妙解二元一次方程组含参问题 (2)
- 格式:doc
- 大小:161.50 KB
- 文档页数:1
含参二元一次方程组的解法二元一次方程组是高中数学常见的题型,解法相对简单且应用广泛。
本文将详细介绍含参二元一次方程组的解法,并给出解题思路和具体步骤。
一、解题思路解决含参二元一次方程组的关键是确定两个方程中的未知数之间的关系,然后通过消元或代入法得出具体解。
通常,我们可以通过以下步骤来解决这类问题:1. 观察两个方程中的参数,确定它们的关系。
参数可以是常数、变量或未知数。
通过分析参数之间的关系,我们可以判断方程组的解的类型。
2. 根据两个方程的关系,选择合适的解法。
一般常用的解法有消元法和代入法。
消元法通过相加或相减两个方程来消除一个未知数,从而得到另一个未知数的值;代入法则通过其中一个方程的解表达式,代入到另一个方程中求解。
3. 解方程得出未知数的值。
将已经得到的一个未知数的值代入到方程中,求解另一个未知数的值。
4. 核对答案。
将求得的未知数的值代入到原方程组中,检查是否满足方程组。
二、解题步骤下面以一个例题来说明含参二元一次方程组的解题步骤:例:已知含参方程组{ x + 2y = a{ 3x - y = 7解:观察方程组中的参数可知,参数a可以是任意实数,且未知数x和y之间无特殊关系。
首先,我们选择消元法解决此方程组。
1. 方程组(1)乘以3得到3x + 6y = 3a方程组(2)乘以2得到6x - 2y = 142. 将两个方程相加得到9x = 3a + 14即 x = (3a + 14) / 93. 将x的值代入方程组(2)中,得到3(3a + 14) / 9 - y = 7化简得到 y = (9 - 3a) / 94. 核对答案。
将求得的x和y的值代入原方程组中,检查是否满足方程组。
含参二元一次方程组的解法主要分为观察参数关系、选择解法、解方程和核对答案四个步骤。
通过这些步骤,我们可以解决各种形式的含参二元一次方程组问题。
解题过程中需要注意的是,合理运用数学运算的规则和性质,细致推导每一步,避免计算错误。
掌握带有参数的二元一次方程组的解法带有参数的二元一次方程组是指方程组中含有参数的二元一次方程。
解决这类方程组的关键在于求出参数的取值范围,并找到满足方程组的解。
下面将详细介绍带有参数的二元一次方程组的解法。
一、带有参数的二元一次方程组的表示形式带有参数的二元一次方程组一般可以表示为:方程组1:$a_1x + b_1y = c_1$$a_2x + b_2y = c_2$其中,$a_1, b_1, c_1, a_2, b_2, c_2$为已知系数,$x, y$为未知数。
二、参数的取值范围为了求解方程组,首先需要确定参数的取值范围。
通常可以通过观察方程来判断参数取值的范围。
例如,如果方程组中含有分母,并要求分母不等于零,那么就需要确定参数不能为使分母为零的值。
三、带有参数的二元一次方程组的解法带有参数的二元一次方程组的解法可以分为以下几种情况:情况一:参数取某个特定值当参数取某个特定值时,方程组就变成了具有确定解的普通二元一次方程组。
根据二元一次方程的解法,解出该方程组,得到解的具体数值。
情况二:参数存在范围当参数存在范围时,需要根据参数的取值范围进行分类讨论。
具体步骤如下:1. 将方程组化简为标准形式,即求出每个方程的标准形式表达式;2. 根据参数的取值范围,将方程组分为不同的情况;3. 分别针对每种情况,解决方程组,并得到解的范围或具体解。
情况三:参数无限制当参数没有明确的取值范围时,需要利用一些性质和技巧,通过代数运算推导出解的性质。
常用的技巧包括代入法、消元法、矩阵法等。
根据具体问题和方程组的特点,选择合适的方法求解。
总之,掌握带有参数的二元一次方程组的解法,首先要明确参数的取值范围,然后根据具体情况选择合适的解法进行求解。
通过逐步分析和计算,可以得出解的范围或具体解。
在实际问题中,带有参数的二元一次方程组的解法能够帮助我们解决更为复杂的数学和实际应用问题。
二元一次方程组含参问题类型一:方程组的同解问题【例1】已知关于x ,y 的方程组{4x −y =53x +y =9和{ax +by =−13x +4by =18有相同的解. (1)求出它们的相同的解;(2)求(2a +3b)2019的值.【练习】 若关于x ,y 的方程组{3x +4y =2ax +b 2y =5与{a 3x +by =42x −y =5有相同的解,求a ,b 的值.类型二:方程组的错解问题【例2】在解方程组{ax +4y =213x −by =6时,由于粗心,甲同学看错了方程组中的a ,而得到解为{x =4y =3.乙同学看错了方程组中的b ,而得到解为{x =1y =4. (1)求正确的a ,b 的值;(2)求原方程组的解.【练习】甲、乙两人同时解关于x ,y 的方程组{ax +by =8cx −3y =−2,甲正确解得{x =1y =2,乙因为抄错c 的值,解得{x =2y =−6 ,求a ,b ,c 的值.类型三:方程组的解【例3】若方程组{2x +y =1−3k ①x +2y =2 ②的解满足x +y =0,则k 的值为( ) A.-1 B.1 C.0 D.不能确定【变式1】若方程组{x +2y =k −1 ①2x +y =5k +4②的解满足x +y =5,则k 的值为( ) A.-2 B.0 C.2 D.不能确定【变式2】若方程组{2x +y =1−3k ①x +2y =2 ②的解满足x >0,y >0,求k 的范围。
【变式3】若方程组{2x +y =1−3k ①x +2y =2 ②的解满足x +y =k ,求k 的范围。
【例4】k 、b 为何值时,关于x 、y 的方程组 (1)有唯一解; (2)无解; (3)有无数个解变式1、当a 为何值时,关于x 、y 的方程组 有唯一解?变式2、当m 为何值时,关于x 、y 的方程组 有无数个解?类型四:方程的整数解【例5】求二元一次方程3x +2y =12的非负整数解。
如何求解含参数的二元一次方程组二元一次方程组是指一个含有两个变量并且每个变量的最高次数都是一的方程组,比如下面的例子:$$ \begin{cases} 2x + 3y = 10\\ x - y = 2\end{cases} $$这个方程组可以表示成矩阵的形式:$$ \begin{pmatrix} 2 & 3 \\ 1 & -1\end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix} $$这个方程组的解可以通过求解上述矩阵方程来得到。
但是,有时候这个方程组中的系数不是固定的数值,而是含有一些参数,比如:$$ \begin{cases} (a + 1)x + (2a - 3)y = 2a +8\\ (2a + 3)x + (3a - 4)y = 2a - 4 \end{cases} $$这个方程组中有一个参数 $a$,我们称其为含参数的方程组。
在这种情况下,我们不能直接把方程组转换为矩阵方程然后求解,因为这个矩阵的元素都已经包含了一个未知的参数 $a$,我们无法对其进行逆矩阵运算。
那么,如何求解这种含参数的方程组呢?一、消元法消元法是解方程组的一种基本方法,也适用于含参数的方程组。
消元的过程和普通的方程组一样,只不过在每一步中需要注意含参数的情况。
首先,我们考虑将第一个方程的系数全部变成常数,也就是消去 $x$ 的系数。
为了消去这个系数,我们需要用第二个方程的系数来乘以一个常数加到第一个方程上面。
具体来说,我们需要让第二个方程的 $x$ 系数乘以$a+1$,然后加到第一个方程上面:$$ \begin{cases} (a + 1)x + (2a - 3)y = 2a +8\\ ((2a + 3)(a + 1) + (2a - 3)(-1)) y = (2a - 4)(a + 1) \end{cases} $$化简后得到:$$ \begin{cases} (a + 1)x + (2a - 3)y = 2a +8\\ (4a^2 - a - 5)y = 2a^2 - 2 \end{cases} $$现在,我们再来消去 $y$ 的系数。
二元一次方程组含参问题
二元一次方程组含参问题是指在一个方程组中,存在一个或多个参数,这些参数的值未知,需要通过方程组求解来确定参数的值。
二元一次方程组是由两个未知数和两个一次方程组成的方程组。
解决这类问题的方法是通过将方程组中的参数代入方程,然后求解未知数的值。
例如,考虑以下二元一次方程组含参问题:
(1) 2x + 3y = a
(2) 5x - 4y = b
在这个问题中,参数a和b的值未知。
我们的目标是找到x和y的值,以确定参数a和b的具体数值。
为了解决这个问题,我们可以使用消元法或代入法。
消元法是通过将方程组中的一个方程乘以适当的系数,使得方程中的一个未知数的系数相等,然后将两个方程相减来消去一个未知数。
代入法是将一个方程中的一个未知数用另一个未知数的表达式代入另一个方程中,从而得到只含有一个未知数的方程,然后求解这个未知数。
一旦我们求解出x和y的值,我们可以将这些值代入原始的方程组中,
得到参数a和b的具体数值。
总之,二元一次方程组含参问题是指在方程组中存在一个或多个参数的情况下,通过求解方程组来确定参数的值。
消元法和代入法是解决这类问题常用的方法。
初一数学下册二元一次方程组含参问题3种解题思路初一数学下册:二元一次方程组含参问题3种解题思路_参数_方法_不等式01用参数表未知数二元一次方程组含参问题一般含有两个未知数,一个参数。
我们在求解时,将参数当作已知数进行求解,用参数表示出两个未知数,然后再根据题意列出等量关系式,求出参数的值。
分析:本题将方程组含参问题与不等式组相结合,主要考查的就是对含参问题的处理,将参数a当作常数,利用加减消元法求出x和y的值,然后再根据“x为非正数,y为负数”得到不等式组,求出a的取值范围。
在解这类题目时一定要分清未知数与参数的区别,应该是用参数分别表示两个未知数。
比如本题应该用a表示x与y,不能用a表示x,然后用y再表示x或者用x再表示y,这些都是不可取的。
02消去参数得新方程组有些题目直接利用参数表示x或y,数据计算上比较繁琐,比如出现比较大的分数,这样的话我们可以考虑其它的方法,比如先将参数消去,求出x、y的值,然后再将x、y的值代入方程求出参数的值。
比如本题,计算量不是很大,可以选择第一种方法进行求解。
本题也可以先将(1)式扩大2倍,然后两式相减消去参数a,与x-2y=4得到二元一次方程组,解出x、y的值,代入方程(1)即可求出参数的值。
两种方法各有优缺点,在解题时根据题目的特征,灵活选择合适的方法进行解题。
03整体思想解决含参问题解含参问题时,我们首选的应该的整体思想,如果整体思想无法解决问题,我们可以选择上述两种方法进行解题。
分析:利用参数m表示x、y,然后代入不等式组中求解,肯定能够做,但是计算量大,并且容易出错。
因此,在解这类题目时,我们首先想一下能不能使用整体思想,一般就是将两式相加或相减,有时也需要稍作变形。
如果不能使用整体思想,再利用上述两种方法进行考虑。
比如本题,将两式相加即可得到3x+y=3m+4,将两式相减即可得到x+5y=m+4,代入不等式中得到关于m的不等式组,可求出m的取值范围,然后再取其中的整数。
(详细版)含参二元一次方程解法1. 问题描述我们面对的问题是求解含参的二元一次方程。
该方程的一般形式为:ax + by = c其中a、b、c为已知的参数,x、y为未知变量。
2. 解法步骤为了解决这个问题,我们可以采取如下的步骤来求解含参的二元一次方程:步骤1: 化简方程通过移项和合并同类项的方法,将方程化简为标准形式:ax + by = c步骤2: 求解x通过将y看作常数,求解关于x的一元一次方程,得到x的表达式。
步骤3: 求解y将得到的x的表达式代入原方程中,得到关于y的一元一次方程,求解得到y的表达式。
步骤4: 得出解将得到的x和y的表达式合并,即可得到含参二元一次方程的解。
3. 示例下面我们通过一个示例来演示含参二元一次方程的解法:假设我们要求解方程2x + ay = 6,其中a为一个未知参数。
步骤1: 化简方程方程已经是标准形式,无需化简。
步骤2: 求解x将y看作常数,我们可以将方程2x + ay = 6中的y消去,得到关于x的一元一次方程:2x + ay = 62x = 6 - ayx = (6 - ay) / 2步骤3: 求解y将得到的x的表达式代入原方程中,得到关于y的一元一次方程:2((6 - ay) / 2) + ay = 6(6 - ay) + ay = 66 - ay + ay = 66 = 6得到的等式恒成立,代表该一元一次方程有无穷解。
步骤4: 得出解由于方程有无穷解,我们无法得到具体的x和y的值,而是可以表示为通解的形式。
通解表达式为:x = (6 - ay) / 2y为任意实数。
4. 结论综上所述,我们可以通过化简方程、求解x和求解y的步骤,得到含参二元一次方程的解。
注意:具体的解取决于参数a、b和c的取值,有时方程可能无解或有无穷解。
在实际应用中,我们可以根据具体的参数值来判断方程的解的情况。
二元一次方程含参数类型的题二元一次方程是初中数学中的重点内容,其具有较强的实用性和广泛的应用场景。
在日常生活和工作学习中,我们常常需要通过二元一次方程来解决问题。
而含参数类型的二元一次方程更是在诸多领域中得到了广泛应用,因此熟练掌握此类方程的解法和应用方法具有重要意义。
一、含参数类型的二元一次方程的定义含参数类型的二元一次方程是由含有参数的二元一次方程所组成的一类方程。
通常在一个二元一次方程当中,方程的系数是已知变量,而未知数则是待求解的、未知的变量。
而当方程中含有参数时,就需要通过解方程的方法来求解方程中的参数和未知数。
此类方程的解法围绕着参数的取值来进行,不同的参数取值会导致方程的根、方程的解集等结果的不同。
二、含参数类型的二元一次方程的应用含参数类型的二元一次方程在实际中有着广泛的应用,以下是其中的几个例子。
(1)经济学中的应用在经济学中,人们通常会使用含参数类型的二元一次方程来描述某两种经济因素的关系,比如生产成本与生产量之间的关系。
经济学家可以通过对方程中的参数进行调节,来分析不同生产成本与生产量之间的关系,并进行经济决策。
(2)物理学中的应用在物理学中,含参数类型的二元一次方程也是非常常见的。
比如,当人们需要计算某一事件的发生概率时,通常会使用含参数类型的二元一次方程,而参数的取值会受到各种因素的影响,比如物理实验中的环境变化等等。
(3)计算机科学中的应用在计算机科学中,人们也常常使用含参数类型的二元一次方程来解决问题。
比如,当一个计算机系统需要进行优化时,通常会使用含参数类型的二元一次方程来描述各种邻近算法和参数对计算复杂度所产生的影响,从而进行系统性能优化。
三、含参数类型的二元一次方程的解法常规的二元一次方程的解法主要有消元法、代入法、求解系数法、公式法等,而在含参数类型的二元一次方程中,这些方法同样适用。
我们以求解含参数类型的二元一次方程为例:$ax+by=c$ $dx+ey=f+x$首先,我们对方程进行整理,使其符合标准二元一次方程的形式:$ax+by-c=0$ $dx+ey-x-f=0$然后,我们通过消元法,将其中一个未知量消去,此处我们选择消去 x:$adx + bey - x = af + ec$ $x = (b + e) y + (c + f - af - ec) / a - d$进一步,我们可以将 x 的值带回到另外一个方程中,得到:$y = (-ad + bc + (ae - bd + ad - bc) f / l) / (ae - bd + l)$其中,$l = ad - bc$。
二元一次方程含参问题
摘要:
1.二元一次方程简介
2.含参问题的概念
3.解含参问题的方法
4.实际应用与案例分析
5.总结与建议
正文:
一、二元一次方程简介
二元一次方程是含有两个未知数的一次方程,通常形式为:ax + by = c。
在数学、物理、化学等学科中,二元一次方程广泛应用于解析问题、计算问题等方面。
二、含参问题的概念
含参问题是指在二元一次方程中,未知数的系数和常数项含有变量或参数。
这类问题具有一定的灵活性和复杂性,需要运用一定的策略和方法进行求解。
三、解含参问题的方法
1.参数分离法:将含参问题转化为不含参问题,通过消元、换元等方法求解。
2.代入法:将含参问题中的一个方程表示为另一个方程的函数,然后代入另一个方程,转化为不含参问题求解。
3.齐次方程法:将含参问题转化为齐次方程,利用齐次方程的性质求解。
4.图像法:对于具有实际背景的含参问题,可以通过绘制图像来直观分析问题,找出参数的取值范围。
四、实际应用与案例分析
1.线性规划问题:在生产、销售等实际问题中,通过建立二元一次方程组,运用线性规划方法求解最优解。
2.物理问题:在力学、电磁学等领域,利用二元一次方程描述物理量之间的关系,通过求解方程组得到未知量的值。
3.化学问题:在化学反应方程中,通过解二元一次方程组计算反应物和生成物的物质的量。
五、总结与建议
含参二元一次方程问题在实际应用中具有重要意义,掌握解题方法能帮助我们更好地解决这类问题。
在学习过程中,要多加练习,熟练掌握各种解题技巧,提高自己的数学素养。
心头有数|含参二元一次方程组的解相关问题展开全文前面总结了一篇含参不等式(组)整数解问题(心头有数|含参不等式组的整数解问题(易错点)),今天将二元一次方程组的含参问题总结如下。
一、同解方程因为是同解方程,所以先解不含参数的两个二元一次方程组,再把解出来的x、y代入另外两个方程,解关于a、b的方程。
二、整数解问题先解出方程组,得到x、y的值,然后根据m为正整数,x、y为整数,求出m的值。
在这里,涉及m的整除问题,在讲一元一次方程的含参问题时,已经讲到。
三、二元一次方程组有唯一解解方程组,消去y,得到关于x的一元一次方程,当x有唯一解的时候,则方程组有唯一解。
四、二元一次方程组有无数解解方程组,消去x,得到关于y的一元一次方程,当y有无数个解的时候,则方程组有无数个解。
五、二元一次方程组无解解方程组,得到关于x、 y的值,当分母无意义的时候,方程组无解。
但是本题特别注意,当上下两个方程化简后一模一样的时候,方程组有无数个解。
关于二元一次方程组有唯一解、无解、无数个解的总结思考:将方程组化简成一般形式,相同未知数前面的系数存在一定的关系,则方程组存在不同的解的情况,详解见下:历史精彩文章心头有数|含参不等式组的整数解问题(易错点)心头有数|杨辉三角心头有数|负数的整数部分和小数部分(盲区)心头有数 | 二次函数中相似三角形存在性问题心头有数|增量巧设,妙解“每每型”一元二次方程应用题心中有数|一元二次方程整数根心头有数|反比例函数常用固定结论心中有数|如何在平面直角坐标系中求对称点的坐标心中有数|二次根式大小比较的十种方法心中有数 | 二次根式运算的八种技巧心中有数|不定方程心头有数|平面直角坐标系中平移问题解决方案。
二元一次方程常见含参题型解法一、常见的含参二元一次方程题型有哪些?在解题时,我们常常会遇到含参的二元一次方程题型,这些题型可能涉及到不同的参数取值范围,需要采用不同的方法进行求解。
常见的含参二元一次方程题型包括但不限于以下几种:1. 一元二次方程的参数问题:如给定参数a,求方程x^2 + 2ax + a^2 - 3 = 0的解;2. 参数范围问题:如对于方程(x+2)(x-a) = 0,a取什么值时方程有两个相异的实根;3. 参数性质问题:如对于方程ax^2 + (a-1)x + 1 = 0,若a>0,求x 的取值范围;4. 参数关系问题:如对于方程(2a-1)x^2 + (a+1)x + 1 = 0,若方程有两个相反数根,求a的取值范围。
以上仅为一些常见的含参二元一次方程题型,实际上在解题过程中还会遇到更多类型的题目,需要根据具体情况进行灵活求解。
二、常见的含参二元一次方程解法有哪些?对于含参的二元一次方程题型,我们通常可以采用以下几种解法:1. 代数法:对于一些直接的参数问题,可以采用代数的方法进行求解。
通过将参数代入方程中,列出相关方程式,进而求得方程的解。
例如对于方程x^2 + 2ax + a^2 - 3 = 0,我们可以直接代入参数a,然后利用求根公式求得方程的解。
2. 几何法:对于一些参数范围或参数性质问题,可以采用几何的方法进行求解。
通过在坐标平面上绘制函数图像、直线或抛物线等,来分析参数的取值范围或者特定性质。
例如对于方程(x+2)(x-a) = 0,我们可以通过绘制函数图像得出a的取值范围。
3. 参数化求解法:对于一些参数关系问题,可以采用参数化的方法进行求解。
通过设定参数的具体取值,然后根据参数的性质进行讨论,并最终得出方程的解。
例如对于方程(2a-1)x^2 + (a+1)x + 1 = 0,我们可以对a进行参数化,然后讨论参数的取值范围。
以上是常见的含参二元一次方程解法,实际应用中还可能会有其他求解方法,需要根据具体题目进行灵活选择。
适用栏目:解法总结适用年级:八年级聚焦二元一次方程组中参数问题的求解李培华广东省化州市文楼中学525136二元一次方程组中的参数一般是指在二元一次方程组中,除了 x 与 y 之外,其它用字母表示的数。
对于二元一次方程组中的参数问题怎样求解呢?下面本文将结合例题介绍三种常见的重要方法,供大家参考:一 变参为主法:即把二元一次方程组中的参数当作主要未知数来处理, 建立新的关于此参数的一元一次方程或二元一次方程组来求解的方法。
x y 5k例 1:关于 x与 y 的二元一次方程组y 的解也是二元一次方程x 9k2x 3y6 的解,则 k 的值是 ______x y 5k x 7k 解:由x y得y2k9kx 7k2x 3 y 6 的解∵y2k 是二元一次方程∴ 2 7k 3 (2k ) 8k 63解得 k4例 2:若二元一次方程组解 : ∵ x 与 y 互为相反数3x 2 y32 x ay中的 x 与 y 互为相反数,则 a______1∴ xy 0 即 y x 从而有 3x2y 3x 2x x 3 则 y 3x35 把代入 2x ay 1y得 a33例 3 : 若 二 元 一 次 方 程 组m ______, n ______4x y 5 mx ny 3 3x 2 y 1 和mxny 1 有 相 同 的 解 , 则4x y 5 x 1解:由3x 2 y1得y 14x y 5mx ny 3∵3x 2 y 1和mx ny 1 有相同的解x 1 mx ny 3 m n 3 (1) ∴y 1也是mxny1 的解,从而有m n1(2)由⑴ +⑵得 m 2 把 m 2 代入⑴得 n 1故 m2 , n 1例 4 :若二元一次方程组(2a b)2010 的值。
2 x 5 y 26 和 3x 5 y 36有相同的解,求ax by4 bx ay82 x 5y 26 3x 5 y 36解:∵ax by4 和bx ay 8 有相同的解x x 0 2x 5 y 263x 5y 36∴设y y 0是ax by4和bx ay 8 的公共解,则有2x 0 5 y 0 26 3x 0 5 y 0 36ax 0 by 04 和 bx 0 ay 08 ,从而知x x 02x 0 5 y 026 ax 0 by 0 4也是3x 0 5 y 0和bx 0 ay 08 的公共解y y 0362x 0 5 y 026x 0 2由3x 0 5 y 0得636 y 0x 02ax 0 by 0 42a 6b 4 (1)把y 06 代入 bx 0 ay 08 得2b 6a 8 (2)由⑴× 3+⑵得 20b 20 解得 b1 把 b 1代入⑴得 a 1∴ (2a b) 2010 (2 1 1)2010 1例 5:甲乙两个学生解二元一次方程组ax by 16cx by 32 ,甲正确地解出x6x7.61 ,乙因为把 c 看错而得到的解是yy1.7 ,求 a,b,c 的值。
含字母系数的一次方程组一、二元一次方程及二元一次方程的解 1.二元一次方程的概念 含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”.2.二元一次方程的一般形式二元一次方程的一般形式为:0ax by c ++=(0a ≠,0b ≠)3.二元一次方程的解使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解. 一般情况下,一个二元一次方程有无数个解.二、二元一次方程组及二元一次方程组的解 1.二元一次方程组的概念注意:(1只有一元(不过一元方程在这里也可看作另一未知数系数为0的二元方程).如2631x x y =⎧⎨-=⎩也是二元一次方程组.(2)定义中“两个”的含义:二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数.2.二元一次方程组解的情况(1)在x 、y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ①②中,1a 、2a 、1b 、2b 、1c 、2c 均为已知数,(1a 与1b 、2a 与2b 都至少有一个不等于0),则有:由21b b ⨯-⨯①②得:12212112a b a b x b c b c -=-() 由21a a ⨯-⨯①②得:12211221a b a b y a c a c -=-()当12210a b a b -≠时,方程组有唯一一组解;当12210a b a b -=,且21120b c b c -≠,12210a c a c -≠时,方程组无解; 当12210a b a b -=,且21120b c b c -=,12210a c a c -=时,方程组有无穷多组解; (2)二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的情况有以下三种:①当111222a b c a b c ==时,方程组有无数多解.(∵两个方程等效) ②当111222a b c a b c =≠时,方程组无解.(∵两个方程是矛盾的) ③当1122a b a b ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解:1221122121121221c b c b x a b a b c a c a y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩(这个解可用加减消元法求得)注意:(1)方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行.(2)求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论.一、一次方程(组)解的讨论【例1】 下列说法正确的是( )A .二元一次方程只有一个解.B .二元一次方程组有无数个解.C .二元一次方程组的解必是它所含的二元一次方程的解.D .二元一次方程组一定有解.【解析】略 【答案】C 例题精讲【例2】 不解方程组,判定下列方程组解的情况:①23369x y x y -=⎧⎨-=⎩;②23423x y x y -=⎧⎨-=⎩;③351351x y x y +=⎧⎨-=⎩【解析】如果在此我们仍然使用上面的结论判断,会不太方便,对于上面的结论,我们还可以这样记忆:1a 、2a 、1b 、2b 、1c 、2c 均不为0,那么上结论可这样记忆:当1122a b a b ≠时,方程组有唯一一组解(这个解可用加减消元法求得); 当111222a b c a b c ==时,方程组有无穷多组解(因为两个方程等效); 当111222a b c a b c =≠时,原方程组无解(因为两个方程是矛盾的). 这个公式很常用!利用此结论会很快判断出结果:①123369-==-,方程组有无穷多组解;②213423-=≠-,方程组无解;③35≠-方程组有唯一解. 【答案】①123369-==-,方程组有无穷多组解;②213423-=≠-,方程组无解;③3535≠-方程组有唯一解.二、含字母系数的一次方程组1.根据方程解的具体数值来确定 【例3】 已知12x y =⎧⎨=⎩与3x y m =⎧⎨=⎩都是方程x y n +=的解,求m 与n 的值.【解析】12x y =⎧⎨=⎩是方程x y n +=的解可得3n =,则原方程为3x y +=,3x y m =⎧⎨=⎩是方程3x y +=的解可得33m +=,0m =. 【答案】0m =,3n =.【例4】 方程6ax by +=有两组解是22x y =⎧⎨=-⎩与18x y =-⎧⎨=-⎩,求2a b +的值.【解析】将22x y =⎧⎨=-⎩与18x y =-⎧⎨=-⎩代入6ax by +=可得22686a b a b -=⎧⎨--=⎩,解得21a b =⎧⎨=-⎩,20a b +=【答案】0【例5】 如果二元一次方程20mx ny ++=有两个解是22x y =⎧⎨=⎩与11x y =⎧⎨=-⎩,那么下列各组中,仍是这个方程的解的是( ) A .35x y =⎧⎨=⎩B .62x y =⎧⎨=⎩C .53x y =⎧⎨=⎩D .26x y =⎧⎨=⎩【解析】将22x y =⎧⎨=⎩与11x y =⎧⎨=-⎩代入20mx ny ++=可得3212m n ⎧=-⎪⎪⎨⎪=⎪⎩,原方程为312022x y -++=,检验选A .【答案】A【例6】 写出一个以12x y =-⎧⎨=⎩为解的二元一次方程组 .【解析】此题答案不唯一,满足条件即可. 【答案】13x y x y +=⎧⎨-=-⎩【例7】 写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 .【解析】本题答案不唯一,满足条件即可.【答案】51x y y x +=⎧⎨-=⎩【例8】 已知43x y =-⎧⎨=⎩是方程组12ax y x by +=-⎧⎨-=⎩的解,则6()a b += .【解析】根据题意可得:431432a b -+=-⎧⎨--=⎩,由431a -+=-得:1a =,由432b --=得:2b =-,6()1a b +=.【答案】1【例9】 已知12x y =-⎧⎨=⎩是方程组12x ay bx y +=-⎧⎨-=⎩的解,则a b += .【解析】将12x y =-⎧⎨=⎩代入12x ay bx y +=-⎧⎨-=⎩可得0a =,4b =-,那么0(4)4a b +=+-=-.【答案】4-【例10】 已知21x y =⎧⎨=⎩是方程组2(1)21x m y nx y +-=⎧⎨+=⎩的解,求()m n +的值.【解析】把2,1x y ==代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得()22112211m n ⎧⨯+-⨯=⎪⎨+=⎪⎩ 由①得1m =- 由②得0n =所以当1m =-,0n =时,1m n +=-.【答案】1-【例11】 已知方程组2421mx y n x ny m +=⎧⎨-=-⎩的解是11x y =⎧⎨=-⎩,求m 、n 的值.【解析】将11x y =⎧⎨=-⎩代入2421mx y n x ny m +=⎧⎨-=-⎩可得2421m nn m -=⎧⎨+=-⎩,解得31m n =⎧⎨=⎩.【答案】31m n =⎧⎨=⎩【例12】 关于x ,y 的方程组3205319mx ny mx ny +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,求m ,n 的值.【解析】将11x y =⎧⎨=-⎩代入3205319mx ny mx ny +=⎧⎨-=⎩可得3205319m n m n -=⎧⎨+=⎩,解得23m n =⎧⎨=⎩【答案】23m n =⎧⎨=⎩【例13】若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a b+=.【解析】略【答案】0a b+=【例14】若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么a b-=.【解析】略【答案】1【例15】若关于x y,的方程组2x y mx my n-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则m n-为()A.1 B.3 C.5 D.2 【解析】略【答案】D【例16】明明和亮亮二人解关于x、y的方程组278mx bycx y+=⎧⎨-=⎩,明明正确地解得32xy=⎧⎨=-⎩,而亮亮因把c看错了,解得22xy=-⎧⎨=⎩.请问:亮亮把c看成了多少?【解析】根据题意,分别把32xy=⎧⎨=-⎩和22xy=-⎧⎨=⎩代入方程2mx by+=,得322222m bm b-=⎧⎨-+=⎩,解得45mb=⎧⎨=⎩把3x=,2y=-代入方程78cx y-=,得2c=-.假设亮亮把c看成了d,把2x=-,2y=代入方程78dx y-=,得11d=-.【答案】11-【例17】已知方程组278ax bymx y+=⎧⎨-=⎩的解应为32xy=⎧⎨=-⎩,由于粗心,把m看错后,解方程组得22xy=-⎧⎨=⎩,则a b m⋅⋅的值是.【解析】将32xy=⎧⎨=-⎩,22xy=-⎧⎨=⎩代入2ax by+=可得222322a ba b-+=⎧⎨-=⎩,解得45ab=⎧⎨=⎩32x y =⎧⎨=-⎩代入78mx y-=可得2m=-,45(2)40a b m⋅⋅=⨯⨯-=-【例18】 孔明同学在解方程组2y kx by x=+⎧⎨=-⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为12x y =-⎧⎨=⎩,又已知13k b =+,则b 的正确值应该是 .【解析】把12x y =-⎧⎨=⎩代入6y kx =+可得4k =把4k =代入得11b =-【答案】11-【例19】 已知甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩,如果甲看错了方程①中的a ,得方程组的解为31x y =-⎧⎨=⎩,而乙看错方程②中的b ,得到方程组的解是54x y =⎧⎨=⎩,请求120082009()10a b +-的值. 【解析】把31x y =-⎧⎨=⎩代入42x by -=-,可得10b =-把54x y =⎧⎨=⎩代入515ax y +=可得1a =-把1a =-, 10b =-代入20082009()2a += 【答案】2【例20】 甲、乙两人同时解方程组85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确m n ,的值. 【解析】由题意得:425258m n m n -=⎧⎨+=-⎩解方程组可得:382112m n ⎧=⎪⎪⎨⎪=-⎪⎩【答案】382112m n ⎧=⎪⎪⎨⎪=-⎪⎩【例21】 小刚在解方程组278ax by cx y +=⎧⎨-=⎩时,本应解出32x y =⎧⎨=-⎩由于看错了系数c ,而得到的解为22x y =-⎧⎨=⎩求a b c ++的值.【解析】由题意得:322222a b a b -=⎧⎨-+=⎩解得:45a b =⎧⎨=⎩把32x y =⎧⎨=-⎩代入方程78cx y -=得:2c =-∴7a b c ++=【答案】72.根据方程解的数量关系来确定【例22】 关于x ,y 的二元一次方程组42132x y mx y -=⎧⎪⎨+=⎪⎩的解中x 与y 的值相等,试求m 的值.【解析】根据题意可得x y =,代入方程组可得42132x x mx x -=⎧⎪⎨+=⎪⎩,解得122x m ⎧=⎪⎨⎪=⎩. 【答案】2【例23】 若方程组435(1)8x y kx k y +=⎧⎨--=⎩的解中x 比y 的相反数大1,求k 的值.【解析】根据题意可得1x y =-+,代入方程组可得4(1)35(1)(1)8y y k y k y -++=⎧⎨-+--=⎩,解得13y k =-⎧⎨=⎩.【答案】3【例24】 若关于x y ,的二元一次方程组2351x y mx y m +=⎧⎨+=-⎩的解x 与y 的差是7,求m 的值.【解析】解方程组2351x y m x y m +=⎧⎨+=-⎩的解为:3221x m y m =--⎧⎨=+⎩代入7x y -=得:2m =-【例25】 当1x =时,关于x ,y 的二元一次方程组331ax y x by -=⎧⎨-=-⎩解中的两个数互为相反数,求a ,b .【解析】x ,y 互为相反数,当1x =,则1y =-,代入方程组可得2a =,4b =-. 【答案】2a =,4b =-.【例26】 二元一次方程组31242x y x ay +=⎧⎨+=⎩的解中x 与y 互为相反数,求a 的值.【解析】∵x 与y 互为相反数 ∴0x y +=解0312x y x y +=⎧⎨+=⎩得:66x y =⎧⎨=-⎩把方程组的解代入412x ay +=得2a =【答案】2【例27】 k 为何值时,关于x y ,的方程组35223x y k x y k-=+⎧⎨-=⎩的解的和为20.【解析】这是含有字母的二元一次方程组,求解此类题需将字母看作常数求解方程组的解,然后再根据题目条件求出字母的值.解:解方程组35223x y k x y k -=+⎧⎨-=⎩得:264x k y k =-⎧⎨=-⎩又因为:20x y +=,即:31020k -=所以:10k =.【答案】10【例28】 已知方程组325(1)7x y kx k y -=⎧⎨+-=⎩的解x y ,,其和1x y +=,求k 的值. 【解析】解3251x y x y -=⎧⎨+=⎩得:25y =-因为(1)7kx k y +-=,所以7kx ky y +-= 所以()7k x y y +-= 把21,5x y y +==-代入()7k x y y +-=得:335k =【答案】335【例29】 已知方程组3542x y m x y m +=-⎧⎨+=⎩中未知数和等于1-,则m = .【解析】方程组可以简化为3241y m y m -+=-⎧⎨-+=⎩;解之得到3m =-.【答案】3-3.根据方程解的个数情况来确定【例30】 m ,n 取何值时,方程组2354x y x my n +=⎧⎨+=⎩(1)有唯一解?(2)没有解?(3)有无穷多组解? 【解析】由①可得253x y =-③,代入②可得(6)10m y n -=-④当60m -≠时,④有惟一解,进而原方程组有惟一一组解;当60m -=时,100n -≠时,④无解,进而原方程组无解;当60m -=时,100n -=时,④无穷个解,进而原方程有无穷组解.【答案】(1)当60m -≠时,原方程组有惟一一组解;(2)当60m -=时,100n -≠时,原方程组无解; (3)当60m -=时,100n -=时,原方程有无穷组解.【例31】 已知关于x 、y 的方程组2122(1)3ax y ax a y +=+⎧⎨+-=⎩,分别求出当a 为何值时,方程组的解为:(1)惟一一组解;(2)无解;(3)有无穷多组解.【解析】由已知方程组可得:(2)(1)(2)(2)2(2)(1)2a a x a a a a y a -+=-+⎧⎨-+=-⎩,(1)当(2)(1)0a a -+≠,即2a ≠且1a ≠-时,方程有惟一解,方程组也有惟一解;(2)当(2)(1)0a a -+=,且(2)(2)a a -+与2a -中至少有一个不为零时,方程无解,因此当1a =-时,原方程无解;(3)当(2)(1)(2)(2)20a a a a a -+=-+=-=,即2a =时,原方程组有无穷多组解.【答案】(1)当2a ≠且1a ≠-时,方程组有惟一解;(2)当1a =-时,原方程无解;(3)当2a =时,原方程组有无穷多组解.【例32】 选择一组a ,c 值使方程组572x y ax y c +=⎧⎨+=⎩,①有无数多解;②无解;③有唯一的解.【解析】略【答案】①当10a =,14c =时,方程组有无数多解;②当10a =,14c ≠时,方程组无解; ③当10a ≠时,方程组有唯一的解.【例33】 当m n ,为何值时,方程组(21)4mx y nm x y -=-⎧⎨--=-⎩(1)无解;(2)惟一解;(3)有无穷多解.【解析】②-①,得(1)4m x n -=-(1)当1040m n -=-≠,,即14m n =≠,时,原方程组无解; (2)当10m -≠,即1m ≠时,原方程组有惟一解; (3)当10m -=,40n -=时,即14m n ==,时,原方程组有无穷多个解.【答案】(1)当14m n =≠,时,原方程组无解; (2)当1m ≠时,原方程组有惟一解; (3)当14m n ==,时,原方程组有无穷多个解.【例34】 当m n ,为何值时,关于x y ,的方程组2235mx y nx y n -=⎧⎨+=+⎩(1)有唯一解;(2)有无数解;(3)无解.【解析】(1)由223m ≠-,得:43m ≠-. ∴当43m ≠-,n 为一切有理数时,方程组有唯一解.(2)由2235m n n =-=+,得4,23m n =-=-. ∴当4,23m n =-=-时,方程组有无数解.(3)由2235m n n =-≠+,得4,23m n =-≠-. ∴当4,23m n =-≠-时,方程组无解.【答案】(1)当43m ≠-,n 为一切有理数时,方程组有唯一解.(2)当4,23m n =-=-时,方程组有无数解.(3)当4,23m n =-≠-时,方程组无解.【例35】k 为何值时,方程组22342kx y x y +=⎧⎨-=⎩无解?【解析】根据12a a =12b b ≠12c c 时,方程组无解,所以32k =- 【答案】32-【例36】 若关于xy 的方程组322(1)mx y x m y m+=⎧⎨+-=⎩有无穷多组解,求m 的值.【解析】∵方程组有无穷多组解 ∴2m =31m -=2m 解得:2m =(舍),2m =- ∴m 的值是2-.【答案】2-【例37】 已知方程组354x my x ny +=⎧⎨+=⎩无解,m 和n 是绝对值小于10的整数,求m 和n 的值.【解析】因为方程组无解,所以3m n =,45m n ≠.因为||3||10m n =<,所以101033n -<<,即3n =-,2-,1-,0,1,2,3;相应的9m =-,6-,3-,0,3,6,9,所以(m ,n )=(9-,3-),(6-,2-),(3-,1-),(0,0),(3,1),(6,2),(9,3).【答案】(m ,n )=(9-,3-),(6-,2-),(3-,1-),(0,0),(3,1),(6,2),(9,3).【例38】 如果关于x 、y 的方程组3921ax y x y +=⎧⎨-=⎩无解,那么a = .【解析】注意方程组无解的条件,根据111222a b c a b c =≠时,方程组无解可得出a 的值. 【答案】6-【例39】 m ,n 取何值时,方程2354x y x my n +=⎧⎨+=⎩有无穷多组解?没有解?有唯一解? 【解析】由方程组可得:(6)10m y n -=-,当60m -=,100n -=时,即6m =,10n =方程组有无穷多组解;当60m -=,100n -≠时,即6m =,10n ≠方程组无解; 当60m -≠,100n -≠时,即6m ≠,10n ≠方程组有唯一解.【答案】6m =,10n =方程组有无穷多组解;6m =,10n ≠方程组无解; 6m ≠,10n ≠方程组有唯一解.4.根据方程同解的情况来确定【例40】 已知方程组2564x y ax by +=-⎧⎨-=-⎩和方程组35168x y bx ay -=⎧⎨+=-⎩的解相同,求3(2)a b +的值.【解析】由已知,两个方程组有相同的解,所以方程256x y +=-和3516x y -=有相同的解,故将此两个方程联立,通过解此方程组就可求出两个方程组的解,又因为此解满足方程4ax by -=-和8bx ay +=-,故可得关于,a b 的二元一次方程组,通过解该方程组就可求出,a b 的值,从而可求3(2)a b +的值.解:将256x y +=-和3516x y -=联立,得2563516x y x y +=-⎧⎨-=⎩①+②,得510x =,∴2x =把2x =代入①,得2256y ⨯+=-,∴2y =-. ∴22x y =⎧⎨=-⎩.将22x y =⎧⎨=-⎩.代入方程4ax by -=-和8bx ay +=-,得224228a b b a +=-⎧⎨-=-⎩,即24a b a b +=-⎧⎨-=⎩解得13a b =⎧⎨=-⎩.当1,3a b ==-时,333(2)(23)(1)1a b +=-=-=-故代数式3(2)a b +的值为-1.解决此题的关键是深刻理解二元一次方程组的解的概念,二元一次方程组的解就是方程组中两个二元一次方程的公共解.【答案】1-【例41】 关于x y ,的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则()b a -= .【解析】本题注意方程组的重新组合,把只含有x y ,的方程放在一起组成方程组可解出x y ,的值.再把x y ,的值代入含有a b ,的方程可得到关于a b ,的方程组.可求得12x y =⎧⎨=-⎩,进而求得23a b =⎧⎨=⎩.所以()8b a -=-.【答案】8-【例42】 已知方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解,求a b ,的值. 【解析】解方程组5325x y x y +=⎧⎨-=⎩得:12x y =⎧⎨=-⎩把12x y ==-,分别代入方程5451ax y x by +=+=,可得:142a b ==, 【答案】142a b ==,【例43】 已知x ,y 的方程组241ax by x y +=⎧⎨+=⎩与3(1)3x y bx a y -=⎧⎨+-=⎩的解相同,求a ,b 值.【解析】联立1x y +=与3x y -=可得21x y =⎧⎨=-⎩,将其代入其它两个方程24(1)3ax by bx a y +=⎧⎨+-=⎩,解得64a b =⎧⎨=⎩.【答案】64a b =⎧⎨=⎩【例44】 如果二元一次方程组4x y ax y a +=⎧⎨-=⎩的解是二元一次方程3528x y a --=的一个解,那么a 的值是?【解析】解方程组⎧⎨⎩2a =【答案】2【例45】 已知关于x y ,的方程组239x y mx y m +=⎧⎨-=⎩的解也是方程3217x y +=的解,求m .【解析】解方程组23,9x y m x y m +=⎧⎨-=⎩得:72x my m =⎧⎨=-⎩把72x my m =⎧⎨=-⎩代入3217x y +=得:1m =【答案】1【例46】 若关于x y ,的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为?【解析】由方程①+②可得:7x k =①-②可得:2y k =-把7x k =,2y k =-代入方程236x y +=得:34k =【答案】34【例47】 已知关于x ,y 的二元一次方程(1)(2)520a x a y a -+++-=,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解. 【解析】解法一:由于a 取不同的值,方程都有一个相同的解,所以可以取1a =,1a =-代入原方程,可以得到方程组:330270y x y +=⎧⎨-++=⎩,解得公共解为:31x y =⎧⎨=-⎩;解法二:方程有一个公共解,说明方程有一种形式,关于a 的方程有无数解,将方程变形得:(2)(25)0a x y x y +----=,此方程有无数解,故:20250x y x y +-=⎧⎨--=⎩,解得公共解为:31x y =⎧⎨=-⎩. 【答案】31x y =⎧⎨=-⎩5【例48】 a 【解析】把a 作为已知数,解这个方程组得31325312a x a y -⎧=⎪⎪⎨-⎪=⎪⎩ ∵00x y >⎧⎨>⎩,∴3130253102aa -⎧>⎪⎪⎨-⎪>⎪⎩解不等式组得313315a a ⎧<⎪⎪⎨⎪>⎪⎩,解集是6111053a <<【答案】111053a <<【例49】 m 取何整数值时,方程组2441x my x y +=⎧⎨+=⎩的解x y ,都是整数? 【解析】把m 作为已知数,解方程组得81828x m y m ⎧=-⎪⎪-⎨⎪=⎪-⎩∵x 是整数,∴8m -取8的约数1248±±±±,,,. ∵y 是整数,∴8m -取2的约数12±±,. 取它们的公共部分,812m -=±±,. 解得97106m =,,,. 经检验97106m =,,,时,方程组的解都是整数. 【答案】97106m =,,,【例50】 已知方程组51x my x y +=⎧⎨+=⎩有正整数解,那么正整数m 的值为 .【解析】消去x 得到方程(1)6m y +=,解得61y m =+. 因此12m +=或13m +=;故1m =或2m =.【答案】1m =或2m =【例51】 要使方程组⎧⎨⎩有正整数解,求整数a 的值.【解析】解方程组2x x ⎧⎨-⎩∵∴4a +的值可以为:124816,,,,∴a 的值为:320412--,,,,. 【答案】320412--,,,,【例52】 已知m 为正整数,二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x y ,均为整数,则2m = .【解析】消去y 得到(3)10m x +=;因为方程有整数解,故10(3)3x m m =≠-+,代入第二个方程得到153y m =+; 为使103m +为整数,且m 是正整数,只能取2m =或7; 为使153m +为整数,且m 是正整数,只能取2m =或12; 为使103m +和153m +都是整数,且m 是正整数,取2m =,则24m =. 【答案】4【例53】 已知关于x y ,的方程组: 1 1 1 x by y ax bx ay -=⎧⎪-=⎨⎪+=⎩有解,试证明:221a b ab a b ++++=. 【答案】由①+②×b ,得(1)1ab x b -=+,由①×a +②,得(1)1ab y a -=+.当1ab =时,(1)1ab y a -=+无解,即方程组无解;当1ab ≠时,则11bx ab +=-,11a y ab+=-,代入③化简即可得到221a b ab a b ++++=.。
二元一次方程组中的参数问题《二元一次方程组中的参数问题》嗨,小伙伴们!今天咱们来唠唠二元一次方程组中的参数问题。
这听起来是不是有点高大上?其实没那么可怕啦。
我先给大家说说啥是二元一次方程组。
就好比你有两个好朋友,一个叫x,一个叫y,他们两个有一些关系,就像2x + 3y = 10,还有4x - y = 5这样的关系,这就是二元一次方程组。
那参数呢?参数就像是一个神秘的小尾巴,它藏在方程组里,让这个方程组变得更复杂,也更有趣。
我记得有一次,数学老师在黑板上写了这样一个二元一次方程组:ax + by = 5,bx + ay = 3。
这里的a和b就是参数啦。
老师问我们,怎么去解这个方程组呢?我当时就有点懵,这和我们平常解的方程组不太一样啊。
同桌就小声跟我说:“这看起来好难啊,这参数就像捣蛋鬼,把好好的方程组弄乱了。
”我也有点同感,感觉这参数就像突然闯进我们数学小世界的不速之客。
不过,咱们可不能被它吓倒呀。
我就想啊,咱们以前解普通的二元一次方程组是怎么做的呢?对了,消元法!那这个有参数的方程组能不能也用消元法呢?我就试着来。
我先把第一个方程乘以a,第二个方程乘以b,得到a²x + aby = 5a,b²x + aby = 3b。
然后我用新的第一个方程减去第二个方程,就得到(a² - b²)x = 5a - 3b。
这时候,我心里可高兴了,就像发现了宝藏一样。
我想只要a² - b²不等于0,那x就可以求出来啦,x = (5a - 3b)/(a² - b²)。
然后我再把x的值代入原来的方程,就能求出y啦。
这时候我就觉得,这参数其实也没那么讨厌嘛,就像一个小挑战,只要我们找到方法,就能克服它。
还有一次,遇到了这样一个问题。
方程组x + y = m,2x - y = 3中,x大于0,y 小于0,求m的取值范围。
这可又有点头疼了。
我和前后桌就开始讨论起来。
二元一次方程〔组〕含参问题二元一次方程〔组〕中经常会出现含有参数的题目,在解决这类问题之前,我们首先要搞清楚什么是未知数什么是参数二元一次方程〔组〕中的“元〞就是未知数的意思,所谓的“二元〞就是两个未知数,我们常用x 、y 、z来表示.一般来说,初中阶段提及的整式方程或分式方程中, 除了未知数以外的字母我们一般把它看作常数 〔即 参数〕,我们常用 m k 等表示.在二元一次方程〔组〕中含参问题主要包括以下几种:1.根据定义求参数什么是一元二次方程含两个未知数且未知项的最高次数是1的方程.即同时满足以下几个条件的方程就是二元一次方程:①含两个未知数;②未知项的最高次数是1;③等号的左边和右边都是整式.3和方程组3x 2y 11的解相同,求a 、b 值. 12ax 3by 33.用参数表示方程组的解类问题x 2y 3k方程组y 的解满足x+y=2,那么k=x 2y km例题1、假设方程2x 2n m y 1 2是二元一次方程,那么 mn=例题2、关于x 、y 的二元一次方程2 m n l 2 n 3 y 6, 那么 m=备注:除了要满足次数为 1 ,还要满足系数不能为0. 2.同解类问题什么是同解两个方程组一共含有四个元二次方程,这四个方程的解相同. 例:x 、y 的方程组 2x 3y ax by4.错解类问题遇到错解类问题怎么处理不要讲解代入看错的方程里,代入另外一个方程中去.例:小明和小红同解一个二L次方程组ax b y 16⑴,小明把方程〔1〕抄错,求得解为x 1,小红bx ay 1〔2〕y 3把方程〔2〕抄错,求得解为x 3 ,求a、b的值.y 25.整体思想类在做一元二次方程组的题目前,先要观察方程组的特点,不要急于直接用参数表示未知数,看一下将两个方程相加或者相减能不能得到我们需要的结论.x 2y k 5例:方程组y的解互为相反数,求k的值.2x y 5k 1。