孔口淹没出流--《水力学》第五章
- 格式:doc
- 大小:551.50 KB
- 文档页数:3
第五章 有压管道中的恒定流5.2已知:预制混凝土引水管 查表(P118)n=0.01~0.013 D=1m,l=40m, ξ =0.4 D 上 =70m,D 下 =60.5m ,D 管底=62.0m 求Q 解:自由出流流量公式Q=μc A Hog2 n 取0.013作用水头H o =70-62.5=7.5m (管道形心点与上有水面的距离) A=π4D 2= π4㎡ μc =ξλ∑++dl 11 假设在阻力平方区 λ=cg28C=n R61=013.01×)41(61=61.05(m 21/s) 故 λ=cg28=0.021 μc = ξλ∑++dl 11=0.668Q=0.668× π4×5.7.2g =6.36(m 3/s) V=AQ =436.6π=8.10m/s>1.2m/s 原假设成立 5.4已知Z s =4.5m,l=20m,d=150mm,l 1=12m,d 1=150mm,λ=0.03 ξ自网=2.0,ξ水泵阀=9.0 ,ξ90=0.3,若h v ≤6m,求:(1)Q 泵(2)Z(1)解:水泵安装高度为: Z s ≤h v -(α+γdl 11+ξ∑)gv 22故v 2max=(h v -Z s )2g/(α+dl11 +ξ∑)=(6-4.5)×19.6/(1+0.03×15.012+9.0+0.3) =2.15 故v max =1.52(m/s) Q max =v max .A=1.52×421d π=0.0269(m 3/s)(2)对于自流管:Q=μc A gz 2 作用水头Z=Q 2/μ2c A 22g其中A=42d π=0.018μc =ξλ∑+dl1=1215.02003.01+++=0.378故Z=6.19018.0378.00269.0222⨯⨯=0.83(m)5.6已知:d=0.4m,H=4m,Z=1.8m,l 1=8m,l 2=4m,l 3=12m 求(1)Q (2)p min 的断面位置及hvmax解:(1)淹没出流:Q=μc A gz 2 μc =ξλ∑+dl1(n 的取值及ξ的取值都要明确)取n 为0.013,c=n1R61=013.01×)44.0(61=52.41(m 21/s)λ=cg28=0.029故μc =.13.025.24.01248029.01+⨯++++⨯=0.414A=42d π=4π×4.02=0.1256(㎡)故Q=0.414×0.1256×42⨯g =0.460(m 3/s)(2)最小压强发生在第二转折处(距出口最远且管道最高) n=0.012 对上游1-1,2-2,列能量方程,0-0为上游水面0+γp a+0=(Z -2d )+γP 2+g v 222∂+(λd l +ζ∑)g v 222V 2=AQ=1256.0473.0=3.766(m/s) h v =γP Pa2-=Z -2d +(ζλ∑++dl1)+gv 222=(1.8-0.2)+(1+0.024×dl l 21++ζ网+ζ弯)×6.19766.32=4.871(m) 5.9解:如P145例5 法1:取C h =130 采用哈森-威廉森S=d871.491013.1⨯×Ch852.11=d871.472.137421S 1=1.38×1010-(d 1=1200mm) S 2=3.35×1010-(d 2=1000mm) S 3=9.93×1010-(d 3=800mm)假设J 节点压力水头为h=25(m)(5m<h<30m) 设A,B,C 的水位分别为D A =30m,D B =15m,D C =0 利用h f =QSl 852.1 h f1=30-25=5m=S 1Q 852.11l 1=1.38×1010-×750Q 852.11Q1=3.92(m 3/s)5.12并联:f 1=h f 2=h f 3即k l Q 21121=k l Q 22222=k l Q 23323l 1=l 2=l3所以Q 2=Q k 12/k 1Q3=Q k 13/k 1k=R AC 故k 1=421d π×λg8×)4(121dk 2=422d π×λg8×)4(221dk 3=423d π×λg8×)4(321dλ相同故kk 12=)(1225d d =32k k 13=)(1325d d =243所以Q 2=32Q 1=0.17(m 3/s)Q3=243Q 1=0.47(m 3/s) 另法:利用达西公式h f =gd lv 22λV=42d π且h f1=h f2=h f3 得到d Q 5121=d Q 5222=dQ 5323 即1521Q =2522Q =3523Q 所以Q 2=32Q 1=0.17(m 3/s)Q3=243Q 1=0.47(m 3/s)。
第五章孔口、管嘴出流和有压管流从本章开始,将在前面各章的理论基础上,具体研究各类典型流动。
孔口、管嘴出流和有压管流就是水力学基本理论的应用。
容器壁上开孔,水经孔口流出的水力现象称为孔口出流(Orifice Flow);在孔口上连接长为3~4倍孔径的短管,水经过短管并在出口断面满管流出的水力现象称为管嘴出流(Spout Flow);水沿管道满管流动的水力现象称为有压管流(Flow in Pressure Conduits)。
给排水工程中各类取水、泄水闸孔,以及某些量测流量设备均属孔口;水流经过路基下的有压涵管、水坝中泄水管等水力现象与管嘴出流类似,此外,还有消防水枪和水力机械化施工用水枪都是管嘴的应用;有压管道则是一切生产、生活输水系统的重要组成部分。
孔口、管嘴出流和有压管流的水力计算,是连续性方程、能量方程以及流动阻力和水头损失规律的具体应用。
§5-1 液体经薄壁孔口的恒定出流在容器壁上开一孔口,若孔壁的厚度对水流现象没有影响,孔壁与水流仅在一条周线上接触,这种孔口称为薄壁孔口,如图5-1-1所示。
图5-1-1一般说,孔口上下缘在水面下深度不同,经过孔口上部和下部的出流情况也不相同。
但是,当孔口直径d(或开度e)与孔口形心以上的水头高H相比较很小时,就认为孔口断面上各点水头相等,而忽略其差异。
因此,根据d/H的比值大小将孔口分为大孔口与小孔口两类:若d ≤H /10,这种孔口称为小孔口,可认为孔口断面上各点的水头都相等。
若d ≥H /10,称为大孔口。
当孔口出流时,水箱中水量如能得到源源不断的补充,从而使孔口的水头H 不变,这种情况称为恒定出流。
本节将着重讨论薄壁小孔口恒定出流。
1.小孔口的自由出流从孔口流出的水流进入大气,称自由出流(Free Efflux),如图5-1-1所示,箱中水流的流线从各个方向趋近孔口,由于水流运动的惯性,流线不能成折角地改变方向,只能光滑、连续地弯曲,因此在孔口断面上各流线并不平行,使水流在出孔后继续收缩,直至距孔口约为d /2处收缩完毕,形成断面最小的收缩断面,流线在此趋于平行,然后扩散,如图5-1-1所示的c -c 断面称为孔口出流的收缩断面。