SPSS统计分析-第7章 回归分析讲解学习
- 格式:ppt
- 大小:1.60 MB
- 文档页数:74
SPSS回归分析过程详解一、相关分析在医学中经常要遇到分析两个或多个变量间关系的的密切程度,需要用相关分析实现。
SPSS的相关分析功能被集中在Statistics 菜单的Correlate子菜单中,包括以下三个过程:Bivariate 过程此过程用于进行两个/多个变量间的参数/非参数相关分析,如果是多个变量,则给出两两相关的分析结果。
这是Correlate 子菜单中最为常用的一个过程,实际上我们对他的使用可能占到相关分析的95%以上。
下面的讲述也以该过程为主。
Partial过程如果需要进行相关分析的两个变量其取值均受到其他变量的影响,就可以利用偏相关分析对其他变量进行控制,输出控制其他变量影响后的相关系数,这种分析思想和协方差分析非常类似。
Partial过程就是专门进行偏相关分析的。
Distances过程调用此过程可对同一变量内部各观察单位间的数值或各个不同变量间进行距离相关分析,前者可用于检测观测值的接近程度,后者则常用于考察预测值对实际值的拟合优度。
该过程在实际应用中用的非常少。
Bivariate 过程一、界面说明[Variables 框】用于选入需要进行相关分析的变量,至少需要选入两个。
【Correlatio n Coefficie nts 复选框组】用于选择需要计算的相关分析指标,有:Pearson 复选框选择进行积距相关分析,即最常用的参数相关分析Kendall's tau-b 复选框计算Kendall's 等级相关系数Spearman复选框计算Spearman相关系数,即最常用的非参数相关分析(秩相关)【Test of Significance 单选框组】用于确定是进行相关系数的单侧( One-tailed )或双侧( Two-tailed )检验,一般选双侧检验。
【Flag significant correlations 】用于确定是否在结果中用星号标记有统计学意义的相关系数,一般选中。
第7章 岭回归思考与练习参考答案7.1 岭回归估计是在什么情况下提出的?答:当自变量间存在复共线性时,|X’X |≈0,回归系数估计的方差就很大, 估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。
7.2岭回归的定义及统计思想是什么?答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其统计思想是对于(X ’X )-1为奇异时,给X’X 加上一个正常数矩阵D, 那么X’X+D接近奇异的程度就会比X ′X 接近奇异的程度小得多,从而完成回归。
但是这样的回归必定丢失了信息,不满足blue 。
但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。
7.3 选择岭参数k 有哪几种方法?答:最优k 是依赖于未知参数β和2σ的,几种常见的选择方法是:○1岭迹法:选择0k 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多; ○2方差扩大因子法:11()()()c k X X kI X X X X kI --'''=++,其对角线元()jj c k 是岭估计的方差扩大因子。
要让()10jj c k ≤;○3残差平方和:满足()SSE k cSSE <成立的最大的k 值。
7.4 用岭回归方法选择自变量应遵循哪些基本原则?答:岭回归选择变量通常的原则是:1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。
我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量;2. 当k 值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随着k的增加迅速趋近于零。
像这样岭回归系数不稳定、震动趋于零的自变量,我们也可以予以剔除;3.去掉标准化岭回归系数很不稳定的自变量。
如果有若干个岭回归系数不稳定,究竟去掉几个,去掉那几个,要根据去掉某个变量后重新进行岭回归分析的效果来确定。
第七章回归分析OUTLINE一元线性回归01多元归回02一元线性回归一元线性回归操作过程在SPSS中单击主菜单“Analyze→Regression→Linear…”,进入设置对话框。
从左边变量表列中把因变量学生数学学业成绩(MATH)选入到因变量(Dependent)框中,把自变量学生家庭社会经济地(ESCS)选入到自变量(Independent)框中。
一元线性回归操作过程单击“Statistics…”按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、t值及显著性p值等;另外还可以通过勾选“Confidence intervals”得到回归系数置信区间的结果。
“Model fit”项可输出相关系数R,测定系数R2,调整系数,估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
此处还可以勾选“Residuals”(残差)下的“Durbin-Watson”检验,可以检验残差与自变量之间是否相互独立;以及对数据中的异常值进行诊断。
一元线性回归操作过程单击“Options…”按钮,打开它的对话框,可以看到中间有一项Include constant in equation可选项。
选中该项可输出对常数的检验。
在“Options”对话框中,还可以定义处理缺失值的方法和设置多元逐步回归中变量进入和排除方程的准则,这里我们采用系统的默认设置,设置完成后点击“Continue”返回主对话框。
一元线性回归的结果输出模型中包含的自变量及进入方式一元线性回归的结果输出模型拟合概述一元线性回归的结果输出回归方程检验方差分析表一元线性回归的结果输出回归系数估计及其检验表多元回归多元回归操作过程(标准多元回归)多元线性回归所用命令语句与一元线性回归相同,同样可以通过单击主菜单“Analyze→Regression→Linear…”,进入设置对话框,如图所示。