数据包络分析(DEA)详细教程
- 格式:ppt
- 大小:473.50 KB
- 文档页数:43
一、 数据包络分析法数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具手段。
这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。
衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。
但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值。
例如,大部分机构的运营单位有多种投入要素,如员工规模、工资数目、运作时间和广告投入,同时也有多种产出要素,如利润、市场份额和成长率。
在这些情况下,很难让经理或董事会知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低。
1.1数据包络分析法的主要思想一个经济系统或者一个生产过程可以看成一个单元在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。
虽然这些活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。
由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单元被称为“决策单元”(Decision Making Units ,DMU )。
可以认为每个DMU 都代表一定的经济含义,它的基本特点是具有一定的输入和输出,并且在将输入转换成输出的过程中,努力实现自身的决策目标。
1.2数据包络分析法的基本模型我们主要介绍DEA 中最基本的一个模型——2C R 模型。
设有n 个决策单元( j = 1,2,…,n ),每个决策单元有相同的 m 项投入(输入),输入向量为()120,1,2,,,,,Tjjj mjj nx xxx=>=每个决策单元有相同的 s 项产出(输出),输出向量为()120,1,2,,,,,Tjjjsjj nyy y y=>=即每个决策单元有m 种类型的“输入”及s 种类型的“输出”。
二、 数据包络分析(DEA )方法数据包络分析(data envelopment analysis, DEA )是由著名运筹学家Charnes, Cooper 和Rhodes 于1978年提出的,它以相对效率概念为基础,以凸分析和线性规划为工具,计算比较具有相同类型的决策单元(Decision making unit ,DMU)之间的相对效率,依此对评价对象做出评价[.DEA 方法一出现,就以其独特的优势而受到众多学者的青睐,现已被应用于各个领域的绩效评价中[2],[3].在介绍DEA 方法的原理之前,先介绍几个基本概念:1。
决策单元一个经济系统或一个生产过程都可以看成是一个单位(或一个部门)在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。
虽然这种活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益"。
由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单位(或部门)被称为决策单元(DMU).因此,可以认为,每个DMU (第i 个DMU 常记作DMU i )都表现出一定的经济意义,它的基本特点是具有一定的投入和产出,并且将投入转化成产出的过程中,努力实现自身的决策目标。
在许多情况下,我们对多个同类型的DMU 更感兴趣。
所谓同类型的DMU ,是指具有以下三个特征的DMU 集合:具有相同的目标和任务;具有相同的外部环境;具有相同的投入和产出指标。
2. 生产可能集设某个DMU 在一项经济(生产)活动中有m 项投入,写成向量形式为1(,,)T m x x x =;产出有s 项,写成向量形式为1(,,)T s y y y =。
于是我们可以用(,)x y 来表示这个DMU 的整个生产活动。
定义1. 称集合{(,)|T x y y x =产出能用投入生产出来}为所有可能的生产活动构成的生产可能集. 在使用DEA 方法时,一般假设生产可能集T 满足下面四条公理: 公理1(平凡公理): (,),1,2,,j j x y T j n ∈=。
word格式-可编辑-感谢下载支持deap 2.1软件分析过程及结果解释找了很久才找到DEAp2.1,东西下载起来很小,用法也很简单,下面是教程:第一步分析过程,设置参数,变量及选定所用模型,下述:16为DMU个数,即总体样本个数;1为面板数据中的年限,如果做横截面数据,就写1,面板数据则写选取的时序个数(如年数);4,3分别为产出指标、投入指标个数(在编辑EG1.DTA文件时,产出指标放前面);0表示选取的是投入主导型模型,1表示产出主导型,二者区别不大,关键结合问题选取,一般选投入主导型;crs表示不考虑规模收益的模型即C2R模型,vrs表示考虑规模收益模型即BC2模型;最后是内部算法,一般选0就可以。
eg1.dta DATA FILE NAMEeg1.out OUTPUT FILE NAME16 NUMBER OF FIRMS1 NUMBER OF TIME PERIODS4 NUMBER OF OUTPUTS3 NUMBER OF INPUTS0 0=INPUT AND 1=OUTPUT ORIENTA TED1 0=CRS AND 1=VRS0 0=DEA(MULTI-STAGE), 1=COST-DEA, 2=MALMQUIST-DEA,3=DEA(1-STAGE), 4=DEA(2-STAGE)第二步,结果解释:1、效率分析EFFICIENCY SUMMARY:firm crste vrste scale四列数据分别表示:firm样本次序;crste不考虑规模收益时的技术效率(综合效率);vrste考虑规模收益时的技术效率(纯技术效率);scale考虑规模收益时的规模效率(规模效率),纯技术效率和规模效率是对综合效率的细分;最后有一列irs,---,drs,分别表示规模收益递增、不变、递减。
2、SUMMARY OF OUTPUT SLACKS、SUMMARY OF INPUT SLACKS分别表示产出和投入指标的松弛变量取值,即原模型中的s值。
DEA数据包络分析方法与实务数据包络分析(Data Envelopment Analysis,DEA)是一种评估相对效率的方法,它可以用来进行多个输入和输出变量的效率评估。
DEA在管理学和运筹学中被广泛应用,可以帮助决策者分析和改进组织的效率。
DEA方法基于线性规划的思想,通过构建约束条件将输入和输出关联起来,从而计算每个决策单元的效率。
该方法的核心思想是找到一个单位比例的技术边界(或称为效率前沿线),使得每个决策单元都位于边界上或者在边界之内。
这个单位比例的技术边界可以理解为最优效率水平,DEA通过比较决策单元的相对位置来评估其效率。
DEA方法的优点是能够考虑多个输入和输出变量的影响,而不仅仅是单一指标的效率评估。
它还可以帮助决策者找到更好的方案,改进组织的效率。
然而,DEA方法也存在一些限制,例如对数据的敏感性、选择恶化和规模效应等问题。
在实际应用中,DEA方法可以用于各种决策环境中,例如生产、运营、教育、医疗等领域。
具体的步骤包括选择决策单元、选择评估指标、构建线性规划模型、计算效率评分和进行效率前沿分析。
以下是DEA方法具体的实务步骤:1.确定决策单元:首先需要明确评估的对象或者决策单元,例如企业、学校、医院等。
每个决策单元都有自己的输入和输出变量。
2.选择评估指标:根据具体的评估目标,选择适当的输入和输出变量作为评估指标。
这些指标应能够反映决策单元的效率和绩效。
3.构建线性规划模型:根据选定的评估指标,构建线性规划模型以计算每个决策单元的效率。
模型的约束条件包括输入的约束和输出的约束,以及决策单元的非负性约束。
4.计算效率评分:通过求解线性规划模型,计算每个决策单元的效率评分。
评分的范围是0到1,1表示最高效率。
5.效率前沿分析:根据计算得到的效率评分,绘制效率前沿线,以便比较决策单元之间的相对效率。
前沿线上的决策单元被认为是最优效率的。
6.分析结果和改进建议:根据效率评分和效率前沿分析的结果,对低效率的决策单元提出改进建议。
二、数据包络分析(DEA)方法数据包络分析(data envelopment analysis, DEA) 是由著名运筹学家Charnes, Cooper 和Rhodes 于1978年提出的,它以相对效率概念为基础,以凸分析和线性规划为工具,计算比较具有相同类型的决策单元(Decision making unit ,DMU) 之间的相对效率,依此对评价对象做出评价。
DEA 方法一出现,就以其独特的优势而受到众多学者的青睐,现已被应用于各个领域的绩效评价中[2],[3]。
在介绍 DEA 方法的原理之前,先介绍几个基本概念 :1. 决策单元一个经济系统或一个生产过程都可以看成是一个单位(或一个部门 )在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。
虽然这种活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。
由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单位(或部门 )被称为决策单元 (DMU) 。
因此,可以认为,每个DMU( 第 i 个DMU 常记作 DMU i)都表现出一定的经济意义,它的基本特点是具有一定的投入和产出,并且将投入转化成产出的过程中,努力实现自身的决策目标。
在许多情况下,我们对多个同类型的DMU 更感兴趣。
所谓同类型的DMU ,是指具有以下三个特征的 DMU 集合:具有相同的目标和任务;具有相同的外部环境;具有相同的投入和产出指标。
2. 生产可能集设某个 DMU在一项经济 (生产 )活动中有 m 项投入,写成向量形式为x (x1, , x m )T;产出有s项,写成向量形式为 y( y1 , , y s )T。
于是我们可以用 (x, y) 来表示这个DMU的整个生产活动。
定义 1. 称集合T{( x, y) | 产出 y能用投入 x生产出来 } 为所有可能的生产活动构成的生产可能集。
数据包络分析DEA教程一、DEA的基本原理1.效率评价问题效率评价问题通常涉及多个输入与输出指标,要评估一些单位的综合效率。
DEA提供一种比较的视角,将待评估的单位看作是生产(或转换)效率的多个前沿,通过比较这些前沿的相对效率来评估各单位的效率水平。
2.DEA的基本思想DEA的基本思想是将多个输入与输出指标封装为数据包络,将待评估的单位与其他单位进行比较,通过比较单位投入产出之间的相对差异来评估其效率水平,找到最优前沿。
二、DEA模型1.输入型DEA模型输入型DEA模型根据单位投入的数量来评估其产出水平。
其基本形式为:Maximize θSubject to∑(sij*yj) - θ∑(rij*xj) ≤ 0∑(sij*yj) - θ∑(ri'j*xj) ≤ 0sij ≥ 0, θ ≥ 0其中,θ表示单位的效率水平,sij表示单位i对j的投入产出比例,xj表示单位j的投入数量,yj表示单位j的产出数量,rij表示单位i对j的投入产出比例。
2.输出型DEA模型输出型DEA模型根据单位产出的数量来评估其投入水平。
其基本形式为:Minimize φSubject to∑(rij*xj) - φ∑(sij*yj) ≤ 0∑(ri'j*xj) - φ∑(sij*yj) ≤ 0rij ≥ 0, φ ≥ 0其中,φ表示单位的效率水平,rij表示单位i对j的投入产出比例。
三、DEA计算方法1.线性规划法(LP)线性规划法是计算DEA模型的一种常用方法,通过构建线性规划模型来求解最优解。
该方法的主要步骤包括构建线性规划模型、求解模型和解析结果。
2.消除负数法(ENH)消除负数法是一种计算DEA模型的简化方法,通过解决线性规划模型中存在的负数问题来求解最优解。
该方法的主要步骤包括构建线性规划模型、消除负数、再次求解和解析结果。
四、DEA的应用领域1.产业评估DEA可以用于评估不同行业或不同地区的产业绩效,帮助决策者了解各个行业或地区的生产效率,找到低效单位并提出改进措施。
DEA(Data Envelopment Analysis)数据包络分析目录一、DEA的起源与发展(参考网络等相关文献) (2)二、基本概念 (2)1.决策单元(Decision Making Unit,DMU) (2)2.生产可能集(Production Possibility Set,PPS) (3)3.生产前沿面(Production Frontier) (3)4.效率(Efficiency) (4)三、模型 (5)R模型 (5)2.BBC模型 (5)3.FG模型 (5)4.ST模型 (5)5.加性模型(additive model,简称ADD) (5)6.基于松弛变量的模型(Slacks-based Measure,简称SBM) (5)7.其他模型 (5)四、指标选取 (6)五、DEA的步骤(参考于网络) (6)六、优缺点(参考一篇博客) (7)七、非期望产出 (7)1.非期望产出的处理方法: (8)2.非期望产出的性质: (8)八、DEA几个注意点 (9)九、DEA相关文献的总结 (9)1.能源环境效率 (9)2.碳减排与经济增长 (10)3.关于工业、制造业、产业的DEA (10)4.关于企业的DEA (11)5.其他 (12)一、DEA的起源与发展(参考网络等相关文献)数据包络分析(DEA)是一种常用的效率评估的方法,用以评价一组具有多个投入、多个产出的决策单元(Decision Making Units,DMUs)之间的相对效率。
1978年,A.Chames(查恩斯),W.Cooper(库伯)和E.Rhodes(罗兹)提出了第一个DEA模型,这个模型被命名为CCR模型。
该模型在评价多投入多产出DMU的规模有效性和技术有效性方面十分有效。
1985年,A.Chames,W.Cooper,B.Golany(格拉尼),L.Seiford(赛福德)和J.Stutz(斯图茨)给出另一个模型,称为C2GS2模型,这一模型用来研究生产部门间的“技术有效性”。