排特殊元素或特殊位置 捆绑法 把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法 对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中定序问题除法处理 对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反,等价转化的方法。
组合数与排列数的计算组合数(Combination)和排列数(Permutation)是概率与统计等相关学科中经常用到的概念。
它们在计算样本空间、计算事件发生的概率等问题中起着重要的作用。
本文将介绍组合数和排列数的计算方法及应用。
一、组合数的计算组合数是从n个不同元素中,取出m个元素(m<=n)的组合方式的数量。
组合数用符号C(n,m)或者(n choose m)表示。
计算组合数的方法有两种:公式法和递推法。
1. 公式法组合数的计算公式为:C(n,m) = n!/(m!(n-m)!)其中,n!表示n的阶乘,即n! = n*(n-1)*...*3*2*1。
例如,计算C(5,2)的值:C(5,2) = 5!/(2!(5-2)!)= 5!/(2!3!) = 5*4/(2*1) = 102. 递推法通过使用组合数的递推关系,可以简化组合数的计算过程。
组合数的递推关系为:C(n,m) = C(n-1,m-1) + C(n-1,m)其中,C(n-1,m-1)表示从前n-1个元素中选择m-1个元素的组合数,C(n-1,m)表示从前n-1个元素中选择m个元素的组合数。
例如,计算C(5,2)的值:C(5,2) = C(4,1) + C(4,2) = 4 + 6 = 10二、排列数的计算排列数是从n个不同元素中,按照一定的顺序取出m个元素的排列方式的数量。
排列数用符号P(n,m)或者(nPm)表示。
计算排列数的方法有两种:公式法和递推法。
1. 公式法排列数的计算公式为:P(n,m) = n!/(n-m)!例如,计算P(5,2)的值:P(5,2) = 5!/(5-2)! = 5!/3! = 5*4 = 202. 递推法通过使用排列数的递推关系,可以简化排列数的计算过程。
排列数的递推关系为:P(n,m) = n*P(n-1,m-1)其中,P(n-1,m-1)表示从前n-1个元素中选择m-1个元素的排列数。
例如,计算P(5,2)的值:P(5,2) = 5*P(4,1) = 5*4 = 20三、组合数与排列数的应用1. 组合数的应用组合数在组合数学、概率与统计等领域有广泛的应用。