仪器分析名词解释资料讲解
- 格式:doc
- 大小:18.00 KB
- 文档页数:3
仪器分析的名词解释仪器分析是一项涉及科学技术和仪器设备的研究领域,旨在利用各种仪器设备来对物质进行精确测量和分析。
通过仪器分析,可以获取关于物质组成、结构和性质等方面的详细信息。
在现代科学研究、工业生产和环境监测等领域中,仪器分析技术发挥着至关重要的作用。
一、质谱分析质谱分析是一种基于物质分子的质量和质量与电荷比的仪器分析技术。
质谱仪是质谱分析的主要仪器设备。
通过将待测物质样品转化为气态、液态或固态粒子,并将其离子化,利用磁场或电场将离子按质量或质荷比进行分离,最后测量和记录离子信号,从而获得物质组成、结构和分子质量等信息。
质谱分析在有机化学、生物学、医学研究和环境监测中有着广泛应用。
二、光谱分析光谱分析是一种利用物质与电磁辐射相互作用的仪器分析技术。
光谱仪是光谱分析的主要仪器设备。
通过将样品与特定波长或一定范围的电磁辐射相互作用,测量和记录信号的能量和强度变化,从而获得物质样品的光谱信息。
光谱分析包括可见光谱、红外光谱、紫外光谱等多种形式,根据物质与辐射的相互作用方式和特点,可获得物质组成、结构和性质等信息。
光谱分析在化学、物理、材料科学、地球科学和天文学等多个领域中发挥着重要作用。
三、电化学分析电化学分析是一种利用电化学原理和技术对物质进行分析的方法。
电化学仪器是电化学分析的主要设备,如电位计、电解槽和电化学工作站等。
通过将待测物质与电极接触,应用电位差和电流进行反应和测量,从而获得物质的电活性和电化学参数等信息。
电化学分析可用于测定溶液中的离子浓度、物质的电导率以及电化学反应速率等。
在环境保护、生命科学和电池等领域中,电化学分析具有广泛的应用前景。
四、色谱分析色谱分析是一种将待分析物质溶液以流动相或静态相的形式通过色谱柱,利用待测物质在固定填料上的相互作用和迁移行为进行分离和测量的仪器分析技术。
色谱仪是色谱分析的主要仪器设备。
根据分离原理和方法不同,色谱分析可分为气相色谱、液相色谱、超高效液相色谱等。
名词解释ICP环状结构: 在高频感应电场或者磁场下开成的等离子体涡流具有“趋肤效应”,此效应使得等离子体涡电流集中于等离子体表面,形成一环形加热通道,即ICP环状结构。
AES基本原理:待测原子的外层电子在外来能量的作用下,电子由低能态跃迁到高能态,在高能态不稳定,迅速返回到低能态,并辐射出具有特征波长或者频率的谱线。
通过测定特征谱线的波长或者频率进行定性分析;通过测定谱线的强度进行定量分析。
轫致辐射:电子通过荷电粒子(主要是重粒子)形成的电场(或者库仑场)时,受到加速或者减速引起的连续辐射。
自吸效应:激发态原子发出的辐射被其基态原子所吸收,从而使谱线强度下降的效应。
最后线:当渐渐减小待测元素的含量时,该元素产生所有特征谱线中最后消失的谱线。
它一般是元素的最灵敏线或者共振线。
(或者称持久线。
当待测物含量逐渐减小时,谱线数目亦相应减少,当c接近0时所观察到的谱线,是理论上的灵敏线或者第一共振线。
)灵敏线:激发电位较低的谱线,常为原子线(电弧线),或者离子线(火花线)。
与实验条件有关。
共振线:从激发态到基态的跃迁所产生的谱线。
由最低能级的激发态到基态的跃迁称为第一共振线。
普通也是最灵敏线。
与元素的激发程度难易有关。
分析线:在进行元素的定性或者定量分析时,根据测定的含量范围的实验条件,对每一元素可选一条或者几条最后线作为测量的分析线。
自吸线:当辐射能通过发光层周围的蒸汽原子时,将为其自身原子所吸收,而使谱线强度中心强度减弱的现象。
自蚀线:自吸最强的谱线的称为自蚀线。
光栅闪耀特性:将光栅刻痕刻成一定的形状通常是三角形的槽线,使衍射的能量集中到某一个衍射角附近激发电位: (Excited potential)原子外层电子由低能态跃迁到高能态所需要的能量,以eV表示。
每条谱线对应一激发电位。
Doppler变宽:由于原子热运动引起的谱线宽度增加,又称为热变宽偶合常数:两种核的自旋之间产生的相互干扰称为自旋耦合,相互干扰的大小用耦合常数表示。
1.非红外活性振动:振动过程中分子的瞬间偶极矩不发生变化,不产生红外光吸收。
2.简并:振动频率完全相同的吸收峰在红外光谱中重叠的现象。
3.分配系数(K):在一定温度和压力下,组分在两相中达到分配平衡后,其在固定相与流动相中的浓度之比称为分配系数。
4.容量因子(k):在一定温度和压力下,组分在两相中达到分配平衡后,其在固定相和流动相中的质量之比称为容量因子,又称为质量分配系数和分配比。
5.分离度(R):是描述相邻两组分在色谱柱中分离情况的参数。
6.化学键合固定相:将各种不同有机基团通过化学反应共价键合到硅胶(担体)表面的游离羟基上。
代替机械涂渍的液体固定相,从而产生了化学键合固定相。
8.正相色谱:流动相的极性弱于固定相的极性,称为正相分配色谱法简称正相色谱法。
9.反相色谱:流动相的极性强于固定相的极性,称反相分配色谱法简称反相色谱法。
10.压力变宽:原子与等离子体中的其他离子(原子,离子,电子)相互碰撞,而谱线变宽。
等离子体,蒸气压力越大,谱线越宽。
11.多普勒变宽:由原子在空间做无规热运动所致的,故又称热变宽,即使在较低的温度也比自然宽度影响大,是谱线变宽的主要因素。
12.程序升温:在同一分析周期内,柱温按预定的加热速度,随时间作线性非线性的变化。
13.梯度洗脱:在一个分析周期内程序控制,连续改变流动相的现象。
14.自旋晶格弛豫(纵向弛豫):处于高能态的核自旋体系将能量传递给周围环境(晶格或溶剂),恢复到低能态过程。
是有效的弛豫过程。
15.自旋自旋弛豫(横向弛豫):处于高能态的核自旋体系将能量传递给临近低能态同类磁性核的过程。
16.局部屏蔽效应:氢核附近有电负性(吸电子作用较大)的原子或基团时,氢核的电子云密度降低,共振峰向低场移(左),反之屏蔽效应将使共振峰高场移(右)。
17.重排开裂:质谱中某些离子是通过断裂两个或者两个以上的化学键,并且结构进行重新排列而形成,这种裂解称重排开裂。
它的特点是产生了在原化合物中不存在的结构单元的离子。
仪器分析(名词解释).doc仪器分析(Instrumental Analysis)是一门研究测定物质的含量、结构及性质的科学。
它是由分析化学与仪器学结合起来的科学。
它是对物质的构成、含量及性质进行分析测定和确定的方法,也就是说,借助仪器和手段,通过物质本身的反应,检测物质的特征和各种组成,以及它们之间的关系,从而达到确定物质组成和性质的目的。
仪器分析具有准确、快速、高效、可重复等特点。
它结合了传统的分析化学和仪器学的技术,能够检测出物质的特征,并且能够精确地测定出物质的含量。
仪器分析可以分为光谱分析、质谱分析、电化学分析和核磁共振分析等。
光谱分析是仪器分析中最常用的一种技术。
它利用物质发出的不同波长的光,从而判断物质的组成、结构及性质。
可以分为原子光谱分析、分子光谱分析、X射线光谱分析、红外光谱分析、紫外光谱分析等。
质谱分析是测定物质分子结构的另一种方法。
它利用质谱仪,将物质分成其原子的离子,并以质量分辨率的形式测定出物质的分子结构。
它分为电子质谱分析和离子质谱分析两类。
电化学分析是测定物质及其反应物的含量时使用的常用方法。
它通过测量物质在电极上发生的电化学反应,从而测定出物质的含量。
它有很大的应用前景,因为它可以测定出低激活能量物质的含量。
核磁共振分析(NMR)是一种测定物质结构和性质的非常有效的方法。
它可以通过在核磁场中对物质的核磁共振信号的分析,测定出物质的结构和性质。
它也可用于测定物质的含量。
仪器分析是一门研究物质的含量、结构及性质的科学,它是由分析化学与仪器学结合起来的科学。
仪器分析具有准确、快速、高效、可重复等特点,它的应用非常广泛,可以用于科学研究、工业生产、农业生产等多个领域。
它是通过借助仪器和手段,结合传统的分析化学和仪器学技术,对物质进行分析测定和确定的方法,从而达到确定物质组成和性质的目的。
常见的仪器分析方法有光谱分析、质谱分析、电化学分析和核磁共振分析等。
1.色谱分离度:相邻两组分在色谱柱内分离效能的指标,定义为相邻两色谱峰保留值之差与两组分色谱峰缝底宽度之和一半的比值2.死体积:色谱柱在填充后柱内固定相颗粒间所剩留的空间、色谱仪中管路和连接头间的空间以及检测器的空间总和。
3.程序升温:按一定的加热速率,温度做线性或非线性上升。
4.梯度洗脱:又称为梯度淋洗或程序洗脱。
在同一个分析周期中,按一定程度不断改变流动相的浓度配比,称为梯度洗脱。
5.极限扩散电流6.指示电极:电极电位与被测离子活度有关,又称待测离子电极或工作电极。
7.半波电位:扩散电流等于极限扩散电流一半时的汞电极的电位。
8.浓差极化:电解时,电极表面因浓度变化引起的极化现象。
9.生色团;在饱和碳氢化合物中引入含ה键的不饱和基团,将这种化合物的最大吸收峰波长移至紫外及可见光范围内,这种基团叫生色团10.助色团:含有n电子的能使吸收峰波长向长波方向移动的杂原子基团。
11.化学位移:由屏蔽作用引起的共振时磁感应强度的移动现象。
12.锐线光源:能发射出谱线半宽度很窄的发射线光源。
13.基团频率:同一类型的化学基团,在红外光谱中的吸收频率总是出现在一个较窄的范围内,这种吸收谱带的频率称为基团频率14.贫然火焰:火焰温度低,助燃气量大于化学计算量,氧化性火焰。
15.富燃火焰:燃气量大于化学计算量,还原性火焰。
16.基态:原子核外电子离核较近的处于最低能量状态17.激发态:当原子获得足够的能量后,就会使外层电子从低能级跃迁至高能级,这种状态称为激发态。
18.激发电位:原子的外层电子由低能级激发到高能级时所需要的能量称为激发电位。
19.电离电位:使原子电离所需要的最低能量称为电离电位。
20.离子线:离子外层电子跃迁时发射的谱线称为离子线。
21.共振线:由激发态向基态跃迁所发射的谱线。
共振线具有最小的激发电位,为该元素最强的谱线。
22.灵敏线、由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。
绪论1.仪器分析:以物质的某些物理或化学性质(光、电、热、磁等)为基础,并借助于特殊的设备,对待测物质进行定性、定量及结构分析和动态分析的一类方法,又称物理分析法。
2.检出限:供试品中被测物能被检测出的最低量(信噪比3:1)。
3.定量限:供试品中被测组分能被定量测定的最低量(信噪比10:1)。
4.灵敏度:物质单位浓度或单位质量的变化引起响应信号值变化的程度称为方法的灵敏度,用S 表示。
信号变化量/浓度变化量,标准曲线斜率越大,灵敏度越高。
光谱绪论5.光学分析法:基于物质发射的电磁辐射或物质与辐射相互作用后产生的辐射信号或发生的信号变化来测定物质的性质、含量和结构的一类仪器分析方法。
6.波数:每cm长度中波的数目,单位cm-17.吸收:物质选择性吸收特定频率的辐射能(光子的能量等于原子、分子或离子的基态和激发态能量之差),并从低能级跃迁到高能级的过程。
8.发射:物质吸收能量从基态跃迁到激发态,激发态不稳定,物质以光的形式释放能量重新回到基态的过程。
9.可见光:波长在400~750nm范围的光。
10.单色光:具有同一波长、同一能量的光。
11.复合光:由不同波长的光组合成的光。
12.光的互补:若两种不同颜色的单色光按一定的强度比例混合得到白光,那么就称这两种单色光为互补色光,这种现象称为光的互补。
如黄-蓝;蓝绿-红13.光谱法:物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长的变化,所得的图谱称为光谱,利用光谱进行定性定量和结构分析的方法。
14.非光谱法:不涉及物质内部能级的跃迁,仅通过测量电测辐射的某些基本性质(反射、折射、干涉、衍射和偏振)变化的分析方法。
UV-Vis15.紫外-可见光分光光度法:利用待测物质具有选择吸收紫外-可见光辐射的特性,所产生的吸收光谱进行定性、定量及结构分析的方法。
16.最大吸收波长:最大吸收峰峰高处所对应的波长。
17.吸收曲线:不同波长的光通过待测物质,经待测物质吸收后,测量其对不同波长光的吸收程度(即吸光度A),以辐射波长λ为横坐标,吸光度A为纵坐标,作图得到该物质的吸收光谱或吸收曲线。
仪器分析名词解释名词解释指示电极:一种电极的电位随溶液中疲则离子的活度(或浓度)的变化而变化的一类电极.参比电极:一种电极的电位不受溶液组成变化的影响,其电位值基本固定不变的电极.液接电位:两种组成不同,或组成相同浓度不同的电解质溶液接触界面两边存在的电位。
钠差:在PH> 9的溶液中,普通玻璃电极对Na+也有响应,因而求得的H+舌度高于真实值,即PH读数低于真实值,产生负误差。
酸差:在PHk 1的溶液PH值相等时,普通玻璃电极测得的PH值高于真实值,产生正误差。
直接电位法:根据待测组分的电化学性质,选择合适的指示电极和参比电极,浸入试样溶液中组成原电池;测量原电池的电动势,然后根据NERST方程式电极电位(实为电池电动势)与有关离子活度(或浓度)的关系,求出造就则组分含量的方法。
电位滴定法:在用标准溶液滴下待测物容液的滴定过程中,借助监测待测物(或滴定剂)批示电极的电位变化确定滴定终点的滴定分析法。
摩尔吸光系数:是指在一定波长时,溶液浓度为1M0L/L厚度为1观看吸光度。
百分吸光系数(比吸光系数):是指在一定波长时,溶液浓度为1%( W/V,厚度为1CM的吸光度。
助色团:指含有非键电子的杂原子饱和基团。
生色团(发色团):有机化合物分子结构中含有或跃迁的基团。
红移(长移):由于化合物的结构改变,如发生共轭作用,引入助色团以及溶刘改变等。
使吸收峰向长波方向移动。
蓝移(紫移):当化合物的结构改变时或受溶济影响,使吸收峰向短波方向移动。
基频峰:分子吸收一定频率的红外线,若振动能及由基态(V=0跃迁至第一振动激发态(V=1 )时,所产生的吸收峰。
特征峰:凡是可用于鉴别官能团存在的吸收峰。
相关峰:由一个官能团所产生的一组相互依存的特征峰。
红外非活性振动:不能吸收红外线发生能级跃迁的振动。
不饱和度:分子结构中距离达到饱和时所缺一价元素的“对”数。
局部抗磁屏蔽:由于原子核外电子云在外磁场的作用下,产生出一个对抗外磁场的次级磁场,这种对抗对外磁场的作用,就称为局部抗磁屏蔽。
仪器分析名词解释Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】绪论1 仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。
仪器分析的产生与生产实践科学技术发展的迫切需要方法核心原理发现及相关技术产生等密切相关。
2 定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。
3 定量分析:测定试样中各种组分(如元素、根或官能团等)含量的操作。
4 精密度:指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。
5 灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。
6 检出限:又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。
它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。
7 动态范围:定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。
8 选择性:一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。
9 分辨率:指仪器鉴别由两相近组分产生信号的能力。
不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。
10 分析仪器的校正:仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。
一般包括分析仪器的特征性能指标和定量分析方法校正。
光谱法导论11 电磁辐射:电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。
弱的倍频峰的吸收强度常常被增强, 蓝移:由化合物结构改变或溶剂效应等引起的吸收峰向短波方向移动的现象称蓝移(紫移) 红移:由化合物结构改变或溶剂效应等引起的吸收峰向长波方向移动的现象称红移(长移)R 带:是由n ~n *跃迁引起的吸收带,是杂原子的不饱基团的特征。
其特点是吸收峰处于较 长波长范围( 250-500nm ),吸收强度弱。
K 带:是由共轭双键中n^n *跃迁引起的吸收带,吸收峰出现在 200nm 以上,吸收强度大。
吸光度:透过光与入射光之比再取负对数,与吸光系数、透光率成正比。
荧光发射:1. 总离子强度; 在某种情况下, 这种高浓度电解质溶液中还有含有 PH 缓冲剂和干扰的配位 剂。
2. 程序升温; 在同一分析周期没,柱温按预定的加热速度,随时间作线性非线性的变化3. 梯度洗脱; 在一个分析周期内程序控制,连续改变流动相的现象电泳淌度:口 ep 是单位电场强度下,带电粒子的电泳速度。
4. 电渗现象; 当在溶液了两段施加电压时, 就会发生液体相对于固体表面的移动, 这种溶液 体相对于固体表面的一定能过现象5. 洛伦兹变宽; 被测元素的原子与蒸汽中其它原子或分子等碰撞而引起的谱线轮廓变宽6. 可逆电对; 一个微小的电流以相反的方向通过电极时,电极反应为原子的逆反应, 具有此 性质的电极称可逆电极,或可逆电对7. 不可逆电对; 在微小电流条件下,只能在阳极发生氧化,而在阴极不能同时还原,所以电 路中没有电流通过,这样的电极称不可逆电极或不可逆点对8.多普勒变宽; 是由于原子的无规律热运动所引起的谱线变宽,又称温度变宽 9.指示电极; 是指电极电位随待测组分活度改变而变化,其大小可以指示待测组分活度变 化的电极10. 参比电极 :电极电位在一定条件下恒定不变,仅提供电位测量参考的电极 离子选择电极:由基于离子交换和扩散,由对待测离子敏感的膜制成的膜电极。
11.不对称电位; 如果玻璃膜两侧氢离子活度相同, 则膜电位应等于零, 但实际上并不为零, 而是有几毫伏的电位存在12. 碱差:在较强的碱性溶液中,玻璃电极对 Na+等碱金属离子也有响应,结果由电极电位 反映出来的 H+ 活度高于真实值,即 PH 低于真实值,产生负误差。
《现代仪器分析》复习资料整理总结仪器分析名词解释1.仪器分析:用精密分析仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法。
2.生色团:通常把含有π键的结构单元称生色团。
3.助色团:通常把含有未共用电子对的杂原子基团称为助色团。
4.锐线光源:能发射出谱线半宽度△V很窄的发射线的光源。
5.液接电位:在两种不同离子或离子相同而活度不同的液/液界面上,由于离子扩散速度的不同,能形成液接电位,它也可称为扩散电位。
6.酸差:测定溶液酸度太大(PH<1)或盐度太高时,电位值偏离线性关系,产生误差。
7.碱差:PH>12产生误差,主要是Na+参与相界面上的交换所致。
8.色谱基线:操作条件稳定后无样品通过时检测器所反应的信号-时间曲线称为基线。
9死时间:非滞留组分从进样开始到色谱峰顶所对应的时间。
10.分离度:单独用柱效能或选择性不能真实反映组分在柱中的分离情况,需引入一个色谱柱的总分离效能指标,通常用R=1.5作为相邻两色谱峰完全分离的指标。
11.极化:指事物在一定条件下发生两极分化,使其性质相对于原来状态有所偏离的现象。
食品分析名词解释1、空白试验:在不加被测试样的情况下,按照对被测试样的分析步骤和测定条件所进行的测定.2.食品的感官检验:是根据人的感觉器官对食品的各种质量特征的“感觉”,如:味觉、嗅觉、视觉、听觉等,用语言、文字、符号或数据行记录,再运用概丰统计原理进行统计分析,从而得出结论,对食品的色,香、味、形、质地、口感等各项指标做出评价的方法。
3.随机抽样:按照随机原则,从大批物料中抽取部分样品。
操作时,应使所有物料的各个部分都有被抽到的机会,4.水分活度:是溶液中水的选度(Fugacity) 与纯水逸度之比。
5.澄清剂:为了除去提取样液中存在的干扰物质,使提取液清亮透明,达到准确的测量样品的目的而加入的各种试剂。
6.采样:是从大量的分析对象中抽取有代表性的一部分作为分析材料(分析样品),这项工作又称为样品的采集7.食品的物理检测法:根据食品的相对密度、折射率、旋光度等物理常数与食品的组分含量之间的关系进行检测的方法。
生色团:凡是可以使分子在紫外—可见光区产生吸收带的原子或原子团。
助色团:含有孤对电子,可以使生色团吸收峰向长波方向移动并提高吸收强度的一些官能团。
红移:在分子中引入的一些集团或受到外界其它因素影响,吸收峰向长波方向移动的现象。
蓝移:在分子中引入的一些集团或受到其它外界因素影响,吸收峰向短波方向移动的现象。
激发电位:指原子由基态跃迁到激发态时所需要的能量。
灵敏线:激发电位较低的谱线,常为原子线(电弧线)或离子线。
与实验条件有关。
共振线:从激发态到基态的跃迁所产生的谱线,由最低能及的激发态到基态的跃迁称为第一共振线,一般也是最灵敏线,与元素的激发程度难易有关。
最后线:或称持久线,当待测物含量逐渐降低时,谱线数目亦相应降低,当C接近0时所观察到的谱线,是理论上的灵敏线或第一共振线。
分析线:在进行元素的定性或定量分析师,根据测定的含量范围的实验条件,对每一元素可选一条最后线或几条灵敏线作为测量的分析线。
自吸:当辐射能通过发光层周围的蒸汽原子时,将为其自身原子所吸收,而使谱线强度中心强度减弱的现象。
自蚀线:自吸最强的谱线称为自蚀线。
分配系数K :是指在一定的温度和压力下,组分在固定相和流动相之间分配达到平衡时的浓度之比值。
分配比k :分配比又称容量因子,它是指在一定的温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的质量比。
原子发射光谱:构成物质的原子受到热能、电能或化学能的激发,由激发态跃迁回基态或较低能级的激发态时而产生的光谱称为原子发射光谱。
原子发射光谱法:应用原子发射光谱进行定性、定量分析的方法称为原子发射光谱法。
原子吸收光谱:气态的基态原子对同种原子发射出来的特征辐射具有吸收能力的现象,所产生的光谱称为原子吸收光谱。
原子吸收光谱法:利用原子吸收光谱进行定量分析的方法称为原子吸收光谱法。
多普勒变宽:由于原子在空间作无规则的运动而引起的谱线变宽。
压力变宽:由同种原子或与其它原子相互碰撞而引起的谱线变宽。
1.仪器分析:以测量物质的物理性质和物理化学性质为基础来确定物质的化学组成、含量以及化学结构的一类分析方法,由于这类分析方法需要比较复杂且特殊的仪器设备,故称之为仪器分析。
2.化学分析:利用化学反应及其计量关系进行分析的一类分析方法。
3.标准曲线:被测物质的浓度或含量与仪器响应信号的关系曲线。
4.检出限:某一方法在给定的置信水平上可以检出被测物质的最低量(最小浓度或最小质量)5.内标法:将一定量的纯物质作为内标物加入到准确称量的试样中,根据试样和内标物的质量以及它们的色谱峰面积求出被测组分的含量。
6.发色团:含π键的不饱和基团,能吸收紫外可见光,产生n→π*、π→π*跃迁的基团。
7.助色团:含杂原子的饱和基团,本身在紫外和可见光区无吸收,但能使生色团吸收峰红移,吸收强度增大的基团称为助色团。
8.红移:向长波方向的移动叫做红移。
9.蓝移:向短波方向的移动叫做蓝移。
10.增色效应:使吸收强度增大的效应称为增色效应。
11.减色效应:使吸收强度减弱的效应称为减色效应。
12.色谱法:一种重要的分离方法,混合物在流动相的携带下通过色谱柱与固定相发生作用按一定顺序分离出几种组分的方法。
13.气相色谱法:以气体为流动相的色谱分析法14.液相色谱法:以液体为流动相的色谱分析法15.梯度洗脱:在一个色谱分析周期内,不断改变流动相配比、极性、PH、离子强度,以达到用最短的时间获得最佳的分离效果。
16.凝胶色谱:利用某些凝胶(固定相)对分子大小,形状不同的组分所产生的阻滞作用不同而进行分离。
17.标准偏差:峰高0.607倍处的色谱峰宽度的一半。
18.半峰宽Y1/2:峰高1/2处的色谱峰宽度。
19.分配平衡:在一定温度和压力下,组分在固定相和流动相之间所达到的平衡叫做分配平衡。
20.程序升温:在一个分析周期内,柱温随时间由低温向高温作线性或非线性变化,以达到用最短时间获得最佳分离的目的。
21.共振线:原子收到外界能量激发时,其外层电子从基态跃迁到激发态所产生的吸收线称为共振吸收线。
仪器分析的名词解释是什么仪器分析是现代化学分析领域中一种重要的分析方法和技术,它利用各种仪器设备和技术手段对物质进行定性和定量分析。
仪器分析广泛应用于工业生产、环境监测、食品安全、医学诊断等领域,为我们提供了准确可靠的分析数据,推动了科学研究和社会进步。
一、仪器分析的背景和意义仪器分析的出现源于人们对更准确、快速、高效的分析方法的需求。
传统的化学分析手段,如滴定、重量分析等,虽然有其优势,但在某些实际应用中却存在一些局限。
比如,传统的化学分析方法的分析速度较慢,无法满足大样品量的分析需求;同时,传统的化学分析方法对于复杂样品体系的分析也存在一定的困难。
仪器分析的出现填补了这些缺陷,大大提高了分析的速度和准确度,对于复杂样品的分析也有较好的适应性。
仪器分析的意义在于提供了定性和定量分析的准确数据,这对于科学研究和实际应用都具有重要价值。
在科学研究中,仪器分析能够帮助科学家们理解物质的性质和变化规律,推动科学理论的发展。
在实际应用中,仪器分析不仅可以用于监测和控制工业生产过程中的关键参数,确保产品质量和生产安全,还可以用于环境监测、食品安全检测和医学诊断等方面,保障公众的健康和安全。
二、仪器分析的基本原理和分类仪器分析的基本原理是通过检测样品与仪器的相互作用产生的物理或化学信号,进而获得样品的信息。
根据所利用的基本原理的不同,仪器分析可以分为多个不同的分类。
1. 光谱分析光谱分析利用物质与电磁辐射的相互作用进行分析,根据样品对不同波长的光的吸收、发射或散射特性获得样品的信息。
光谱分析包括紫外可见光谱、红外光谱、核磁共振等。
其中,紫外可见光谱常用于有机物的定性和定量分析,红外光谱常用于有机物的结构分析,核磁共振则常用于无机和有机物质的结构研究。
2. 色谱分析色谱分析利用样品在固定相和移动相的相互作用下,在色谱柱上发生分离,并通过检测分离后的成分来获取样品信息。
色谱分析可以分为气相色谱、液相色谱、超高效液相色谱等,其中气相色谱广泛应用于食品、环境等领域的残留物检测,液相色谱则常用于生物医药领域的分离和纯化。
仪器分析名词解释:1指示电极:在电化学电池中借以反映待测离子活度,发生所需电化学反应或激发信号的电极。
2参比电极:在恒温恒压条件下,电极电位不随溶液中待测离子活度的变化而变化,具有基本恒定电位值的电极。
3钠差(碱差):当电极测定PH〉9.5或钠离子浓度较高的溶液时,ph值的测定值低于真实值,偏小而产生负误差。
4酸差:测定pH〈1的强酸溶液时,PH的测定值高于真实值,产生正误差。
5原子光谱法:以测量气态原子离子外层或内层电子能级跃迁所产生的光谱为基础的成分分析方法.6分子光谱法:以测量分子转动能级,分子中原子的振动能级(包括分子转动能级),分子的电子能级(包括振-转能级)等的能级跃迁而产生的分子光谱为基础的定性定量和物质结构分析的分析方法。
7生色团(Chromphre)含有π键的不饱和基团,能产生n—π*,π-π*跃迁。
8助色团(Auxochrome)含有非键电子对的饱和基团,本身没有生色功能:与生色团相连时,发生n—π共轭作用,增强生色团的生色能力.9红移(Red shift)某化合物的最大吸收波长向长波方向移动。
10蓝移(Blue shift)某化合物的最大吸收波长向短波方向移动。
11增色/减色效应(Hyperchromic/Hypochromic effect):吸收强度(摩尔吸光系数)增大/减小的现象。
12荧光发射(Fluorescence emission)当激发态分子经过内转换或振动弛豫到达第一电子激发态的最低振动能级后,以辐射形式发射光量子,回到基态的过程。
13磷光发射(Phosphorescence emission)经过体系间跨越的分子再通过振动弛豫降至激发三重态的最低振动能级,跃迁回基态的各个能级并辐射发光的过程.14振动弛豫(Vibrational relaxation)激发态分子与溶剂分子碰撞,以热能形式损失部分能量,以极快速度降至同一电子激发态的最低振动能级上。
15内转换(Internal conversion)当2个电子能级靠近或有重叠时,发生电子由高能级以无辐射跃迁的方式返回低能级,将激发能转变成热能。
仪器分析名词解释1.仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。
仪器分析的产生与生产实践科学技术发展的迫切需要方法核心原理发现及相关技术产生等密切相关。
2.指示电极:指电极电位随溶液中的离子浓度或活度变化而改变的电极(φ与C有关)3.参比电极:电极电势已知、恒定,且与被测溶液组成无关,则称为参比电极(φ与C无关)4.标准曲线法:实际工作中最常用的一种工作方法,以标准浓度为横坐标,吸光度为纵坐标,在坐标纸上绘制的曲线。
5.原子吸收分光光度法:将光源辐射出的待测元素的特征光谱通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度进而求得样品中待测元素的含量。
6.色谱法:根据混合组分在固定相和流动相之间的溶解,吸附和其他亲和作用的差异来实现分离分析的一种方法。
7.色谱柱:气相色谱仪中起分离作用的是色谱柱,根据色谱柱内径长度可以分为填充柱和毛细管柱两种。
8.程序升温:柱温按预定的加热速度,随时间做线性或非线性的增加。
9.分配比k:指在一定温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的质量比。
10.分配系数:在平衡状态下,组分在固定液与流动相中的浓度之比。
11.保留时间:试样从进样到出现色谱峰最高值所需的时间。
12.保留体积:保留时间与载气平均流速的乘积称为死体积。
13.调整保留时间:保留时间与死时间之差称为调整保留时间。
14.调整保留体积:保留体积与死体积之差称为调整保留体积。
15.梯度洗脱:在同一个分析周期中,按一定程度不断改变流动相的浓度配比,称为梯度洗脱。
仪器分析名词解释:1指示电极:在电化学电池中借以反映待测离子活度,发生所需电化学反应或激发信号的电极。
2参比电极:在恒温恒压条件下,电极电位不随溶液中待测离子活度的变化而变化,具有基本恒定电位值的电极。
3钠差(碱差):当电极测定PH>9.5或钠离子浓度较高的溶液时,ph值的测定值低于真实值,偏小而产生负误差。
4酸差:测定pH<1的强酸溶液时, PH的测定值高于真实值,产生正误差。
5原子光谱法:以测量气态原子离子外层或内层电子能级跃迁所产生的光谱为基础的成分分析方法。
6分子光谱法:以测量分子转动能级,分子中原子的振动能级(包括分子转动能级),分子的电子能级(包括振-转能级)等的能级跃迁而产生的分子光谱为基础的定性定量和物质结构分析的分析方法。
7生色团(Chromphre)含有π键的不饱和基团,能产生n-π*,π-π*跃迁。
8助色团(Auxochrome)含有非键电子对的饱和基团,本身没有生色功能:与生色团相连时,发生n-π共轭作用,增强生色团的生色能力。
9红移(Red shift)某化合物的最大吸收波长向长波方向移动。
10蓝移(Blue shift)某化合物的最大吸收波长向短波方向移动。
11增色/减色效应(Hyperchromic/Hypochromic effect):吸收强度(摩尔吸光系数)增大/减小的现象。
12荧光发射(Fluorescence emission)当激发态分子经过内转换或振动弛豫到达第一电子激发态的最低振动能级后,以辐射形式发射光量子,回到基态的过程。
13磷光发射(Phosphorescence emission)经过体系间跨越的分子再通过振动弛豫降至激发三重态的最低振动能级,跃迁回基态的各个能级并辐射发光的过程。
14振动弛豫(Vibrational relaxation)激发态分子与溶剂分子碰撞,以热能形式损失部分能量,以极快速度降至同一电子激发态的最低振动能级上。
一:名词解释1. 色谱法(chromatography):以试样组分在固定相和流动相间的溶解、吸附、分配、离子交换或其他亲和作用的差异为依据而建立起来的各种分离分析方法称色谱法。
2. 基线:在操作条件下,仅有纯流动相进入检测器时的流出曲线。
3. 保留时间:从进样至被测组分出现浓度最大值时所需时间tR。
4. 色谱流出曲线:试样中各组分经色谱柱分离后,按先后次序经过检测器时,检测器就将流动相中各组分浓度变化转变为相应的电信号,由记录仪所记录下的信号——时间曲线或信号——流动相体积曲线,称为色谱流出曲线。
5. 塔板理论:塔板理论认为,一根柱子可以分为n段,在每段内组分在两相间很快达到平衡,把每一段称为一块理论塔板。
设柱长为L,理论塔板高度为H,则:H = L / n 式中n为理论塔板数6. 速率理论认为,单个组分粒子在色谱柱内固定相和流动相间要发生千万次转移,加上分子扩散和运动途径等因素,它在柱内的运动是高度不规则的,是随机的,在柱中随流动相前进的速度是不均一的。
7. 有效塔板数:8. 在一定温度和压力下,组分在固定相和流动相之间分配达到平衡时的质量比,称为容量因子,也称分配比,用k表示。
9. 分配系数:在一定温度和压力下,组分在固定相和流动相间达到分配平衡时的浓度比值,用K表示。
10. 分离度:相邻两色谱峰保留值之差与两组分色谱峰底宽总和之半的比值,用R表示。
分离度可以用来作为衡量色谱峰分离效能的指标。
11. 程序升温:12. 气相色谱检测器:13. 化学键合固定相:是通过化学反应将有机分子键合在担体(硅胶)表面所形成固定相。
14. 反相分配色谱:流动相极性大于固定相极性,极性大的先流出,适于非极性组分分离。
15. 离子选择电极:是对某种特定离子产生选择性响应的一种电化学传感器。
其结构一般由敏感膜、内参比溶液和内参比电极组成。
16. 直接电位法:是将电极插入被测液中构成原电池,根据原电池的电动势与被测离子活度间的函数关系直接测定离子活度的方法。
蓝移:由化合物结构改变或溶剂效应等引起的吸收峰向短波方向移动的现象称蓝移(紫移)红移:由化合物结构改变或溶剂效应等引起的吸收峰向长波方向移动的现象称红移(长移)R带:是由n→π*跃迁引起的吸收带,是杂原子的不饱基团的特征。
其特点是吸收峰处于较长波长范围(250-500nm),吸收强度弱。
K带:是由共轭双键中π→π*跃迁引起的吸收带,吸收峰出现在200nm以上,吸收强度大。
吸光度:透过光与入射光之比再取负对数,与吸光系数、透光率成正比。
荧光发射:1.总离子强度;在某种情况下,这种高浓度电解质溶液中还有含有PH缓冲剂和干扰的配位剂。
2.程序升温;在同一分析周期没,柱温按预定的加热速度,随时间作线性非线性的变化3.梯度洗脱;在一个分析周期内程序控制,连续改变流动相的现象电泳淌度:μep是单位电场强度下,带电粒子的电泳速度。
4.电渗现象;当在溶液了两段施加电压时,就会发生液体相对于固体表面的移动,这种溶液体相对于固体表面的一定能过现象5.洛伦兹变宽;被测元素的原子与蒸汽中其它原子或分子等碰撞而引起的谱线轮廓变宽6.可逆电对;一个微小的电流以相反的方向通过电极时,电极反应为原子的逆反应,具有此性质的电极称可逆电极,或可逆电对7.不可逆电对;在微小电流条件下,只能在阳极发生氧化,而在阴极不能同时还原,所以电路中没有电流通过,这样的电极称不可逆电极或不可逆点对8.多普勒变宽;是由于原子的无规律热运动所引起的谱线变宽,又称温度变宽9.指示电极;是指电极电位随待测组分活度改变而变化,其大小可以指示待测组分活度变化的电极10.参比电极:电极电位在一定条件下恒定不变,仅提供电位测量参考的电极离子选择电极:由基于离子交换和扩散,由对待测离子敏感的膜制成的膜电极。
11.不对称电位;如果玻璃膜两侧氢离子活度相同,则膜电位应等于零,但实际上并不为零,而是有几毫伏的电位存在12.碱差:在较强的碱性溶液中,玻璃电极对Na+等碱金属离子也有响应,结果由电极电位反映出来的H+活度高于真实值,即PH低于真实值,产生负误差。
仪器分析名词解释
名词解释
指示电极:一种电极的电位随溶液中疲则离子的活度(或浓度)的变化而变化的一类电极.
参比电极:一种电极的电位不受溶液组成变化的影响,其电位值基本固定不变的电极.
液接电位:两种组成不同,或组成相同浓度不同的电解质溶液接触界面两边存在的电位。
钠差:在P H>9的溶液中,普通玻璃电极对Na+也有响应,因而求得的H+活度高于真实值,即PH读数低于真实值,产生负误差。
酸差:在PH<1的溶液PH值相等时,普通玻璃电极测得的PH值高于真实值,产生正误差。
直接电位法:根据待测组分的电化学性质,选择合适的指示电极和参比电极,浸入试样溶液中组成原电池;测量原电池的电动势,然后根据NERST方程式电极电位(实为电池电动势)与有关离子活度(或浓度)的关系,求出造就则组分含量的方法。
电位滴定法:在用标准溶液滴下待测物容液的滴定过程中,借助监测待测物(或滴定剂)批示电极的电位变化确定滴定终点的滴定分析法。
摩尔吸光系数:是指在一定波长时,溶液浓度为1MOL/L厚度为1观看吸光度。
百分吸光系数(比吸光系数):是指在一定波长时,溶液浓度为1%(W/V),厚度为1CM的吸光度。
助色团:指含有非键电子的杂原子饱和基团。
生色团(发色团):有机化合物分子结构中含有或跃迁的基团。
红移(长移):由于化合物的结构改变,如发生共轭作用,引入助色团以及溶刘改变等。
使吸收峰向长波方向移动。
蓝移(紫移):当化合物的结构改变时或受溶济影响,使吸收峰向短波方向移动。
基频峰:分子吸收一定频率的红外线,若振动能及由基态(V=O)跃迁至第一振动激发态(V=1)时,所产生的吸收峰。
特征峰:凡是可用于鉴别官能团存在的吸收峰。
相关峰:由一个官能团所产生的一组相互依存的特征峰。
红外非活性振动:不能吸收红外线发生能级跃迁的振动。
不饱和度:分子结构中距离达到饱和时所缺一价元素的“对”数。
局部抗磁屏蔽:由于原子核外电子云在外磁场的作用下,产生出一个对抗外磁场的次级磁场,这种对抗对外磁场的作用,就称为局部抗磁屏蔽。
化学位移:由于屏蔽效应的存在,不同化学环境的氢核的共振频率(进动频率,吸收频率)不同的现象。
磁各向异性(远程屏蔽效应):质子在分子中所处的空间位置不同,屏蔽作用不同的现象。
N+1率:某基团的氢与N个相邻氢偶合时被分裂为N+1重峰,而与该基团本身的氢数无关。
自旋分裂:由自旋偶合引起共振分裂的现象。
化学等价核:化学位移相同的等价核。
磁等价核:分子中一组化学等价核(化学位移相同)与分子中的其他任何一个核都相同强弱的偶合。
自旋偶合:核自旋产生的核磁距间的相互干扰。
基峰:质谱中常用相对丰度,又称相对强度,以质谱中最强峰的高度定为100%,并将此峰称为基峰。
氮律:只否C、H、O的化合物,分子离子峰的质量是偶数。
由C、H、O、N组成的化合物,含奇数个氮,分子离子峰的质量是奇数:含偶数个氮,分子离子峰的质量是偶数这一规律。
分子离子:分子在离子源中失去一个电子形成的离子。
亚稳离子:在离子源生成的m+离子,如果在习洗中发生裂变而变为m+离子,则该离子称之。
吸附色谱法:利用被分离组分对固体表面活性吸附中心吸附能力的差别而实现分离的方法。
分配色谱法:利用被分离组分在固定相和流动相中的溶解度差别实现分离的方法。
离子交换色谱法:利用被分离组分离子交换能力的差别而实现分离的方法。
空间排阻色谱法:根据被分离组分分子的线团尺寸而进行分离的方法。
梯度洗脱:在一个分析周期内,按一定程度不断改变流动相的浓度配比,称之。
正相分配色谱法:流动相极性小于固定相极性的液-液分配色谱法。
反相分配色谱法:流动相极性大于固定相极性的液-液分配色谱法。
分配系数:达到分配平衡后,组分在固定相与流动相中的浓度之比称之。
质量分配系数:达到分配平衡后,组分在固定相和展开剂中的质量之比,又称容量因子。
分离度:两相邻斑点中心距离与两斑点平均宽度(直径)的比值称之。
保留时间:从进样开始到某个组分的色谱峰顶点的时间间隔,称为该组分的保留时间。
死时间:分配系数为0的组分的保留时间称之。
死体积:由进样器至检测器的流路中为被固定相占有的空间称为死体积。
调整保留时间:某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间称之。
半峰宽:峰高一半时的峰宽。
化学健合相:将固定液的官能团键合在栽体的表面,而构成化学键合相。
交换容量:每克树脂能参加交换反应的活性基团数。
流动相:在色谱分析法中,冲洗剂称为流动相。
相对比移值:组分与参考物质在同一条件下的比移值(或移行距离)之比。