浙江工业大学-2017年-硕士研究生考试真题-665数学分析
- 格式:pdf
- 大小:7.25 MB
- 文档页数:2
2017年考研(数学二)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.若函数f(x)=在x=0处连续,则( )A.ab=1/2B.ab=-C.ab=0D.ab=2正确答案:A解析:=1/2a,∵f(x)在x=0处连续,1/2a=bab=1/2,选A.2.设二阶可导函数f(x)满足f(1)=f(-1)=1,f(0)=-1且f”(x)>0,则( ) A.∫-11f(x)dx>0B.∫-11f(x)dx<0C.∫-10f(x)dx>∫01f(x)dxD.∫-10f(x)dx<∫01f(x)dx正确答案:B解析:f(x)为偶函数时满足题设条件,此时∫-10f(x)dx=∫01f(x)dx,排除C,D.取f(x)=2x2-1满足条件,则∫-11f(x)dx=∫-11(2x2-1)dx=-<0,选B.3.设数列{xn}收敛,则( )A.B.C.D.正确答案:D解析:特值法:A取xn=π,有xn=π,A错;取xn=-1,排除B,C.所以选D.4.微分方程y”-4y’+8y=e2x(1+cos2x)的特解可设为yk=( )A.Ae2x+e2x(Bcos2x+Csin2x)B.Axe2x+e2x(Bcos2x+Csin2x)C.Ae2x+xe2x(Bcos2x+Csin2x)D.Axe2x+xe2x(Bcos2x+Csin2x)正确答案:C解析:特征方程为:λ2-4λ+8=0λ1.2=2±2i∵f(x)=e2x(1+cos2x)=e2x+e2xcos2x,∴y1*=Ae2x,y2*=xe2x(Bcos2x+Csin2x),故特解为:y*=y1*+y2*=Ae2x+xe2x(Bcos2x+Csin2x),选C.5.设f(x,y)具有一阶偏导数,且对任意的(x,y),都有>0,则( )A.f(0,0)>f(1,1)B.f(0,0)<f(1,1)C.f(0,1)>f(1,0)D.f(0,1)<f(1,0)正确答案:D解析:f(x,y)是关于y的单调递减函数,所以有f(0,1)<f(1,1)<f(1,0),故答案选D.6.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3计时开始后乙追上甲的时刻记为t0(单位:s),则( )A.t0=10B.15<t0<20C.t0=25D.t0>25正确答案:C解析:从0到t0这段时间内甲乙的位移分别为∫0t0v1(t)dt,∫0t0v2(t)dt,则乙要追上甲,则∫0t0v2(t)dt-v1(t)dt=10,当t0=25时满足,故选C.7.设A为三阶矩阵,P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1,α2,α3)=( )A.α1+α2B.α2+2α3C.α2+α3D.α1+2α2正确答案:B解析:P-1AP=A(α1,α2,α3)=(α1,α2,α3)=α2+2α3,因此B正确.8.已知矩阵A=,则( )A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B解析:由|λE-A|=0可知A的特征值为2,2,1,因为3-r(2E-A)=1,∴A可相似对角化,即A~由|λE-B|=0可知B特征值为2,2,1.因为3-r(2E-B})=2,∴B不可相似对角化,显然C可相似对角化,∴A~C,但B不相似于C.填空题9.曲线y=x(1+arcsin)的斜渐近线方程为_______.正确答案:y=x+2解析:∵=2,∴y=x+2.10.设函数y=y(x)由参数方程确定,则d2y/dx2=|t=0_______.正确答案:解析:11.∫0+∞dx=_______.正确答案:1解析:12.设函数f(x,y)具有一阶连续偏导数,且af(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=_______.正确答案:xyey解析:f’x=yey,f’y1=x(1+y)ey,f(x,y)=∫yeydx=xyey+c(y),故f’y=xey+xyey+c’(y)=xey+xyey,故c’(y)=0,即c(y)=c,由f(0,0)=0,即f(x,y)=xyey.13.∫01dy∫y1dx=_______.正确答案:lncos1解析:∫01dy∫y1dx=∫01dx∫0xdy=∫01tanxdx=lncos1.14.设矩阵A=的一个特征向量为,则a=_______.正确答案:-1解析:设α=,由题设知Aα=λα,故(1 1 2)T=λ(1 1 2)T故a=1.解答题解答应写出文字说明、证明过程或演算步骤。
绝密★启用前2017年全国硕士研究生入学统一考试数学(二)(科目代码302)考生注意事项1.答题前,考生必须在试题册指定位置上填写考生姓名和考生编号;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.考生须把试题册上的试卷条形码粘贴条取下,粘贴在答题卡“试卷条形码粘贴位置”框中。
不按规定粘贴条形码而影响评卷结果的,责任由考生自负。
3.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
4.填(书)写部分必须使用黑色字迹签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
5.考试结束后,将答题卡和试题册按规定一并交回,不可带出考场。
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程的特解可设为 (A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( ) (A )010t =(B )01520t <<(C )025t =(D )025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+(8)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) (A ),A C B C 与相似与相似(B ),A C B C 与相似与不相似 (C ),A C B C 与不相似与相似(D ),A C B C 与不相似与不相似二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线21arcsiny x x ⎛⎫=+ ⎪⎝⎭的斜渐近线方程为_______ (10) 设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则220t d ydx ==______ (11)2ln(1)(1)x dx x +∞+=+⎰_______ (12) 设函数(,)f x y 具有一阶连续偏导数,且(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)______f x y =(13)11tan ______y xdy dx x=⎰⎰(14)设矩阵41212311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的一个特征向量为112⎛⎫⎪ ⎪ ⎪⎝⎭,则_____a =三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限0lim t x dt +→(16)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求x dy dx=,22x d y dx =(17)(本题满分10分)求21lim ln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑(18)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(19)(本题满分10分)设函数()f x 在区间[0,1]上具有2阶导数,且0()(1)0,lim 0x f x f x+→><,证明: ()I 方程()0f x =在区间(0,1)内至少存在一个实根;()∏方程2''()()(())0f x f x f x +=在区间(0,1)内至少存在两个不同实根。
浙江工业大学考研真题、考研答案及考研资料,由布丁考研网浙工大在读学长收集整理,真题都是来自官方原版,权威可靠,内部资料都是我们当年考浙工大时用的,考上后针对新的大纲重新进行了整理,参考价值极高。
此外,我们还有很多备考浙工大的经验,学弟学妹们有任何报考的疑问均可以咨询我们。
我们还提供一对一VIP辅导,除了传授报考浙江工业大学的内部信息、备考方法及经验外,把专业课的所有重点、难点、考点全部道出,在最短的时间内快速提升成绩,特别适合二战、在职、本科不是985和211、基础比较差的同学。
2017浙江工业大学硕士研究生招生专业目录(学术型)
浙江工业大学考研真题,由布丁考研网在读学长提供。
因为专注,所以专业。
布丁考研网,在读学长提供考研专业课资料及辅导,真实可靠,保证高参考价值。
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→==在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为(A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),x xy y y Ae xe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数, 所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+【答案】 B 【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1))若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( )(A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】001112lim lim ,()2x x xf x ax ax a++→→-==在0x =处连续11.22b ab a ∴=⇒=选A.(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则()()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B. (3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为(A )22(cos 2sin 2)xx Ae e B x C x ++(B )22(cos 2sin 2)xx Axee B x C x ++(C )22(cos 2sin 2)xx Aexe B x C x ++(D )22(cos 2sin 2)xx Axee B x C x ++【答案】A【解析】特征方程为:21,248022iλλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+故特解为:***2212(cos 2sin 2),xx y y y Aexe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f <【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数, 所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则()()s (A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+【答案】 B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2017考研数学二真题与答案解析2017年考研数学二真题与答案解析一、选择题部分1.设函数f(x) = ∫(1, x) [(3t^2 - 1) e^t] dt,则f(x)的导函数为()。
A. 3x^2 e^x - 1 B. 3x^2 e^x C. 3x^2 e^x + 1 D. 3x e^x - 1 答案:A 解析:根据牛顿-莱布尼兹公式,f(x) = ∫(1, x) [(3t^2 - 1) e^t] dt = [(3t^2 - 1) e^t] |(1, x) = (3x^2 - 1) e^x - (3 - 1) e = 3x^2 e^x - e^x - 3e^x + e。
所以f'(x) = 3x^2 e^x - e^x - 3e^x + e = 3x^2 e^x - (3e- 1) e^x - 3e^x = (3x^2 - 3e + 1) e^x - 3e^x = (3x^2 - 3e - 2) e^x。
2.设函数f(x) = x^3 + 3x^2 + 3x + 1,下列哪个不是f(x)的零点? A. 0 B.-1 C. 1 D. -2答案:D 解析:将选项代入函数f(x)中,只有选项D不满足f(x) = 0,所以选项D不是f(x)的零点。
3.设正方形ABCD的边长为a,点P、Q分别位于BC、CD上,且BP = 2DQ,则△APQ的面积为()。
A. a^2/12 B. a^2/6 C. a^2/3 D. a^2/2 答案:A 解析:设△APQ的面积为S,△ABP的面积为S1,△ADQ的面积为S2,则S = S1 + S2。
根据△ABP和△ADQ的面积公式,S1 = (1/2) × a × BP = a × DQ = 2S2。
所以S = S1 + S2 = 2S2 + S2 = 3S2。
而正方形ABCD的面积为a^2,△ABD的面积为(1/2) × a × a = a^2/2,所以S2 = a^2/12。