抛物线中的三角形
- 格式:pptx
- 大小:331.30 KB
- 文档页数:14
抛物线上的三角形的面积
抛物线是一种二次函数的图像,其形式为$y=ax^2+bx+c$(其中$a$ 不等于0)。
如果在抛物线上存在一个三角形,则它的底边一定是抛物线的某一条直线切线,并且顶点在抛物线的极值处。
如果要计算抛物线上三角形的面积,可以使用以下步骤:
找出抛物线的极值点。
极值点的坐标为$(h,k)$,其中$h$ 是抛物线的横坐标,$k$ 是抛物线的纵坐标。
极值点的横坐标可以通过求解方程$ax^2+bx+c=0$ 来获得,其中$a$、$b$ 和$c$ 分别是抛物线的系数。
求出抛物线的切线方程。
切线的斜率为抛物线的导数$2ax+b$,可以使用斜截式$y=mx+b$ 来表示切线的方程,其中$m$ 是斜率,$b$ 是切线的截距。
求出抛物线的底边长。
底边的两个端点的坐标分别为抛物线的两个交点,可以使用切线的方程求解。
计算三角形的面积。
可以使用海伦公式求解三角形的面积,公式为$\sqrt{s(s-a)(s-b)(s-c)}$,其中$s$ 为三角形的半周长,即$s=\frac{a+b+c}{2}$,$a$、$b$ 和$c$ 分别是三角形的三条边长。
因此,计算抛物线上三角形的面积的步骤如下:
求出抛物线的极值点$(h,k)$。
求出抛物线的切线方程$y=mx+b$。
求出抛物线的底边长$a$。
计算三角形的半周长$s$。
使用海伦公式计算三角形的面积。
举个例子,假设抛物线的方程为$y=x^2-2x+1$,底边长为$a=2$,那么抛物线上三角形的面积就是$\sqrt{s(s-2)(s-2)(s-2)}=\sqrt{s(s-2)^3}$。
第五讲抛物线中三角形的面积问题一、抛物线内接三角形的面积问题:例、如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax²+bx+c(a≠0)经过A、B、C三点。
⑴求此抛物线的函数表达式和顶点M坐标;⑵求S△MBC;归纳:怎样求坐标系内任意三角形的面积问题:二、抛物线中三角形的等积变化:1、在抛物线上是否存在点D,使得△ABC和△ABD面积相等,若存在,求出点D的坐标,若不存在,说明理由。
2、在抛物线上是否存在点E,使得△ABC和△BCE面积相等,若存在,求出点E的坐标,若不存在,说明理由。
S△ABC。
若存在,求出点M的坐标;若不存在,请说明理由3、在抛物线上是否存在点M,使S△MBC= 134、(2011成都)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7√?若存在,求出点M的坐标;若不存在,说明理由.5、点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C 运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH 的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;6、在抛物线的对称轴上有一点P的纵坐标为5,在直线上BC求一点M使得S△PBM∶S△ABC=1:5.7、在直线BC下方抛物线上是否存在一个点F,使得△BCF的面积最大,若存在,求出点F的坐标,并求出最大面积,若不存在,说明理由。
练习:1、如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.(1)求A、B两点坐标;(2)求抛物线的解析式;(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.2、(2010玉溪)如图,在平面直角坐标系中,点A的坐标为(1,△AOB(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD 把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.yAB。
抛物线中直角三角形存在性问题(勾股定理与K值法)[例]已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x﹣5=0的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.【解答】解:(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,由于x1<x2,则有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).抛物线的解析式为:y=a(x+5)(x﹣1)(a>0),∴对称轴为直线x=﹣2,顶点D的坐标为(﹣2,﹣9a),令x=0,得y=﹣5a,∴C点的坐标为(0,﹣5a).依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE﹣OC=4a.S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC=(DE+OA)•OE﹣DE•CE﹣OA•OC=(2+5)•9a﹣×2×4a﹣×5×5a=15a,而S△ABC=AB•OC=×6×5a=15a,∴S△ABC:S△ACD=15a:15a=1:1.注:作铅垂线求S△ACD也是可以的(2)方法一:如解答图,过点D作DE⊥y轴于E在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,设对称轴x=﹣2与x轴交于点F,则AF=3,在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.∵∠ADC=90°,∴△ACD为直角三角形,由勾股定理得:AD2+CD2=AC2,即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=,∵a>0,∴a=,∴抛物线的解析式为:y=(x+5)(x﹣1)=x2+x﹣.方法二:(K 值法)结论1:直线1111:l y k x b =+与直线2222:l y k x b =+垂直⇔121k k =-; 结论2:点11(,)A x y 、22(,)B x y (12x x ≠)分别是直线:l y kx b =+上两个不同的点,则2121y y k x x -=-.(证明:11y kx b =+……①22y kx b =+……②, ②-①得,2121()y y k x x -=-,2121y y k x x -=-) 解:90932(5)3AD a a k a ---===----,9(5)42202CD a a a k a ----===---, ∵∠ADC =90°,∴1AD CD k k =-,即23261a a a -⨯=-=-,12a a ==. ∴抛物线的解析式为:y =(x +5)(x ﹣1)=x 2+x ﹣. 练习.已知抛物线c bx x y ++-=221与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0),B (1,0).(1)求抛物线的解析式; (2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;(3)已知点E 在x 轴上,点F 在抛物线上,是否存在以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.。
初三(上)数学第十讲 抛物线中特殊的三角形【知识梳理】一、重要基础知识回顾①抛物线顶点的坐标公式:( ),顶点为 。
②若抛物线与x 轴有两个交点A )0(1,x ,B )0,(2x ,AB=_________=__________. ③韦达定理:若)0(02≠=++a c bx ax 有两实根21,x x ,则_______________。
二、抛物线中的重要公式及应用1.抛物线交x 轴与A 、B 两点,与y 轴交于C 点,顶点为M ,△ABC 为直角三角形,则: AB=_______,并探索此时a 与c 的关系.2.第一类抛物线内接三角形的规律,当y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点,C 是顶点(利用含30°、45°角的直角三角形)可推导出以下结论: ①.当△ABC 是等腰Rt △时,△=_______;面积=_______. ②.当△ABC 是等边三角形时,△=_______;面积=______.③.当△ABC 是顶角为120°的等腰三角形时,△=_______;面积_______。
( 以上结论在填空、选择、探索性问题中比较简洁、高效。
有时在考试中甚至可做到“秒杀”。
)① ② ③3.一直线与抛物线交于A 、B 两点,在直线下方抛物线上有一动点C ,满足ABC S ∆面积最大值,时,有_________________。
☆4.探索:二次函数与等腰三角形、直角三角形的探索结合。
联想一次函数中等腰三角形、直角三角形的探索。
【典例解析】☆【知识随堂】1.二次函数y=x2-mx+m-2 图象与x轴交于A、B两点,与y轴交于点C点,M为顶点.(1)当m=________时,△AMB为直角三角形;(2)当m=________时,△AMB为正三角形;(3) 当m=________时,AB=3AM;(4) 若∠ACB=90°则m=________.2.设二次函数y=x2+2ax+3(a<0)的图象顶点为M,与x轴交点为A、B,当△ABM为等边三角形时,a的值为________。
与抛物线有关的两个重要三角形刘伟 重庆市北碚区江北中学(400714)二次函数是初等函数中最为重要的一个函数,其图象抛物线,进一步加强了代数与几何的联系,其中蕴含的数学思想和方法,对学生观察问题、研究问题、解决问题是十分有益的。
二次函数的图象抛物线与坐标轴交点构成的有关线段、三角形面积等代数与几何综合问题,是历年中考数学压轴题的重点和热点。
抛物线c bx ax y ++=2,当△=b 2-4ac >0时,抛物线与x 轴必有两个交点为)0,(1x A 、)0,(2x B ;当0=x 时,抛物线与y 轴相交于点C (0,c )。
设抛物线的顶点为P ,此时我们得到与抛物线有关的两个重要三角形:△ABC 与△ABP 。
那么这两个三角形的面积、形状与抛物线的系数a,b,c, 有怎样的内在联系呢?下面就此问题作如下探讨:一、关于△ABC∵抛物线与x 轴的两个交点为)0,(1x A 、)0,(2x B ,则02=++c bx ax 。
根据一元二次方程根与系数的关系有:ac x x a b x x =-=+2121, 所以A 、B 两点间的距离.4444)()(22222121221212aa acb a ac b a c a b x x x x x x x x AB ∆=-=-=⨯-⎪⎭⎫ ⎝⎛-=-+=-=-= 即 aAB ∆= …………………………………………(1) 这就是抛物线与x 轴的两个交点之间的距离公式。
而|OC|=|y c |=|c|, 所以S △ABC =.212121∆⋅=⋅∆⋅=⋅a c c a OC AB 即 S △ABC =.2∆⋅ac ……………………………………(2) 这就是抛物线与两坐标轴交点构成三角形的面积公式。
二、关于△ABP由抛物线的对称性可知,它的形状、大小由P ,A ,B 三点坐标确定。
由(1)知:aAB ∆=. 设D 是抛物线对称轴与x 轴的交点,则|PD|=|y p |=.4442aa b ac ∆=- 设∠PAB=α,在Rt △PAD 中,..4:,21242ααtg a a AD PD tg =∆∆=∆⋅∆==平方整理得 于是我们得到:①当α=600时,△ABP 为等边三角形,此时α24tg =∆02604tg ==12;②当α=450时,△ABP 为等腰直角三角形,此时α24tg =∆02454tg ==4。
抛物线中的三角形问题在数学中,抛物线是一种二次曲线,其形状类似于开口朝上的弧线。
抛物线与三角形之间有着紧密的联系,本文将探讨抛物线中的三角形问题。
一、抛物线的定义与性质抛物线是指平面上满足平方差关系的点的集合。
一般来说,抛物线可以由二次方程的图像表示,常见的抛物线方程形式包括标准型、顶点型等。
根据方程的不同形式,可以得到抛物线的不同性质,如焦点、顶点、对称轴等。
二、抛物线中的三角形问题抛物线与三角形之间存在着丰富的几何关系,其中一些经典问题如下:问题一:抛物线上的三点确定一个三角形,该三角形的面积如何计算?解析:设抛物线的方程为y = ax^2 + bx + c,并选取抛物线上三个点A(x1, y1)、B(x2, y2)、C(x3, y3)。
根据三点确定一个三角形,可以利用三角形的高度与底边长度来计算面积。
首先,我们可以通过求解方程组得到顶点的坐标(xv, yv) = (-b/2a, f(-b/2a)),其中f(x)是抛物线的函数。
然后,利用向量的几何性质,求出三角形的高度h,再计算底边长度d,最后利用面积公式S = 0.5 * d * h计算出面积。
问题二:给定一个抛物线和一个点P,如何确定在抛物线上选择两个点形成的三角形,使其面积最大?解析:设抛物线的方程为y = ax^2 + bx + c,设点P的坐标为(xp, yp)。
对于以点P为顶点的抛物线上的任意一条直线,其倾斜角为θ,直线的方程可以表示为y = tanθ * x + C,其中C是常数。
当直线与抛物线相交时,可将两个方程联立求解,得到交点的坐标(x1, y1)和(x2,y2)。
然后,利用这两个交点与点P形成的三角形面积公式S = 0.5 *|x1y2 - x2y1 - x1yp + xpy1 + x2yp - xpy2|,求解出最大的面积。
问题三:已知一个抛物线,如何确定两个定点,使其与抛物线上的另一个点形成的三角形周长最小?解析:设抛物线的方程为y = ax^2 + bx + c。
抛物线内接直角三角形的一个性质及应用抛物线内接直角三角形是几何学中一个重要的定理,它告诉我们:如果一个直角三角形的一个顶点在抛物线上,那么其它两个顶点的坐标也会在这个抛物线上。
本文将简要介绍抛物线内接直角三角形的定义、性质及其应用。
首先,抛物线内接直角三角形定义为:一个直角三角形,其中一个顶点在抛物线上,另外两个顶点也在抛物线上,且抛物线的准线和直角三角形的两条腰都相交。
因此,抛物线内接直角三角形的性质有以下三点:
1)直角三角形的一个顶点在抛物线上,另外两个顶点也在同一
条抛物线上;
2)抛物线的准线与直角三角形的腰相交;
3)抛物线内接直角三角形的面积小于等于抛物线面积的一半。
此外,抛物线内接直角三角形还有一些其它特性:抛物线内接直角三角形的高度等于抛物线的端点之间的距离;两点定理说明了任何一点到抛物线上的点的距离等于直角三角形的斜边的长度。
抛物线内接直角三角形有许多实际应用,其中最为重要的是在机械设计中,抛物线被用来设计螺旋形线路,使得机械运动更加均匀,减少了摩擦力,减少了损耗。
在建筑过程中,抛物线也被用来设计电梯的曲线,使其运行曲线十分柔和,降低了电梯的震动,减少了乘客的不适感受。
另外,抛物线内接直角三角形也被用于医学领域中的X 射线成像技术,使得X射线的扫描更加准确,精确诊断病症。
综上所述,抛物线内接直角三角形是几何学中一个重要的定理,它描述了三角形和抛物线之间的关系,它的定义、性质和应用在许多不同的领域中有广泛的应用,它能够减少摩擦力、降低震动,使X射线扫描更准确,为人类带来科学和技术上的进步。
抛物线中三角形面积最大值问题的解法攻略
抛物线中三角形面积最大值问题是很多数学教师都会遇到的问题。
求得抛物线中三角形面
积最大值,就先要分析抛物线的基本参数,因为抛物线是一种比较复杂的曲线,需要对其
有一定的了解才可以解答此问题。
抛物线的标准方程为y=ax2+bx+c,a为抛物线的系数,a>0,抛物线呈转弯向上,a<0,呈
转弯向下;b表示抛物线的开口方向,b>0,表示开口向右,b<0,表示开口向左。
因此,
得知抛物线在某一瞬间的顶点位置,以及抛物线的开口位置,就可以求出抛物线上三角形
的端点位置。
在定位了三角形端点位置后,只需要利用海伦公式就可以求出三角形面积:S=√[p(p-
a)(p-b)(p-c)]其中p=(a+b+c)/2,a,b,c分别为三角形的三边长。
最后,把求的所有的三角形面积按从大到小排列,那么最大的面积就是抛物线中三角形面
积最大值了。
抛物线中三角形面积最大值问题,要求求解者要完全把握和理解方程抛物线的特征,以及
三角形的基本定义,之后再结合海伦公式求出最大面积。
海伦公式和抛物线方程是相结合,那么广大教师和学生并不必对此感到困惑,只需要把这两个概念理解深入,就能在一定的
时间内得出满意的答案。
彭赛列闭合定理抛物线内三角形面积彭赛列闭合定理是数学中的一个重要定理,它给出了一个关于抛物线内三角形面积的有趣结果。
这个定理的证明非常巧妙,但为了遵守要求,我将以一种生动的方式来描述它。
假设我们有一个抛物线,它的形状非常优美。
我们站在抛物线上的某个点上,放眼望去,可以看到一条直线,它穿过了抛物线,形成了一个三角形。
我们感到非常好奇,想知道这个三角形的面积是多少。
为了解决这个问题,我们需要运用彭赛列闭合定理。
这个定理告诉我们,如果我们从抛物线上的两个点出发,沿着抛物线的切线走到第三个点,然后再回到起点,这样形成的三角形面积是一个常数。
想象一下,我们站在抛物线上,向左走到一个点,然后沿着切线走到另一个点,再从那个点回到起点。
我们可以选择不同的点进行这个实验,每次得到的三角形都有相同的面积。
这就是彭赛列闭合定理的精髓所在。
这个定理的证明非常复杂,但它的结果非常有趣。
它告诉我们,无论我们选择抛物线上的哪两个点,最终得到的三角形面积都是相同的。
这个常数就是抛物线的焦距。
这个定理的意义深远。
它不仅在数学中有重要的应用,还在物理学、工程学等领域起着重要的作用。
它帮助我们理解抛物线的性质,为我们解决实际问题提供了一个强大的工具。
通过这个故事,我们可以看到彭赛列闭合定理的美妙之处。
它告诉我们,无论我们站在抛物线上的哪个点,我们总能找到一个三角形,它的面积是相同的。
这个定理不仅仅是一个数学定理,更是一个关于美的故事。
它让我们感受到了数学的魅力,也让我们对世界充满了好奇和探索的欲望。
无论我们是数学爱好者还是普通人,都可以从中体会到数学的魅力和美妙之处。