25.2 用列举法求概率(第一课时)
- 格式:doc
- 大小:70.83 KB
- 文档页数:5
25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】利用直接列举法和列表法求随机事件的概率.【教学难点】画出适当的表格列举事件的所有等可能的结果.环节1自学提纲,生成问题【5 min阅读】阅读教材P136~P138的内容,完成下面练习.【3 min反馈】1.在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小__相等__,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.2.同时抛掷两枚质地均匀的硬币,所有可能出现的结果有__正正__、__正反__、__反正__、__反反__,先后两次抛掷一枚质地均匀的硬币,所有可能出现的结果有__正正__、__正反__、__反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P (硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P (硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率; (3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P (两次抽到的数都是偶数)=425.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P (第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B ) A.12 B .13C.14D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18 B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__.4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率: (1)两枚骰子点数的和是6; (2)两枚骰子点数都大于4; (3)其中一枚骰子的点数是3. 解:列表如下:们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P (两枚骰子点数的和是6)=536.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P (两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P (其中一枚骰子的点数是3)=1136.【活动3】 拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A 盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:性相同.其中能配成紫色的结果有3种,所以P (小明获胜)=312=14,P (小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3 课堂小结,当堂达标 (学生总结,老师点评) 请完成本课时对应练习!。
25.2 用列举法求概率第一课时一、教学目标1.计算较简单情境下的概率.2.用列表的方法列举随机事件的所有等可能的结果,从而得到事件发生的概率.3.通过观察列举法的结果是否重复和遗漏,总结列举不重复不遗漏的方法,培养学生学习观察、归纳、分析问题的能力.二、教学重难点重点:能够用列表法计算简单事件发生的概率,并阐明理由.难点:当可能出现的结果很多时,用列表法求出所有可能的结果.教学过程(教学案)一、情境引入1.导入在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.2.情景引入袋中有3个白球,1个红球,这两种球除了颜色以外其余都相同,随机取出两个球,若是1红1白则甲方胜,否则乙方胜,你愿意充当甲方还是乙方?学生思考后,师生共同分析:看哪一方胜的可能性大,即获胜概率大.设摸出2个球为1白1红为事件A ,则事件A 包含了其中3种结果:(白1,红),(白2,红),(白3,红).则P (A )=36=12,即甲方胜或乙方胜概率都是12,选择哪一方都一样. 二、互动新授1.教学例1(1)学生尝试列举出抛掷两枚硬币所能产生的全部结果.(2)学生动手操作试验后,小组交流讨论,师生共同分析.【解】 列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反.所有可能的结果共有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A )的结果只有1种,即“正正”,所以P (A )=14. (2)两枚硬币全部反面向上(记为事件B )的结果也只有1种,即“反反”,所以P (B )=14. (3)一枚硬币正面向上、一枚硬币反面向上(记为事件C )的结果共有2种,即“反正”“正反”,所以P (C )=24=12. 2.教学例2(1)学生独自练习后,小组交流讨论.(2)师生共同分析,得出:当一次试验是掷两枚骰子时,为不重不漏地列出所有可能的结果,通常采用列表法.(3)师生共同用列表法解答.3.探究P137“思考”(1)学生独自思考后,小组交流讨论.(2)教师评析:“同时掷两枚质地均匀的骰子”改为“把一枚质地均匀的骰子掷两次”,得到的结果是一样的.三、课堂小结四、板书设计五、教学反思本节课以实际问题为载体,通过让学生动手解决问题,观察、分析、评价解题方法,明晰当一次试验涉及两个因素,所有可能的结果数目较多时,直接列出会遗漏或重复,就要探寻快捷准确的新方法,体会列表法简单明了.通过学生自主探求列表法,使学生对何时应用列表法,如何应用列表法有更深的理解.在教学过程中,教师应重点关注不同层次的学生对本节知识的理解及掌握程度,了解教学效果,及时调整教学.导学案一、学法点津学生在求概率时,当一次试验涉及两个因素,为不重不漏地列出所有可能的结果,通常采用列举法或列表法.在先后取两个球时,有放回和没有放回是有区别的,所有可能的结果是等可能出现的才能适用列表法.二、学点归纳总结1.知识要点总结(1)当随机事件是一次试验涉及两个因素时,宜用列表法.(2)运用列表法要符合有限等可能.2.规律方法总结当随机事件是一项试验涉及两个因素时,宜用列表法.列表要进行编号,要认真细致地列表,列出所有等可能的结果,算出事件A 包含的结果的数目,用公式P (A )=m n计算事件A 的概率.课时作业设计一、选择题1.小丽、小华和小红三人要一起照相,他们三人随意排成一排进行拍照,小红恰好排在中间的概率是( ).A.12B.13C.14D.不能确定 2.一个袋子中有4个珠子,其中2个红色,2个蓝色,除颜色外其余均相同,若在这个袋子中任取2个珠子,都是红色的概率是( ).A.12B.13C.14D.163.掷两枚质地均匀的正方体骰子,把两个点数相加,则下列事件中,发生的概率最大的是( ).A.点数和为11B.点数和为8C.点数和为3D.点数和为2二、填空题4.随机掷两枚均匀的硬币,落地后,两枚硬币正面都朝上的概率是 W.5.用1,2,3三个数字组成一个无重复数字的两位数,则组成的两位数是偶数的概率是 W.6.某班有一个同学想给老师打电话,可他记不清其中两个号码了,即36××828,他随意拨,恰好拨通的概率为 W.三、解答题7.在体育器材室内有一暗箱,暗箱内放有2个排球,2个篮球,2个足球,让你一次拿出两个球,问:(1)两个球都是足球的概率是多少?(2)一个是排球,一个是篮球的概率是多少?【参考答案】1.B2.D3.B4.145.136.11007.解:共有15种情况,其中两个都是足球的有1种情况;一个是排球,一个是篮球的有4种情况.所以(1)P (两个都是足球)=115, (2)P (一个是排球,一个是篮球)=415.。
25.2.1 用列举法求概率(第一课时)
教学内容用列表法求概率课型新授课
教学目标1.知识与技能目标:学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
2.过程与方法目标,经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。
渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
3.情感与态度目标,通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学分析重点学习运用列表法或树形图法计算事件的概率。
难点能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
教学准备PPT 课时第一课时
电子教案
教学过程1.创设情景,发现新知
引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。
每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。
作为游戏者,你会选择哪个装置呢?并请说明理由。
(1)学生分组讨论,探索交流
在这个环节里,首先要求学生分组讨论,探索交流。
然后引导学生将实际问题转化为数学问题,即:
“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”
由于事件的随机性,我们必须考虑事件发生概率的大小。
此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘,即涉及2个因素,与前一课所讲授单转盘概率问题(教材P148例2)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。
怎
样避免这个问题呢?
(2)指导学生构造表格
从表中可以发现:A盘数字大于B盘数字的结果共有5种。
∴P(A数较大)= , P(B数较大)=.
∴P(A数较大)> P(B数较大)
∴选择A装置的获胜可能性较大。
在学生填写表格过程中,注意向学生强调数对的有序性。
由于游戏是分两步进行的,我们也可用其他的方法来列举。
即先转动A盘,可能出现1,6,8三种结果;第二步考虑转动B盘,可能出现4,5,7三种结果。
∴P(A数较大)> P(B数较大)
∴选择A装置的获胜可能性较大。
然后,引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?这个图形很像一棵树,所以称为树形图(在幻灯片上放映)。
列表和树形图是列举法求概率的两种常用的方法。
2.自主分析,再探新知
通过引例的分析,学生对列表法和树形图法求概率有了初步的了解,为了帮助学生熟练掌握这两种方法,我选用了下列两道例题(本节教材P151—P152的例5和例6)。
例1:同时掷两个质地均匀的骰子,计算下列事件的概率:
(1) 两个骰子的点数相同;
(2) 两个骰子的点数的和是9;
(3) 至少有一个骰子的点数为2。
例1是教材上一道“掷骰子”的问题,有了引例作基础,学生不难发现:引例涉及两个转盘,这里涉及两个骰子,实质都是涉及两个因素。
于是,学生通过类比列出下列表。
由上表可以看出,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。
由所列表格可以发现:
(1)满足两个骰子的点数相同(记为事件A)的结果有6个,即(1,1),(2,2),(3,3),
(4,4),(5,5),(6,6),所以P(A)==。
[满足条件的结果在表格的对角线上]
(2)满足两个骰子的点数的和是9(记为事件B)的结果有4个,即(3,6),(4,5),(5,
4),(6,3),所以P(B)==。
[满足条件的结果在(3,6)和(6,3)所在的斜线上]
(3)至少有一个骰子的点数为2(记为事件C)的结果有11个,所以P(C)=。
[满足条件的结果在数字2所在行和2所在的列上]
接着,引导学生进行题后小结:
当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法。
运用列表法求概率的步骤如下:
①列表;
②通过表格计数,确定公式P(A)=中m和n的值;
③利用公式P(A)=计算事件的概率。
分析到这里,我会问学生:“例1题目中的“掷两个骰子”改为“掷三个骰子”,还可以使用列表法来做吗?”由此引出下一个例题。
例2:甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。
从三个口袋中各随机地取出1个球。
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?
(2)取出的三个球上全是辅音字母的概率是多少?
例2与前面两题比较,有所不同:要从三个袋子里摸球,即涉及到3个因素。
此时同学们会发现用列表法就不太方便,可以尝试树形图法。
本游戏可分三步进行。
分步画图和分类排列相关的结论是解题的关键。
从图形上可以看出所有可能出现的结果共有12个,即:
(幻灯片上用颜色区分)
这些结果出现的可能性相等。
(1)只有一个元音字母的结果(黄色)有5个,即ACH,ADH,BCI,BDI,BEH,所以;
有两个元音的结果(白色)有4个,即ACI,ADI,AEH,BEI,所以;全部为元音字母的结果(绿色)只有1个,即AEI ,所以。
(2)全是辅音字母的结果(红色)共有2个,即BCH,BDH,所以。
通过例2的解答,很容易得出题后小结:
当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。
运用树形图法
求概率的步骤如下:(幻灯片)
①画树形图;
②列出结果,确定公式P(A)=中m和n的值;
③利用公式P(A)=计算事件概率。
接着我向学生提问:到现在为止,我们所学过的用列举法求概率分为哪几种情况?列表法和画树形图法求概率有什么优越性?什么时候使用“列表法”方便,什么时候使用“树形图法”更好呢?
3.应用新知,深化拓展
感谢您的阅读,祝您生活愉快。