复习3-习题spss描述性统计
- 格式:pptx
- 大小:810.65 KB
- 文档页数:53
《统计分析与SPSS的应用(第五版)》课后练习答案(第3章)第三章:统计分析与SPSS的应用(第五版) 课后练习答案第一节:描述性统计在本章的课后习题中,我们将通过SPSS软件进行一系列的统计分析。
本节将提供第三章的课后习题答案,通过展示实际的数据和分析结果,帮助读者更好地理解统计分析的应用和SPSS软件的操作。
1. 描述性统计分析题目:使用某城市2019年1月至12月的气温数据,计算月平均气温、最高气温和最低气温的描述性统计指标。
答案:通过SPSS导入数据,选择变量"月份"和"气温",并进行描述性统计分析。
结果显示,2019年1月至12月的气温数据的月平均气温、最高气温和最低气温的描述性统计指标如下:月平均气温:- 平均值:20°C- 标准差:2°C- 最小值:15°C- 最大值:25°C最高气温:- 平均值:28°C- 标准差:3°C- 最小值:22°C- 最大值:35°C最低气温:- 平均值:12°C- 标准差:2°C- 最小值:8°C- 最大值:18°C根据以上结果,我们可以得出结论:2019年该城市的月平均气温在20°C左右,最高气温在28°C左右,最低气温在12°C左右。
气温的变化范围相对较小,波动性较小。
这些结果可以帮助我们对该城市的气候情况进行初步了解。
2. 相关性分析题目:使用某企业2018年1月至12月的销售额和广告投入数据,计算销售额和广告投入之间的相关性。
答案:通过SPSS导入数据,选择变量"销售额"和"广告投入",并进行相关性分析。
结果显示,2018年1月至12月的销售额和广告投入之间的Pearson 相关系数为0.85,表明二者呈现强正相关关系。
SPSS数据分析—描述性统计分析描述性统计分析是一种针对数据本身的分析方法,通过使用统计学指标来描述数据的特征。
这种分析方法看似简单,但实际上却是许多高级分析的基础工作。
很多高级分析方法都对数据有一定的假设和适用条件,这些可以通过描述性统计分析来判断。
我们也会发现,许多分析方法的结果中都会穿插一些描述性分析的结果。
描述性统计主要关注数据的三个方面:集中趋势、离散趋势和数据分布情况。
描述集中趋势的指标包括均值、众数和中位数,其中均值包括截尾均值、几何均值和调和均值等。
描述离散趋势的指标包括频数、相对数、方差、标准差、标准误、全距、四分位间距、四分位数、百分位数和变异系数等。
需要注意的是,连续型变量和离散型变量的指标有所不同。
由于许多统计分析都有一个正态分布的假设,因此我们经常关注数据的分布特征。
常用峰度系数和偏度系数来描述数据偏离正态分布的程度。
也可以使用Bootstrap方法计算出结果与经典统计学方法计算出的结果进行对比,如果差异明显,则说明原数据呈偏态分布或存在极值。
SPSS用于描述性统计分析的过程大部分都在分析-描述统计菜单中,另有一个在比较均值-均值菜单。
虽然这几个过程用途不同,但基本上都可以输出常用的指标结果。
分析-描述统计-频率过程可以输出连续型变量集中趋势和离散趋势的主要指标,还可以输出判断分布的直方图、峰度值和偏度值。
此外,该过程最主要的作用是输出频数表。
分析-描述统计-描述过程输出的内容并不多,也没有统计图可以调用,唯一特别的是该过程可以对数据进行标准化变换,并保存为新变量。
分析-描述统计-探索过程是在原有数据进行描述性统计的基础上,更进一步的描述数据。
与前两种过程相比,它能提供更详细的结果。
分析-描述统计-比率过程主要用于对两个连续变量间的比率进行描述分析。
输出的结果比较简单,只是指标的汇总表格。
分析-描述统计-交叉表过程主要用于分类变量的描述性统计。
它可以完成频数分布和构成比的分析,也经常被用来做列联表的推断分析。
spss第二版习题及答案SPSS第二版习题及答案SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学领域的数据分析和研究中。
对于学习SPSS的人来说,掌握习题并查看答案是提高技能的重要途径之一。
本文将为大家介绍一些SPSS第二版习题及其答案,希望能够帮助读者更好地理解和应用SPSS。
一、描述统计学习题1. 对于以下数据集,请计算平均数、中位数、众数、标准差和极差。
数据集:12,15,18,20,22,25,25,27,30,30答案:平均数:23.4,中位数:24,众数:25和30,标准差:6.89,极差:18 2. 对于以下数据集,请计算四分位数和箱线图。
数据集:10,12,15,18,20,22,25,25,27,30,30,32,35,40,45答案:第一四分位数(Q1):18.5,第二四分位数(Q2):25,第三四分位数(Q3):32.5,箱线图:参考附图1。
二、假设检验学习题1. 一个研究人员想要确定一种新的药物是否对治疗抑郁症有效。
他随机选择了100名患有抑郁症的患者,并将他们分为两组:实验组和对照组。
实验组接受新药物治疗,对照组接受安慰剂。
请使用SPSS进行假设检验,判断新药物是否显著改善了患者的抑郁症状。
答案:使用t检验进行假设检验。
设定零假设(H0):新药物对抑郁症状无显著改善;备择假设(H1):新药物对抑郁症状有显著改善。
根据样本数据计算得到t值和p值,如果p值小于设定的显著性水平(通常为0.05),则拒绝零假设,认为新药物对抑郁症状有显著改善。
三、相关性分析学习题1. 一个市场研究人员想要确定广告投入和销售额之间的相关性。
他收集了10个不同广告投入和销售额的数据。
请使用SPSS进行相关性分析,并解释结果。
答案:使用Pearson相关系数进行相关性分析。
根据样本数据计算得到相关系数r,r的取值范围为-1到1,如果r接近1,则表示广告投入和销售额之间存在正相关关系;如果r接近-1,则表示存在负相关关系;如果r接近0,则表示不存在线性相关关系。
SPSS描述性统计分析SPSS是一种常用的统计分析软件,可以进行各种描述性统计分析。
描述性统计分析是对数据进行整体性的描述和总结,从中提取出关键的统计指标,包括数据的中心趋势、离散程度、分布形态和相关性等。
首先,数据的中心趋势是统计数据中心部分分布位置的指标。
常见的中心趋势统计指标有均值、中位数和众数等。
均值是将所有数据相加后除以总数,可以反映数据的平均水平;中位数是将数据按大小排列后处于中间位置的数,可以反映数据的中间位置;众数是数据中出现最频繁的数值,可以反映数据的集中趋势。
其次,数据的离散程度是统计数据分布的分散程度的指标。
常见的离散程度统计指标有标准差、方差和极差等。
标准差衡量数据与平均值的离散程度,数值越大表示数据越分散;方差是标准差的平方,也可以用于衡量数据的离散程度;极差是最大值与最小值之间的差异,可以反映数据的全局差异。
此外,还可以对数据的分布形态进行分析,以了解数据分布的形状。
常见的分布形态统计指标有偏度和峰度。
偏度反映数据分布的对称性,偏度为正表示数据右偏,为负表示左偏;峰度衡量数据分布的尖锐程度,峰度为正表示数据分布较为陡峭,为负表示较为平缓。
最后,还可以进行变量的相关性分析,以了解变量之间的相关关系。
常见的相关性统计指标有皮尔逊相关系数和斯皮尔曼等级相关系数。
皮尔逊相关系数是衡量变量之间线性相关关系的指标,取值范围为-1到1,数值越接近于1或-1表示相关性越强;斯皮尔曼等级相关系数则可以反映变量之间的单调相关关系,适用于非线性关系的变量。
在SPSS中进行描述性统计分析非常简单。
首先,打开SPSS软件并导入数据文件。
然后,在"分析(Analyze)"菜单中选择"描述性统计(Descriptive Statistics)",再选择"统计量(Descriptives)"。
在该对话框中,选择要进行统计分析的变量,并选择所需的统计指标,最后点击"确定"按钮即可。
spss习题及其答案SPSS习题及其答案SPSS(Statistical Package for the Social Sciences)是一种广泛应用于社会科学研究领域的统计分析软件。
它提供了强大的数据处理和统计分析功能,使得研究人员能够更加准确地分析和解释数据。
在学习和使用SPSS的过程中,习题是一种非常有效的练习方式,能够帮助我们巩固所学知识并提高数据分析的能力。
下面将介绍几个常见的SPSS习题及其答案。
习题一:描述性统计分析某研究人员对一组学生的成绩进行了调查,并得到了以下数据:70、85、90、65、78、92、80、75、88、82。
请使用SPSS计算出这组数据的均值、标准差、最大值和最小值。
答案:打开SPSS软件,依次点击“数据”-“数据编辑器”,在变量视图中创建一个名为“成绩”的变量。
在数据视图中输入上述数据,然后点击“分析”-“描述性统计”-“描述性统计”。
将“成绩”变量移动到“变量”框中,点击“统计”按钮,在弹出的对话框中勾选“均值”、“标准差”、“最大值”和“最小值”,最后点击“确定”按钮。
SPSS将会输出这组数据的均值为80.7,标准差为8.77,最大值为92,最小值为65。
习题二:相关性分析某研究人员想要了解两个变量之间的相关性,他收集了一组学生的数学成绩和语文成绩数据。
请使用SPSS计算出这两个变量之间的相关系数。
答案:打开SPSS软件,依次点击“数据”-“数据编辑器”,在变量视图中创建两个变量分别为“数学成绩”和“语文成绩”。
在数据视图中输入相应的数据,然后点击“分析”-“相关”-“双变量”。
将“数学成绩”和“语文成绩”变量分别移动到“变量”框中,点击“确定”按钮。
SPSS将会输出这两个变量之间的相关系数,以及相关系数的显著性水平。
习题三:t检验某研究人员想要了解男性和女性在数学成绩上是否存在显著差异。
他收集了一组男性学生和一组女性学生的数学成绩数据。
请使用SPSS进行独立样本t检验。