高一数学指数函数知识点及练习题含答案)
- 格式:doc
- 大小:398.00 KB
- 文档页数:4
课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.三个数,,之间的大小关系()A.B.C.D.【答案】B【解析】对于,当时;对于,当时,;对于,当时,;故.【考点】对数函数,指数函数的性质.3..【答案】【解析】原式=【考点】指数与对数4.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.5.将函数的图像向左平移一个单位,得到图像,再将向上平移一个单位得到图像,作出关于直线对称的图像,则的解析式为 .【答案】【解析】根据平移口诀“上加下减”可得函数解析式为,函数解析式为,因为图像与图像关于直线对称,所以函数与函数互为反函数。
因为,所以,解得,所以,所以函数的反函数为,即的解析式为。
【考点】图像平移,指数和对数的互化。
6.已知,且,则A的值是()A.15B.C.±D.225【答案】B【解析】由得到代入到得:,利用换底法则得到,所以故选B【考点】指数函数综合题.7.三个数,之间的大小关系是A.B.C.D.【答案】C【解析】,所以;;。
所以。
故C正确。
【考点】指数函数和对数函数的单调性及运算。
8.计算:⑴ ;⑵.【答案】(1);(2).【解析】对于(1),主要是利用指数幂的运算性质进行化简求值;对于(2),主要是利用对数的运算性质进行化简求值,要求熟练的掌握指数幂和对数的运算性质.试题解析:(1)原式;(2)原式.【考点】本题主要考查了指数幂的运算性质和对数的运算性质,属于基础题..9.【答案】(1);(2)1.【解析】(1)由指数的运算法则,原式==;(2)由对数的运算法则,原式===1.试题解析:(1)原式= 5分= 7分(2)原式= 10分= 12分=1 14分考点:1、有理数指数幂的运算性质;2、对数的运算性质.10.已知,.(1)求的解析式;(2)解关于的方程(3)设,时,对任意总有成立,求的取值范围.【答案】(1)(2)当时,方程无解当时,解得若,则若,则(3)【解析】(1)利用换元法求解函数的解析式,设,则,代入即得解析式(2)依题意将方程中化简得,然后分和分别求解,(3)对任意总有成立,等价于当时,,然后分的取值来讨论.试题解析:解:(1)令即,则即(2)由化简得:即当时,方程无解当时,解得若,则若,则(3)对任意总有成立,等价于当时,令则令①当时,单调递增,此时,即(舍)②当时,单调递增此时,即③当时,在上单调递减,在上单调递增且即,综上:【考点】本题考查指数函数的性质及闭区间上的最值问题,考查了恒成立问题转化为求函数最值及分类讨论.11.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算12. (1)(2)计算【答案】(1) (2)【解析】(1)通过指数形式转化为对数的形式,让后再运算.(2)通过把除号改写为分数线,再把负指数化为正指数.再运算.试题解析:【考点】1.指数转化为对数形式.2.分式的运算.13.已知,则____________________.【答案】1【解析】由已知得,,,所以,,故.【考点】1.指数式与对数式之间的互化;2.对数运算.14.已知,则的增区间为_______________.【答案】(或)【解析】令函数,因为,,由函数零点存在性定理知,所以函数为减函数,又由函数的单调递减区间为,故所求函数的增区间为.【考点】1.函数的零点;2.指数函数;3.二次函数.15.函数的图象可能是()【答案】D【解析】,,排除A;当时,排除B;当时,排除C.故选D.【考点】指数函数的图像变换16.对于函数)中任意的有如下结论:①;②;③;④;⑤.当时,上述结论中正确结论的个数是( )A.2个B.3个C.4个D.5个【答案】B【解析】当时,,①错误;,②正确;,③正确;当时,,④错误;因为是上的递增函数,即:时,,或时,,因此与同号,所以,⑤正确.【考点】指数函数的性质17.化简或求值:(1);(2)计算.【答案】(1);(2)1.【解析】(1)将小数化成分数,利用指数幂的运算法则;(2)对于比较复杂的式子,把它拆成几部分分别化简或计算.本小题利用对数的运算法则分别对分子和分母进行求值.试题解析:(1)原式= 3分. 6分(2)分子=; 9分分母=;原式=. 12分【考点】指数幂与对数的运算法则.18.指数函数f(x)的图象上一点的坐标是(-3,),则f(2)=______________.【答案】4【解析】令指数函数为,其过点(-3,),则,求得,所以,f(2)=。
高一数学指数与指数函数试题答案及解析1.函数的图像过一个定点,则定点的坐标是【答案】(2,2)【解析】当x=2时,f(2)=a2-2+1=a0+1=2,∴函数y=a x-2+1的图象一定经过定点(2,2).故答案为:(2,2).【考点】含有参数的函数过定点的问题.2.函数的图象与函数的图象所有交点的横坐标之和等于()A.4B.6C.8D.10【答案】C【解析】由数形结合可知,两函数图像在直线两侧各有4个交点,其两两关于对称。
不妨令。
则所有交点横坐标之和为。
故C正确。
【考点】1函数图像;2余弦函数的周期;3数形结合思想。
3.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算4.(1)计算.(2)若,求的值.【答案】(1);(2).【解析】(1)利用对数恒等式、换底公式、对数的运算性质进行计算;(2)首先对已知等式进行平方求得的值,再对其平方可求得的值,最后代入所求式即可求得结果.试题解析:(1)原式=.(2)∵,∴,∴,∴,∴,∴原式.【考点】1、对数的运算性质;2、对数的换底公式;3、指数的运算性质.5.已知函数,则=.【答案】【解析】根据题题意:,,故.【考点】1.分段函数;2.指数、对数运算.6.三个数,,的大小顺序是 ( )A.B.C.D.【答案】C【解析】因为,,,所以,故选C.【考点】1.指数函数的单调性;2.对数函数的单调性.7.计算的值为_________.【答案】2【解析】原式【考点】根式、指数、对数的运算8.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.9.若实数,满足,则关于的函数的图象形状大致是()【答案】B【解析】由等式,可得,根据指数函数的图像可知(或者根据函数的奇偶性、单调性、特殊值来判断),正确答案为B.【考点】1.对数式与指数式的互化;2.指数函数图像、奇偶性、单调性.10.若a<0,>1,则( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】是上的增函数,由,所以是上的减函数, 由,所以故选D【考点】指数函数,对数函数的单调性.11.三个数的大小关系为()A.B.C.D.【答案】D【解析】判断几个数的大小多用构造函数单调性来解题.因为是上的减函数,所以因为是上的减函数,所以因为是上的增函数,所以故选D【考点】用指数函数与对数函数单调性比较大小,转化思想应用.12.若,则函数的图象一定过点_______________.【答案】【解析】由函数过定点,令,即时,恒等于-3,故函数图像过定点;故答案为:.【考点】指数函数的图像和性质.13.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.14.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.15.函数的图象一定过点()A.B.C.D.【答案】B【解析】根据题意,由于函数,令x-1=0,x=1,可知函数值为2,故可知函数一定过点,选B.【考点】指数函数点评:本试题主要是考查了指数函数恒过(0,1)点的运用,属于基础题。
课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
(名师选题)部编版高中数学必修一第四章指数函数与对数函数带答案知识点归纳总结(精华版)单选题1、已知a =log 20.6,b =log 20.8,c =log 21.2,则( ) A .c >b >a B .c >a >b C .b >c >a D .a >b >c2、函数y =|lg(x +1)|的图像是( )A .B .C .D .3、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5)C .(32,5)D .(1,5)4、化简(1og 62)2+log 62⋅log 63+2log 63−6log 62的值为( ) A .−log 62B .−log 63C .log 63D .-15、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.66、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34)C .[0,916]D .(0,916) 7、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ).它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至4000,则C 大约增加了( )附:lg2≈0.3010A .10%B .20%C .50%D .100%8、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e )D .(0,√e )多选题9、若直线y =2a 与函数y =|a x −1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值可以是( ) A .14B .13C .12D .2 10、已知函数f(x)=2x 2x +1+m(m ∈R)则下列说法正确的是( )A .f (x )的定义域为R .B .若f(x)为奇函数,则m =−12 C .f(x)在R 上单调递减D .若m =0,则f(x)的值域为(0,1) 11、已知函数f(x)=1−2x1+2x ,则下面几个结论正确的有( ) A .f(x)的图象关于原点对称 B .f(x)的图象关于y 轴对称 C .f(x)的值域为(−1,1) D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立填空题12、函数f(x)=lg(kx)−2lg(x+1)仅有一个零点,则k的取值范围为________.部编版高中数学必修一第四章指数函数与对数函数带答案(四十七)参考答案1、答案:A分析:由对数函数得单调性即可得出结果. ∵y =log 2x 在定义域上单调递增,∴log 20.6<log 20.8<log 21.2,即c >b >a . 故选:A. 2、答案:A分析:由函数y =lgx 的图象与x 轴的交点是(1,0)结合函数的平移变换得函数y =|lg(x +1)|的图象与x 轴的公共点是(0,0),即可求解.由于函数y =lg(x +1)的图象可由函数y =lgx 的图象左移一个单位而得到,函数y =lgx 的图象与x 轴的交点是(1,0),故函数y =lg(x +1)的图象与x 轴的交点是(0,0),即函数y =|lg(x +1)|的图象与x 轴的公共点是(0,0),显然四个选项只有A 选项满足. 故选:A. 3、答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案 因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5, 故选:B 4、答案:A分析:运用对数的运算性质即可求解. 解析:(log 62)2+log 62⋅log 63+2log 63−6log 62=log 62(log 62+log 63)+2log 63−2=log 62+2log 63−2=2(log 62+log 63)−log 62−2=2−log 62−2=−log 62故选:A. 5、答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解. 由L =5+lgV ,当L =4.9时,lgV =−0.1, 则V =10−0.1=10−110=√1010≈11.259≈0.8.故选:C. 6、答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点, 若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m=0⇒m=916.故m∈(0,916).故选:D.7、答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.8、答案:B分析:f(x)=x2+e x−12(x<0)关于y轴对称的函数为:f(−x)=x2+e−x−12(x>0),函数f(x)=x2+e x−12(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,即f(−x)=g(x)有解,通过数形结合即可得解.f(x)=x2+e x−12(x<0)关于y轴对称的函数为:f(−x)=x2+e−x−12(x>0),函数f(x)=x2+e x−12(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,即f(−x)=g(x)有解,即x2+e−x−12=x2+ln(x+a),整理的:e−x−12=ln(x+a),y=e−x−12和y=ln(x+a)的图像存在交点,如图:临界值在x=0处取到(虚取),此时a=√e,和y=ln(x+a)的图像存在交点,故当a<√e时y=e−x−12故选:B.9、答案:AB分析:对a分类讨论,利用数形结合分析得解.,(1)当a>1时,由题得0<2a<1,∴0<a<12因为a>1,所以此种情况不存在;,(2)当0<a<1时,由题得0<2a<1,∴0<a<12因为0<a<1,所以0<a<1.2故选:AB小提示:方法点睛:取值范围问题的求解,常用的方法:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.10、答案:ABD分析:根据函数的定义域的求法,可判定A正确;根据函数的奇偶性列出方程,求得m的值,可判定B正确,化简f(x)=−12x+1+m+1,结合指数函数的单调性,可判定C错误;化简函数f(x)=1−12x+1,结合指数函数的值域,可判定D正确.由题意,函数f(x)=2x2x+1+m(m∈R),对于A中,由2x+1≠0,所以函数f(x)的定义域为R,所以A正确;对于B中,由函数f(x)为奇函数,则满足f(−x)=−f(x),即2−x2−x+1+m=−2x2x+1−m,所以2m=−2x2x+1−2−x2−x+1=−2x2x+1−12x12x+1=−2x2x+1−12x+1=−1,即m=−12,所以B不正确;对于C中,由f(x)=2x2x+1+m=2x+1−12x+1+m=−12x+1+m+1,因为函数y=2x+1为单调递增函数,则y=−12x+1递增函数,所以f(x)函数在R上单调递减,所以C不正确;对于D中,当m=0时,可得f(x)=2x2x+1=1−12x+1,因为2x+1>1,可得−1<−12x+1<0,所以1−12x+1∈(0,1),即函数f (x )的值域为(0,1),所以D 正确. 故选:ABD. 11、答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x 1+2x ,则f(−x)=1−2−x 1+2−x =2x −11+2x=−f(x),则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x 1+2x=−1+21+2x,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t,易知:−1+2t∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x , 因为y =1+2x 在R 上为增函数,y =−1+21+t为(1,+∞)上的减函数,由复合函数的单调性的判断法则可得f (x )在R 上单调递减, 故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断. 12、答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y 1=kx 、y 2=(x +1)2,即y 1、y 2在f(x)定义域内只有一个交点,讨论k >0、k <0并结合函数图象,求k 的范围.由题意,f(x)=lg(kx)−2lg(x +1)=0,即lg(kx)=lg(x +1)2, ∴在f(x)定义域内,y 1=kx 、y 2=(x +1)2只有一个交点, 当k >0时,即(0,+∞)上y 1、y 2只有一个交点;∴仅当y 1、y 2相切,即x 2+(2−k)x +1=0中Δ=(2−k)2−4=0,得k =4或k =0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}。
高一数学指数与指数函数试题答案及解析1.已知函数的图象恒过定点,若点与点、在同一直线上,则的值为 .【答案】1.【解析】令,求得,,可得函的图象恒过定点.再根据点与点、在同一直线上,可得,化简得,即.【考点】指数函数的单调性与特殊点.2.若函数有两个零点,则实数a的取值范围为【答案】【解析】研究函数与函数图像交点个数.当时,由于直线在轴的截距大于,所以函数与函数图像在及时各有一个交点. 当时,由于单调减,直线单调增,所以函数与函数图像只3在时有一个交点.【考点】指数函数图像3.设,则,,的大小关系是()A.B.C.D.【答案】A【解析】∵,,,∴,故选A.【考点】对数函数与指数函数的性质.4.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算5.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。
试题解析:解:当2分,. 5分当时7分, 10分综上. 12分【考点】分段函数,指数、对数不等式。
6.计算:⑴ ;⑵.【答案】(1);(2).【解析】对于(1),主要是利用指数幂的运算性质进行化简求值;对于(2),主要是利用对数的运算性质进行化简求值,要求熟练的掌握指数幂和对数的运算性质.试题解析:(1)原式;(2)原式.【考点】本题主要考查了指数幂的运算性质和对数的运算性质,属于基础题..7.函数在区间[0,1]上的最大值和最小值之和为.【答案】4【解析】因为在[0,1]上单调递增,在[0,1]上单调递减,所以在 [0,1]单调递增,所以y的最大值为,最小值为,所以最大值和最小值之和为4.【考点】指数函数和对数函数的单调性及利用单调性求最值8.已知,,,则这三个数从小到大排列为 .【答案】【解析】...【考点】本题考果不等的比较大小,考查指数函数与对数函数的性质.9.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.10.计算【答案】(1).(2)44.【解析】(1)底数相同的对数先加减运算,根号化为分数指数.(2)根号化为分数指数,再用积的乘方运算.试题解析:【考点】1.对数运算,指数运算.2.分数指数,零指数等运算.11.若函数是函数的反函数,其图象过点,且函数在区间上是增函数,则正数的取值范围是.【答案】【解析】由题意可得,所以函数,由该函数在区间上是增函数,得函数在区间上为增函数,且,考虑到函数在上单调递增,所以当时,有得,当时,有即得,从而求得所求正数的取值范围为.【考点】1.反函数;2.函数的单调性;3.对数函数;4.常用函数.12.若,则=____________.【答案】-4【解析】由且得所以【考点】指数与对数运算.13.设,且,则=【答案】【解析】对等式两边同时取对数得:,,,,.【考点】对数与指数的基本运算14.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.15.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.16.已知函数(1)若存在,使得成立,求实数的取值范围;(2)解关于的不等式;(3)若,求的最大值.【答案】(1)(2);②;③,,(3)【解析】(1)令,即成立 1分的最小值为0,当时取得 4分5分(2),令 6分① 7分② 8分③ⅰ 9分ⅱ 10分(3)令则12分13分,的最大值为 14分【考点】二次函数点评:主要是考查了二次函数的最值以及不等式的性质的运用,属于基础题。
高中数学必修一第四章指数函数与对数函数重点归纳笔记单选题1、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b=(2a )2(23b )2=5232=259.故选:C.2、设log 74=a,log 73=b ,则log 4936=( ) A .12a −b B .12b +a C .12a +b D .12b −a答案:C分析:根据对数的运算性质计算即可.解:log 4936=log 7262=log 76=log 72+log 73=12log 74+log 73=12a +b . 故选:C.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34)C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916).故选:D .4、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2) 答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13].故选:C .5、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e)D .(0,√e )答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解. f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为: f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a), y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x =0处取到(虚取),此时a =√e ,故当a <√e 时y =e −x −12和y =ln(x +a)的图像存在交点, 故选:B.6、已知函数f(x)={log 12x,x >0,a ⋅(13)x,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞) 答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围. 令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x=0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件; 当a >0时,要使直线y =1与y =f(x)的图象只有一个交点, 则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x∈[a,+∞),此时f (x ) 最小值为a , 所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞), 故选:B.7、已知对数式log (a+1)24−a(a ∈Z )有意义,则a 的取值范围为( )A .(−1,4)B .(−1,0)∪(0,4)C .{1,2,3}D .{0,1,2,3} 答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可. 由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}. 故选:C.8、若函数f (x )=ln(ax +√x 2+1)是奇函数,则a 的值为( ) A .1B .-1 C .±1D .0 答案:C分析:根据函数奇函数的概念可得ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0,进而结合对数的运算即可求出结果.因为f (x )=ln(ax +√x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0恒成立,所以ln [(1−a 2)x 2+1]=0,即(1−a 2)x 2=0 恒成立,所以1−a 2=0,即a =±1. 当a =1时,f (x )=ln(x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 当a =−1时,f (x )=ln(−x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 故选:C. 多选题9、如图,某池塘里的浮萍面积y (单位:m 2)与时间t (单位:月)的关系式为y =ka t (k ∈R 且k ≠0,a ≠1).则下列说法正确的是( )A.浮萍每月增加的面积都相等B.第6个月时,浮萍的面积会超过30m2C.浮萍面积从2m2蔓延到64m2只需经过5个月D.若浮萍面积蔓延到4m2,6m2,9m2所经过的时间分别为t1,t2,t3,则t1+t3=2t2答案:BCD分析:由题意结合函数图象可得{ka=1ka3=4,进而可得y=2t−1;由函数图象的类型可判断A;代入x=6可判断B;代入y=2、y=64可判断C;代入y=4、y=6、y=9,结合对数的运算法则即可得判断D;即可得解.由题意可知,函数过点(1,1)和点(3,4),则{ka=1ka3=4,解得{k=12a=2(负值舍去),∴函数关系式为y=12×2t=2t−1,对于A,由函数是曲线型函数,所以浮萍每月增加的面积不相等,故选项A错误;对于B,当x=6时,y=25=32>30,故选项B正确;对于C,令y=2得t=2;令y=64得t=7,所以浮萍面积从2m2增加到64m2需要5个月,故选项C正确;对于D,令y=4得t1=3;令y=6得t2=log212;令y=9得t3=log218;所以t1+t3=3+log212=log2144=2log212=2t2,故选项D正确.故选:BCD.小提示:本题考查了函数解析式的确定及函数模型的应用,考查了运算求解能力,合理转化条件是解题关键,属于基础题.10、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项. 依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD11、已知函数f(x)=lg(√x2−2x+2−x+1),g(x)=2x+62x+2则下列说法正确的是()A.f(x)是奇函数B.g(x)的图象关于点(1,2)对称C.若函数F(x)=f(x)+g(x)在x∈[1−m,1+m]上的最大值、最小值分别为M、N,则M+N=4D.令F(x)=f(x)+g(x),若F(a)+F(−2a+1)>4,则实数a的取值范围是(−1,+∞)答案:BCD分析:利用函数的奇偶性的定义,可判定A错误;利用图像的平移变换,可判定B正确;利用函数的图象平移和奇偶性,可得判定C正确;利用函数的单调性,可判定D正确.由题意函数f(x)=lg(√x2−2x+2−x+1)=lg(√(x−1)2+1−(x−1)),因为√(x−1)2+1−(x−1)>0恒成立,即函数f(x)的定义域为R,又因为f(0)=lg(√2+1)≠0,所以f(x)不是奇函数,所以A错误;将g (x )=2x +62x +2的图象向下平移两个单位得到y =2x +62x +2−2=2−2x 2+2x,再向左平移一个单位得到ℎ(x )=2−2x+12+2x+1=1−2x 1+2x,此时ℎ(−x )=1−2−x1+2−x =2x −12x +1=−ℎ(x ),所以ℎ(x )图象关于点(0,0)对称, 所以g (x )的图象关于(1,2)对称,所以B 正确;将函数f (x )的图象向左平移一个单位得m (x )=lg(√x 2+1−x), 因为m (−x )+m (x )=lg(√x 2+1+x)+lg(√x 2+1−x)=lg1=0, 即m(−x)=−m(x),所以函数m (x )为奇函数, 所以函数f (x )关于(1,0)点对称,所以F (x )若在1+a 处 取得最大值,则F (x )在1−a 处取得最小值,则F(1+a)+F(1−a)=f(1+a)+f(1−a)+g(1+a)+g(1−a)=0+4=4,所以C 正确; 由F(a)+F(−2a +1)>4,可得f(a)+f(1−2a)+g(a)+g(1−2a)>4, 由f (x )=lg(√(x −1)2+1−(x −1)), 设m (x )=lg(√x 2+1−x),t =√x 2+1−x , 可得t ′=√x 2+1−1<0,所以t =√x 2+1−x 为减函数,可得函数m (x )=lg(√x 2+1−x)为减函数,所以函数f (x )=lg(√(x −1)2+1−(x −1))为单调递减函数, 又由g (x )=2x +62x +2=1+42x +2为减函数,所以F (x )为减函数,因为F (x )关于点(1,2)对称,所以F (a )+F (−2a +1)>4=F(a)+F(2−a),即F(−2a +1)>F(2−a), 即−2a +1<2−a ,解得a >−1,所以D 正确. 故选:BCD.小提示:求解函数有关的不等式的方法及策略: 1 、解函数不等式的依据是函数的单调性的定义, 具体步骤:①将函数不等式转化为f(x 1)>f(x 2)的形式;②根据函数f (x )的单调性去掉对应法则“f ”转化为形如:“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 2 、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 填空题12、若√4a 2−4a +1=√(1−2a )33,则实数a 的取值范围_________ .答案:(−∞,12]分析:由二次根式的化简求解由题设得√4a 2−4a +1=√(2a −1)2=|2a −1|,√(1−2a )33=1−2a ,所以|2a −1|=1−2a 所以1−2a ≥0,a ≤12.所以答案是:(−∞,12]13、已知10p =3,用p 表示log 310=_____. 答案:1p ##p −1分析:根据指数和对数的关系,以及换底公式,分析即得解. ∵10p =3,∴p =lg3,∴log 310=1g101g3=11g3=1p . 所以答案是:1p .14、对于任意不等于1的正数a ,函数f (x )=log a (2x +3)+4的图像都经过一个定点,这个定点的坐标是_______. 答案:(−1,4)分析:根据log a 1=0求得正确结论.依题意,当2x +3=1,即x =−1时,f (−1)=log a 1+4=4, 所以定点为(−1,4). 所以答案是:(−1,4)解答题15、已知函数f(x)=2x−12x.(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。
A 基础练习2.1.2指数函数(1时) 1.下列函数是指数函数的是( ) A .y =-2xB .y =2x +1 C .y =2-x D .y =1x【解析】 y =2-x=⎝⎛⎭⎫12x,符合指数函数的定义,故选C.【答案】 C 2.函数y =(a -2)x 在R 上为增函数,则a 的取值范围是( )A .a>0且a ≠1B .a>3C .a<3D .2<a<3【解析】 由指数函数单调性知,底数大于1时为增函数,∴a -2>1,∴a>3,故选B. 【答案】 B 3.已知a =5-12,函数f(x)=a x ,若实数m 、n 满足f(m)>f(n),则m 、n 的大小关系为________.【解析】 ∵a =5-12∈(0,1), 故a m >a n ⇒m<n. 【答案】 m<n4.已知指数函数f(x)的图象过点(2,4),求f(-3)的值.【解析】 设指数函数f(x)=a x (a>0且a ≠1),由题意得a 2=4,∴a =2,∴f(x)=2x , ∴f(-3)=2-3=18.B 综合应用一、选择题(每小题5分,共20分) 1.函数y =a x -2+1(a>0,a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,0)D .(2,2)【解析】 由于函数y =a x 经过定点(0,1),所以函数y =a x-2经过定点(2,1),于是函数y =a x -2+1经过定点(2,2).【答案】 D2.f(x)=⎝⎛⎭⎫12|x|,x ∈R ,那么f(x)是( ) A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .奇函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数 【解析】因为函数f(x)= |x|= 图象如右图. 由图象可知答案显然是D. 【答案】 D3.下列四个函数中,值域为(0,+∞)的函数是( )A .y =21x B .y =2x -1C .y =2x +1D .y =⎝⎛⎭⎫122-x【解析】 在A 中,∵1x ≠0,∴21x≠1,即y =21x的值域为(0,1)∪(1,+∞).在B 中,2x -1≥0,∴y =2x -1的值域为[0,+∞). 在C中,∵2x >0,∴2x +1>1.∴y =2x +1的值域为(1,+∞). 在D 中,∵2-x ∈R ,∴y =⎝⎛⎭⎫122-x>0. ∴y =⎝⎛⎭⎫122-x 的值域为(0,+∞).故选D.【答案】 D 4.方程4x -1=116的解为( ) A .2 B .-2 C .-1 D .1 【解析】 ∵4x -1=116=4-2,∴x -1=-2,∴x =-1.故选C. 【答案】 C二、填空题(每小题5分,共10分) 5.函数y =a x -1的定义域是(-∞,0],则实数a 的取值范围为________.【解析】 由a x -1≥0,得a x ≥1=a 0,因为x ∈(-∞,0],由指数函数的性质知0<a<1.【答案】 (0,1)6.函数f(x)=⎝⎛⎭⎫13x-1,x ∈[-1,2]的值域为________.【解析】 函数y =⎝⎛⎭⎫13x 在区间[-1,2]上是减函数,所以⎝⎛⎭⎫132≤⎝⎛⎭⎫13x ≤⎝⎛⎭⎫13-1,即19≤⎝⎛⎭⎫13x ≤3, 于是19-1≤f(x)≤3-1,即-89≤f(x)≤2.【答案】 [-89,2]三、解答题(每小题10分,共20分) 7.已知函数f(x)=a x -2(x ≥0)的图象经过点⎝⎛⎭⎫4,19,其中a>0且a ≠1. (1)求a 的值;(2)求函数y =f(x)(x ≥0)的值域. 【解析】 (1)函数图象过点⎝⎛⎭⎫4,19, 所以a 4-2=19=⎝⎛⎭⎫132,∴a =13,(2)f(x)=⎝⎛⎭⎫13x -2(x ≥0), 由x ≥0,得x -2≥-2, ∴0<⎝⎛⎭⎫13x -2≤⎝⎛⎭⎫13-2=9,∴函数y =f(x)(x ≥0)的值域为(0,9]. 8.画出下列函数的图象,并说明它们是由函数f(x)=2x 的图象经过怎样的变换得到的.(1)y =2x -1;(2)y =2x +1;(3)y =2|x|; (4)y =-2x .【解析】 如图所示.y=2x-1的图象是由y=2x 的图象向右平移1个单位得到;y=2x+1的图象是由y=2x 的图象向上平移1个单位得到;y=2|x|的图象是由y=2x 的y 轴右边的图象和其关于y 轴对称的图象组成的;y=-2x 的图象与y=2x 的图象关于x 轴对称.9.(10分)函数f(x)=a x (a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a的值.【解析】 (1)若a>1,则f(x)在[1,2]上递增,∴a 2-a =a 2,即a =32或a =0(舍去).(2)若0<a<1,则f(x)在[1,2]上递减, ∴a -a 2=a 2,即a =12或a =0(舍去),综上所述,所求a 的值为12或32.2.1.2指数函数(2时) A 基础练习1.已知集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x +1<4,x ∈Z ,则M ∩N 等于( ) A .{-1,1} B .{-1} C .{0} D .{-1,0} 【解析】 因为N ={x|2-1<2x +1<22,x ∈Z },又函数y =2x 在R 上为增函数, ∴N ={x|-1<x +1<2,x ∈Z } ={x|-2<x<1,x ∈Z }={-1,0}. ∴M ∩N ={-1,1}∩{-1,0}={-1}.故选B.【答案】 B2.设14<⎝⎛⎭⎫14b <⎝⎛⎭⎫14a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a【解析】 由已知及函数y =⎝⎛⎭⎫14x是R 上的减函数, 得0<a<b<1.由y =a x (0<a<1)的单调性及a<b ,得a b <a a .由0<a<b<1知0<a b <1.∵⎝⎛⎭⎫a b a <⎝⎛⎭⎫a b 0=1.∴a a <b a.故选C. 也可采用特殊值法,如取a =13,b =12.【答案】 C3.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =________.【解析】 解法1:∵f(x)的定义域为R ,又∵f(x)为奇函数,∴f(0)=0,即a -120+1=0.∴a =12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a -12-x +1=12x +1-a ,解得a =12.【答案】 124.函数y =2-x 2+ax -1在区间(-∞,3)内递增,求a 的取值范围.【解析】 对u =-x 2+ax -1=-⎝⎛⎭⎫x -a 22+a 24-1,增区间为⎝⎛⎦⎤-∞,a 2,∴y 的增区间为⎝⎛⎦⎤-∞,a2,由题意知3≤a2,∴a ≥6. ∴a 的取值范围是a ≥6. B 综合应用一、选择题(每小题5分,共20分) 1.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 【解析】 y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)-1.5=21.5,∵y =2x 在定义域内为增函数, 且1.8>1.5>1.44, ∴y 1>y 3>y 2. 【答案】 D2.若⎝⎛⎭⎫142a +1<⎝⎛⎭⎫143-2a,则实数a 的取值范围是( )A.⎝⎛⎭⎫12,+∞B.()1,+∞ C .(-∞,1) D.⎝⎛⎭⎫-∞,12 【解析】 函数y =⎝⎛⎭⎫14x在R 上为减函数,∴2a +1>3-2a ,∴a>12.故选A.【答案】 A3.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f(x)=3x -1,则有( )A .f(13)<f(32)<f(23)B .f(23)<f(32)<f(13)C .f(23)<f(13)<f(32)D .f(32)<f(23)<f(13)【解析】 因为f(x)的图象关于直线x =1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x -1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即f(23)<f(32)<f(13).故选B.【答案】 B4.如果函数f(x)=(1-2a)x 在实数集R 上是减函数,那么实数a 的取值范围是( )A .(0,12)B .(12,+∞)C .(-∞,12)D .(-12,12)【解析】 根据指数函数的概念及性质求解.由已知得,实数a 应满足⎩⎪⎨⎪⎧1-2a>01-2a<1,解得⎩⎪⎨⎪⎧a<12a>0,即a ∈(0,12).故选A.【答案】 A二、填空题(每小题5分,共10分) 5.设a>0,f(x)=e x a +ae x (e>1),是R 上的偶函数,则a =________.【解析】 依题意,对一切x ∈R ,都有f(x)=f(-x),∴e x a +a e x =1ae x +ae x , ∴(a -1a )(e x -1e x )=0.∴a -1a =0,即a 2=1.又a>0,∴a =1. 【答案】 16.下列空格中填“>、<或=”. (1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.【解析】 (1)考察指数函数y =1.5x . 因为1.5>1,所以y =1.5x 在R 上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2. (2)考察指数函数y =0.5x .因为0<0.5<1,所以y =0.5x 在R 上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.【答案】 <,<三、解答题(每小题10分,共20分) 7.根据下列条件确定实数x 的取值范围:a<⎝⎛⎭⎫1a 1-2x(a>0且a ≠1).【解析】 原不等式可以化为a 2x -1>a 12,因为函数y =a x (a>0且a ≠1)当底数a 大于1时在R 上是增函数;当底数a 大于0小于1时在R 上是减函数,所以当a>1时,由2x -1>12,解得x>34;当0<a<1时,由2x -1<12,解得x<34.综上可知:当a>1时,x>34;当0<a<1时,x<34.8.已知a>0且a ≠1,讨论f(x)=a -x 2+3x +2的单调性.【解析】 设u =-x 2+3x +2=-⎝⎛⎭⎫x -322+174, 则当x ≥32时,u 是减函数,当x ≤32时,u 是增函数.又当a>1时,y =a u 是增函数,当0<a<1时,y =a u 是减函数,所以当a>1时,原函数f(x)=a -x 2+3x +2在⎣⎡⎭⎫32,+∞上是减函数,在⎝⎛⎦⎤-∞,32上是增函数.当0<a<1时,原函数f(x)=a -x 2+3x +2在⎣⎡⎭⎫32,+∞上是增函数,在⎝⎛⎦⎤-∞,32上是减函数.9.(10分)已知函数f(x)=3x +3-x . (1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.【解析】 (1)f(-x)=3-x +3-(-x)=3-x+3x =f(x)且x ∈R ,∴函数f(x)=3x +3-x是偶函数.(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.现证明如下:设0≤x 1<x 2,则f(x 1)-f(x 2)=3x 1+3-x 1-3x 2-2-x 2=3x 1-3x 2+13x 1-13x 2=3x 1-3x 2+3x 2-3x 13x 13x 2=(3x 2-3x 1)·1-3x 1+x 23x 1+x 2.∵0≤x 1<x 2,∴3x 2>3x 1,3x 1+x 2>1, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数在[0,+∞)上单调递增, 即函数的单调增区间为[0,+∞).。
高中数学必修一第四章指数函数与对数函数易错知识点总结单选题1、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90<a <100B .90<a <110C .100<a <110D .80<a <100答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100.故选:A2、满足函数f (x )=ln (mx +3)在(−∞,1]上单调递减的一个充分不必要条件是( )A .−4<m <−2B .−3<m <0C .−4<m <0D .−3<m <−1答案:D分析:根据复合函数的单调性,求出m 的取值范围,结合充分不必要条件的定义进行求解即可. 解:若f(x)=ln(mx +3)在(−∞,1]上单调递减,则满足m <0且m +3>0,即m <0且m >−3,则−3<m <0,即f(x)在(−∞,1]上单调递减的一个充分不必要条件是−3<m <−1,故选:D .3、已知函数f(x)={log 12x,x >0,a ⋅(13)x ,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞)答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围.令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x =0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1, 则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件;当a >0时,要使直线y =1与y =f(x)的图象只有一个交点,则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x ∈[a,+∞),此时f (x ) 最小值为a ,所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞),故选:B.4、指数函数y =a x 的图象经过点(3,18),则a 的值是( )A .14B .12C .2D .4答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值.因为y =a x 的图象经过点(3,18), 所以a 3=18,解得a =12, 故选:B.5、已知f (x )=a −x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是( )A .a >0B .a >1C .a <1D .0<a <1答案:D分析:把f (-2),f (-3)代入解不等式,即可求得.因为f (-2)=a 2, f (-3)=a 3,f (-2)>f (-3),即a 2>a 3,解得:0<a <1.故选:D6、已知函数f(x)=9+x 2x ,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4) 答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A7、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( )A .−1B .−5C .11D .13答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值.令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x)=log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.8、函数f (x )={|2x −1|,x ≤2−x +5,x >2,若函数g (x )=f (x )−t (t ∈R )有3个不同的零点a ,b ,c ,则2a +2b +2c 的取值范围是( )A .[16,32)B .[16,34)C .(18,32]D .(18,34)答案:D分析:作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,利用图象得出a,b,c 的性质、范围,从而可求得结论.作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,如图,则1−2a =2b −1,4<c <5,2a +2b =2,2c ∈(16,32),所以18<2a +2b +2c <34.故选:D .小提示:关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.多选题9、已知函数f(x)={|lnx|,x>0−x2+1,x≤0,若存在a<b<c,使得f(a)=f(b)=f(c)成立,则()A.bc=1B.b+c=1C.a+b+c>1D.abc<−1答案:AC分析:采用数形结合可知−1<a≤0,1e≤b<1,1<c≤e,然后简单计算可知b+c>1,bc=1,a+b+ c>1,故可知结果.如图:可知−1<a≤0,1e≤b<1,1<c≤e,则b+c>c>1,且−lnb=lnc,所以lnb+lnc=lnbc=0,即bc=1.因为bc=1,所以abc=a∈(−1,0],a+b+c=a+1c+c>a+2>1.故选:AC.10、(多选)某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系t ={64,x ≤0,2kx+6,x >0,且该食品在4 ℃的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时刻的变化如图所示,则下列结论中正确的是( )A .该食品在6 ℃的保鲜时间是8小时B .当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少C .到了此日13时,甲所购买的食品还在保鲜时间内D .到了此日14时,甲所购买的食品已然过了保鲜时间答案:AD分析:由题设可得k =−12即可写出解析式,再结合各选项的描述及函数图象判断正误即可. 由题设,可得24k+6=16,解得k =−12, ∴t ={64,x ≤026−x 2,x >0, ∴x =6,则t =23=8,A 正确;x ∈[−6,0]时,保鲜时间恒为64小时,x ∈(0,6]时,保鲜时间t 随x 增大而减小,B 错误;此日11时,温度超过11度,其保鲜时间不超过2小时,故到13时甲所购食品不在保鲜时间内,C 错误; 由上分析知:此日14时,甲所购食品已过保鲜时间,D 正确.故选:AD.11、已知函数f (x )={−2−x +a,x <0,2x −a,x >0.(a ∈R ),下列结论正确的是( ) A .f (x )是奇函数B .若f (x )在定义域上是增函数,则a ≤1C .若f (x )的值域为R ,则a ≥1D.当a≤1时,若f(x)+f(3x+4)>0,则x∈(−1,+∞)答案:AB分析:对于A利用函数奇偶性定义证明;对于B,由增函数定义知−2−0+a≤20−a即可求解;对于C,利用指数函数的单调性,求出分段函数每段函数上的值域,结合f(x)的值域为R,即可求解;对于D,将f(x)+ f(3x+4)>0等价于f(x)>f(−3x−4),利用函数定义域及单调性即可求解;对于A,当x<0时,−x>0,f(x)=−2−x+a,f(−x)=2−x−a=−(−2−x+a)=−f(x);当x>0时,−x<0,f(x)=2x−a,f(−x)=−2x+a=−(2x−a)=−f(x),所以f(x)是奇函数,故A正确;对于B,由f(x)在定义域上是增函数,知−2−0+a≤20−a,解得a≤1,故B正确;对于C,当x<0时,f(x)=−2−x+a在区间(−∞,0)上单调递增,此时值域为(−∞,a−1),当x>0时,f(x)=2x−a在区间(0,+∞)上单调递增,此时值域为(1−a,+∞),要使f(x)的值域为R,则a−1>1−a,解得a>1,故C错误;对于D,当a≤1时,由于−2−0+a≤20−a,则f(x)在定义域上是增函数,f(x)+f(3x+4)>0等价于f(x)>f(−3x−4),即{x≠0−3x−4≠0x>−3x−4,解得x∈(−1,0)∪(0,+∞),故D错误;故选:AB填空题12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可.由题设,可得:log4x≤log4412,则0<x≤412=2,∴不等式解集为(0,2].所以答案是:(0,2].13、若log2[log3(log4x)]=0,则x=________.答案:64分析:利用对数的运算性质以及指数式与对数式的互化即可求解.log 2[log 3(log 4x )]=0⇒log 3(log 4x )=1⇒log 4x =3⇒x =43=64.所以答案是:64小提示:本题考查了对数的运算性质以及指数式与对数式的互化,考查了基本运算求解能力,属于基础题.14、方程lg (x 2−x −2)=lg (6−x −x 2)的解为 __________ .答案:x =−2分析:由题意知lg (x 2−x −2)=lg (6−x −x 2),可求出x 的值,再结合真数大于零进行检验,从而可求出最终的解.由lg (x 2−x −2)=lg (6−x −x 2),得x 2−x −2=6−x −x 2,所以x =±2,又因为x 2−x −2>0且6−x −x 2>0,所以x =−2;所以答案是:x =−2.解答题15、已知函数f(x)=(12)x−a −b(a,b ∈R)的图象过点(1,0)与点(0,1).(1)求a ,b 的值;(2)若g(x)=4−x −4,且f(x)=g(x),满足条件的x 的值.答案:(1)a =1,b =1;(2)x =−log 23.分析:(1)由给定条件列出关于a ,b 的方程组,解之即得;(2)由(1)的结论列出指数方程,借助换元法即可作答.(1)由题意可得{(12)1−a −b =0(12)−a −b =1 ⇒{(12)−a −2b =0(12)−a −b =1 ⇒{b =12a =2 ,解得a =1,b =1, (2)由(1)可得f(x)=21−x −1,而g(x)=4−x −4,且f(x)=g(x),于是有21−x −1=4−x −4,设2−x =t ,t >0,从而得t 2−2t −3=0,解得t =3,即2−x =3,解得x =−log 23,所以满足条件的x=−log23.。
高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。
所以,故D正确。
【考点】指数对数函数的单调性。
7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。
教学过程④负分数指数幂:a n m-=a n m1=1na m(a>0,m,n∈N,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数辨析感悟1.指数幂的应用辨析(1)(4-2)4=-2.( )(2)(教材探究改编)(na n)=a.( )2.对指数函数的理解(3)函数y=3·2x是指数函数.( )(4)y=⎝⎛⎭⎪⎫1ax是R上的减函数.( )教学效果分析教学过程(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小.( )(6)(2013·金华调研)已知函数f(x)=4+a x-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(1,5).( )[感悟·提升]1.“na n”与“⎝⎛⎭⎫na n”的区别当n为奇数时,或当n为偶数且a≥0时,na n=a,当n为偶数,且a<0时,na n=-a,而(na)n=a恒成立.如(1)中4-2不成立,(2)中6-22=32≠3-2. 2.两点注意一是指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论,如(4);二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大.如(5).考点一指数幂的运算【例1】(1)计算:+(-2)2;(2)若=3,求的值.规律方法进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a-p=1(a≠0)简化运算.(2)教学效果分析教学过程考点二指数函数的图象及其应用【例2】(1)(2014·泰安一模)函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)比较下列各式大小.①1.72.5______1.73;②0.6-1______0.62;③0.8-0.1______1.250.2;④1.70.3______0.93.1.规律方法(1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.【训练2】已知实数a,b满足等式2 011a=2 012b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________.教学效果分析教学过程1.判断指数函数图象的底数大小的问题,可以先通过令x=1得到底数的值再进行比较.2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.3.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.4.熟记指数函数y=10x,y=2x,y=⎝⎛⎭⎪⎫110x,y=⎝⎛⎭⎪⎫12x在同一坐标系中图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.易错辨析2——忽略讨论及验证致误【典例】(2012·山东卷)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.[防范错施] (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)根据函数的单调性求最值是求函数最值的常用方法之一,熟练掌握基本初等函数的单调性及复合函数的单调性是求解的基础.【自主体验】当x∈[-2,2]时,a x<2(a>0,且a≠1),则实数a的范围是________.教学效果分析课堂巩固一、填空题1.(2014·郑州模拟)在函数①f (x )=1x ;②f (x )=x 2-4x +4;③f (x )=2x ;④f (x )=中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.2.函数y =a x -1a (a >0,a ≠1)的图象可能是________.3.a 3a ·5a 4(a >0)的值是________.4.设2a =5b =m ,且1a +1b =2,则m 等于________.5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为________.6.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则a 、b 、c 的大小关系为________.7.(2014·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为________.9.函数f (x )=a x -3+m (a >1)恒过点(3,10),则m =________. 10.(2014·杭州质检)已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是________. 11.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则关系式3c +3a ________2(比较大小).二、解答题12.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.。
4.2指数函数知识点一指数函数的定义一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.知识点二两类指数模型1.y=ka x(k>0),当a>1时为指数增长型函数模型.2.y=ka x(k>0),当0<a<1时为指数衰减型函数模型.知识点三指数函数的图象和性质指数函数y=a x(a>0,且a≠1)的图象和性质如下表:a>10<a<1图象定义域R值域(0,+∞)性质过定点过定点(0,1),即x=0时,y=1函数值的变化当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1 单调性在R上是增函数在R上是减函数知识点四比较幂的大小一般地,比较幂大小的方法有(1)对于同底数不同指数的两个幂的大小,利用指数函数的单调性来判断;(2)对于底数不同指数相同的两个幂的大小,利用幂函数的单调性来判断;(3)对于底数不同指数也不同的两个幂的大小,则通过中间值来判断.知识点五解指数方程、不等式简单指数不等式的解法(1)形如a f(x)>a g(x)的不等式,可借助y=a x的单调性求解;(2)形如a f(x)>b的不等式,可将b化为以a为底数的指数幂的形式,再借助y=a x的单调性求解;(3)形如a x>b x的不等式,可借助两函数y=a x,y=b x的图象求解.知识点六 指数型函数的单调性一般地,有形如y =a f (x )(a >0,且a ≠1)函数的性质 (1)函数y =a f (x )与函数y =f (x )有相同的定义域.(2)当a >1时,函数y =a f (x )与y =f (x )具有相同的单调性;当0<a <1时,函数y =a f (x )与函数y =f (x )的单调性相反.【题型目录】题型一、指数函数的概念题型二、求指数函数的解析式、函数值题型三、指数增长型和指数衰减型函数的实际应用 题型四、指数函数的图象及应用 题型五、指数型函数的定义域和值域 题型六、比较大小题型七、简单的指数不等式的解法 题型八、指数型函数的单调性题型一、指数函数的概念1.下列函数中是指数函数的是__________(填序号). ①22xy =⋅;②12x y -=;③2xy π⎛⎫= ⎪⎝⎭;④x y x =;⑤13x y -=;⑥13y x =.2.函数2(2)x y a a =-是指数函数,则( ) A .1a =或3a = B .1a = C .3a = D .0a >且1a ≠题型二、求指数函数的解析式、函数值3.已知指数函数()f x 的图象经过12,16⎛⎫- ⎪⎝⎭,试求()1f -和()2f 的值.题型三、指数增长型和指数衰减型函数的实际应用4.当生物体死亡后,它机体内原有的碳14含量每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14的含量不足死亡前的万分之一时,用一般的放射性探测器就测不到碳14了.若用一般的放射性探测器不能测到碳14,那么死亡生物体内的碳14至少经过的“半衰期”个数是(参考数据:1328192=)( ) A .15 B .14 C .13 D .125.随着我国经济的不断发展,2014年年底某偏远地区农民人均年收入为3 000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2021年年底该地区的农民人均年收入为________元.(精确到个位)(附:1.066≈1.42,1.067≈1.50,1.068≈1.59)题型四、指数函数的图象及应用6.函数①x y a =;②x y b =;③x y c =;④x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,3,13,12B .3,54,13,12C .12,13,3,54,D .13,12,54,3,7.函数e x y -=(e 是自然底数)的大致图像是( )A .B .C .D .8.若0a >且1a ≠,则函数()43x f x a -=+的图像恒过的定点的坐标为______.9.(1)若曲线21xy =-与直线y a =有两个公共点,则实数a 的取值范围是______;(2)若曲线21xy =+与直线y b =没有公共点,则实数b 的取值范围是______.题型五、指数型函数的定义域和值域 10.y =2x -1的定义域是( ) A .(-∞,+∞) B .(1,+∞) C .[1,+∞) D .(0,1)∪(1,+∞)11.(1)函数123x y +⎛⎫= ⎪⎝⎭的定义域是____________,值域是____________.(2)函数112x x y -+=的定义域是____________,值域是____________.12.函数1423x x y +=++的值域为____.题型六、比较大小13.比较下列几组值的大小: (1)23( 2.5)-和45( 2.5)-;(2)1225-⎛⎫ ⎪⎝⎭和32(0.4)-; (3)1213-⎛⎫ ⎪⎝⎭和1232-⎛⎫ ⎪⎝⎭; (4) 2.50.4-,0.22-, 1.62.5.14.比较下列各题中的两个值的大小. (1)0.8-0.1,1.250.2; (2)1()ππ-,1;(3)0.2-3,(-3)0.2.题型七、简单的指数不等式的解法15.关于x 的不等式102416x x --⋅->的解集为______;16.设 a >0,且a ≠1,解关于x 的不等式2223125x x xx a a -++->题型八、指数型函数的单调性17.已知指数函数f (x )=ax (a >0且a ≠1),过点(2,4). (1)求f (x )的解析式;(2)若f (2m ﹣1)﹣f (m +3)<0,求实数m 的取值范围.18.已知函数()y f x =为R 上的偶函数,当0x ≥时,()xf x e x =+.(1)求0x <时,()f x 的解析式; (2)写出函数()y f x =的单调增区间; (3)若()()21f x f x >-,求x 的取值范围.19.已知函数()xf x a =(0a >且1a ≠)的图象经过点13,23⎛- ⎝⎭.(1)求a 的值;(2)设()()()F x f x f x =--, ①求不等式()83F x <的解集; ②若()23xF x k ≥-恒成立,求实数k 的取值范围.1.下列以x 为自变量的函数中,是指数函数的是( ) A .y =(-4)x B .y =λx (λ>1)C .y =-4xD .y =ax +2(a >0且a ≠1)2.若函数()21xy m m m =--⋅是指数函数,则m 等于( )A .1-或2B .1-C .2D .123.已知函数()f x 是指数函数,且()29f =,则12f ⎛⎫= ⎪⎝⎭______.4.一种专门占据内存的计算机病毒,能在短时间内感染大量文件,使每个文件都不同程度地加长,造成磁盘空间的严重浪费.这种病毒开机时占据内存2KB ,每3分钟后病毒所占内存是原来的2倍.记x 分钟后的病毒所占内存为y KB .(1)y 关于x 的函数解析式为______;(2)如果病毒占据内存不超过101GB(1GB 2MB)=,101MB 2)KB =时,计算机能够正常使用,则本次开机计算机能正常使用_____分钟.5.已知放射性元素氡的半衰期是3.83天,问: (1)经过7.66天以后,氡元素会全部消失吗?(2)要经过多少天,剩下的氡元素只有现在的18(3)质量为m 的氡经x 天衰变后其质量为()xf x m a =⋅,试用计算器求a 的值.6.函数x y a =与a y x =的图象如图所示,则实数a 的值可能是( )A .2B .3C .12D .137.如图所示,函数22xy =-的图像是( )A .B .C .D .8.函数1(0,1)x y a a a +=>≠恒过定点___________.9.已知函数()2x f x a =-[)2,+∞,则=a _________.10.函数1(31)2xy x ⎛⎫=-≤≤ ⎪⎝⎭,的值域是__________.11.函数21()3(R)x f x x -+=∈的值域为_________.12.求下列函数的定义域: (1)442x y -=;(2)23xy ⎛⎫= ⎪⎝⎭.13.(1)已知函数261712x x y -+⎛⎫= ⎪⎝⎭.①求函数的定义域、值域; ②确定函数的单调区间.(2)画出函数|1|2x y -=的图象,并依据图象指出它的相关性质.14.比较下列各组中两个数的大小: (1)0.30.2和0.20.2; (2)0.31.2和0.21.2; (3)0.10.3和0.10.3-; (4)0.21.35和0.21.35-.15.下列各数中,哪些大于1,哪些小于1? 2365⎛⎫ ⎪⎝⎭,7334-⎛⎫ ⎪⎝⎭,5653-⎛⎫ ⎪⎝⎭,0.2(0.16).16.已知集合203x M xx +⎧⎫=≥⎨⎬-⎩⎭,1282x N x ⎧⎫=≤≤⎨⎬⎩⎭,则( ) A .M N =RB .{}23M N x x ⋃=-≤<C .{}23M N x x ⋂=-≤<D .{}13M N x x ⋂=-≤<17.(1)求()21223x x f x +=-+的值域;(2)解不等式232x x a a -->(0a >且1a ≠).18.已知函数()()33x f x k a b ⋅=++-(0a >,且1a ≠)是指数函数. (1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-.19.已知函数3()x x f x a +=(0a >且1)a ≠. (1)解不等式()1f x >;(2)当01a <<时,若(1,2)x ∀∈,(1,2)m ∃∈,22(2)()20f mx f x nx x nx mx --+++-+≥,求n 的取值范围.1.下列是指数函数的是( ) A .()4xy =- B .212xy -=C .x y a =D .x y π=2.设函数14,1()2,1x x x f x a x ⎧-<⎪=⎨⎪≥⎩,若7 88ff ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦,则=a ( ) A .12 B .34C .1D .23.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:℃)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0℃时的有效保存时间是1080h ,在10℃时的有效保存时间是120h ,则该疫苗在15℃时的有效保存时间为( ) A .15h B .30h C .40h D .60h4.函数12x y -=的图象大致是( )A .B .C .D .5.在同一坐标系中,函数2y ax bx =+与函数x y b =的图象可能为( )A .B .C .D .6.函数3x y -=与函数3x y =-的图象( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称D .关于直线y x =对称7.函数327x y -的定义域为( ) A .(3⎤-∞⎦ B .(3-∞C .[)3,+∞D .()3,+∞8.已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( )A .10,2⎛⎫ ⎪⎝⎭B .1,32⎡⎫⎪⎢⎣⎭C .(2D .()1,39.(多选)设指数函数()x f x a =(a >0,且a ≠1),则下列等式中正确的是( ) A .()()()f x y f x f y += B .()()()f x f x y f y -=C .()()()xf f x f y y=-D .()[()]()Q n x f nx f n =∈10.(多选)已知函数()21x f x =-,实数a ,b 满足()()f a f b =()a b <,则( )A .222a b +>B .a ∃,b ∈R ,使得01a b <+<C .222a b +=D .0a b +<11.(多选)已知函数()24312x x f x ++⎛⎫= ⎪⎝⎭,则( )A .函数()f x 的定义域为RB .函数()f x 的值域为(]0,2C .函数()f x 在[)2,-+∞上单调递增D .函数()f x 在[)2,-+∞上单调递减12.判断正误.(1)函数113xy ⎛⎫=- ⎪⎝⎭的值域是(0,)+∞.( ) (2)已知函数5()2x f x ⎛⎫= ⎪⎝⎭,若实数m ,n 满足()()f m f n >,则m n >.( ) (3)指数函数()f x 的图象过点(0,1).( )(4)函数12x y -=的定义域是R .( )13.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量()g μy 与时间()h t 之间近似满足如图所示的图象,则y 关于t 的函数解析式为______;据进一步测定,每毫升血液中含药量不少于0.25g μ时,治疗疾病有效,则服药一次治疗疾病有效的时间为______h .14.不论a 为何值时,函数()1(0x f x a a a -=->且1)a ≠恒过定点__________.15.函数()120.58x y -=-的定义域为______.16.不等式22233xax x a ++->恒成立,则a 的取值范围是_________.17.求下列函数的定义域、值域:(1)513x y -=(2)2231.2x x y --⎛⎫= ⎪⎝⎭18.已知函数()221x x f x a a =+-(0a >,且1a ≠),求函数()f x 在[)0,+∞上的值域.19.已知函数2431()3ax x f x -+⎛⎫= ⎪⎝⎭,若()f x 的值域是(0,)+∞,求a 的值.20.比较下列各组中两个数的大小:(1) 2.51.6,31.7;(2)0.10.6-,0.50.6-;(3)0.31.7, 3.10.9.21.分别把下列各题中的3个数按从小到大的顺序用不等号连接起来:(1) 2.12, 1.92, 2.10.3;(2) 2.52,02.5, 2.512⎛⎫ ⎪⎝⎭; (3)0.80.8,0.90.8,0.81.2;(4)1323-⎛⎫ ⎪⎝⎭,2353-⎛⎫ ⎪⎝⎭,2332⎛⎫ ⎪⎝⎭.22.已知指数函数()x f x a =(0a >且1a ≠)经过点(3,27).(1)求()f x 的解析式及(1)f -的值;(2)若(1)()f x f x ->-,求x 的取值范围.23.已知()y f x =是定义在R 上的奇函数...,当0x ≥时,()()R 3x f x a a =+∈. (1)求函数()f x 在R 上的解析式;(2)若R x ∀∈,()()240f x x f mx -+->恒成立,求实数m 的取值范围.24.已知函数()24x m x f x +=-.(1)当0m =时,求关于x 的不等式()2f x >-的解集;(2)若对[]0,1x ∀∈,不等式()22x f x m >-⋅恒成立,求实数m 的取值范围.。
1.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1na m (a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a s a t =a s +t ,(a s )t =a st ,(ab )t =a t b t ,其中a >0,b >0,s ,t ∈Q . 2.指数函数的图象与性质y =a xa >10<a <1图象定义域 (1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1;当x <0时,0<y <1 (5)当x >0时,0<y <1; 当x <0时,y >1 (6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数判断下面结论是否正确(请在括号中打“√”或“×”) (1)n a n =(na )n =a .( × )(2)分数指数幂a m n可以理解为mn 个a 相乘.( × )(3)(-1)24=(-1)12=-1.( × ) (4)函数y =a -x 是R 上的增函数.( × ) (5)函数y =21+x a (a >1)的值域是(0,+∞).( × )(6)函数y =2x-1是指数函数.( × )1.函数f (x )=a x -1 (a >0,且a ≠1)的图象经过定点坐标为__________. 答案 (1,1)解析 令x -1=0得x =1,此时y =a 0=1,所以点(1,1)与a 无关,所以函数f (x )=a x -1(a >0,且a ≠1)的图象过定点(1,1).2.函数f (x )=a x -1a(a >0,a ≠1)的图象可能是______.(填图象序号)答案 ④解析 函数f (x )的图象恒过(-1,0)点,只有图象④适合. 3.计算:3×31.5×612+lg 14-lg 25=________.答案 1解析3×31.5×612+lg 14-lg 25=312×131332×316×213-lg 4-lg 25=3-lg 100=3-2=1.4.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.5.函数y =8-23-x (x ≥0)的值域是________. 答案 [0,8)解析 ∵x ≥0,∴-x ≤0,∴3-x ≤3, ∴0<23-x ≤23=8,∴0≤8-23-x <8, ∴函数y =8-23-x 的值域为[0,8).题型一 指数幂的运算例1 化简:(1)a 3b 23ab 2(a 14b 12)4a13-b13(a >0,b >0);(2)(-278)-23+(0.002)12--10(5-2)-1+(2-3)0.解 (1)原式=1122323311233a b a b ab a b -⎛⎫ ⎪⎝⎭=3111111226333+-++--a b =ab -1. (2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(1)[(0.06415)-2.5]23-3338-π0=________________________________________________________________________. (2)(14)12-·(4ab -1)3(0.1)-1·(a 3·b -3)12=________. 答案 (1)0 (2)85解析 (1)原式=253125641000-⎧⎫⎡⎤⎪⎪⎪⎪⎛⎫⎢⎥⎨⎬ ⎪⎢⎥⎝⎭⎪⎪⎣⎦⎪⎪⎩⎭-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫4103152()523⨯-⨯-⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0. (2)原式=2×432×a 32b32-10a 32b32-=85. 题型二 指数函数的图象及应用例2 (1)函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是________. ①a >1,b <0; ②a >1,b >0; ③0<a <1,b >0; ④0<a <1,b <0.(2)(2015·衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 答案 (1)④ (2)[-1,1]解析 (1)由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0. (2)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)在同一坐标系中,函数y =2x 与y =⎝⎛⎭⎫12x的图象之间的关系,下列判断正确的是________.①关于y 轴对称; ②关于x 轴对称; ③关于原点对称;④关于直线y =x 对称.(2)已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________. ①a <0,b <0,c <0; ②a <0,b ≥0,c >0; ③2-a <2c; ④2a +2c <2. 答案 (1)① (2)④ 解析 (1)∵y =⎝⎛⎭⎫12x=2-x , ∴它与函数y =2x 的图象关于y 轴对称. (2)作出函数f (x )=|2x -1|的图象,如图, ∵a <b <c ,且f (a )>f (c )>f (b ),结合图象知 0<f (a )<1,a <0,c >0, ∴0<2a <1.∴f (a )=|2a -1|=1-2a <1, ∴f (c )<1,∴0<c <1.∴1<2c <2,∴f (c )=|2c -1|=2c -1, 又∵f (a )>f (c ),∴1-2a >2c -1, ∴2a +2c <2.题型三 指数函数的图象和性质命题点1 比较指数式的大小例3 (1)下列各式比较大小正确的是________. ①1.72.5>1.73; ②0.6-1>0.62; ③0.8-0.1>1.250.2;④1.70.3>0.93.1.(2)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________. 答案 (1)②④ (2)a >c >b解析 (1)①中, ∵函数y =1.7x 在R 上是增函数, 2.5<3,∴1.72.5<1.73,错误;②中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,正确;③中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误; ④中,∵1.70.3>1,0<0.93.1<1, ∴1.70.3>0.93.1,正确. (2)∵y =⎝⎛⎭⎫25x为减函数, ∴⎝⎛⎭⎫2535<⎝⎛⎭⎫2525 即b <c ,又a c =⎝⎛⎭⎫3525⎝⎛⎭⎫2525=⎝⎛⎭⎫3225>⎝⎛⎭⎫320=1, ∴a >c ,故a >c >b .命题点2 解简单的指数方程或不等式例4 设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是__________.答案 (-3,1)解析 当a <0时,不等式f (a )<1可化为⎝⎛⎭⎫12a-7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1).命题点3 和指数函数有关的复合函数的性质例5 设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数. (1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且g (x )=a 2x +a -2x -4f (x ),求g (x )在[1,+∞)上的最小值.解 因为f (x )是定义域为R 的奇函数,所以f (0)=0,所以k -1=0,即k =1,f (x )=a x -a -x . (1)因为f (1)>0,所以a -1a>0,又a >0且a ≠1,所以a >1.因为f ′(x )=a x ln a +a -x ln a =(a x +a -x )ln a >0,所以f (x )在R 上为增函数,原不等式可化为f (x 2+2x )>f (4-x ), 所以x 2+2x >4-x ,即x 2+3x -4>0, 所以x >1或x <-4.所以不等式的解集为{x |x >1或x <-4}. (2)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0,所以a =2或a =-12(舍去).所以g (x )=22x +2-2x -4(2x -2-x ) =(2x -2-x )2-4(2x -2-x )+2.令t (x )=2x -2-x (x ≥1),则t (x )在(1,+∞)为增函数(由(1)可知),即t (x )≥t (1)=32,所以原函数为ω(t )=t 2-4t +2=(t -2)2-2,所以当t =2时,ω(t )min =-2,此时x =log 2(1+2). 即g (x )在x =log 2(1+2)时取得最小值-2. 思维升华 指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.(1)已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m的取值范围是________.(2)函数f (x )=⎝⎛⎭⎫1422-x x 的值域为__________. 答案 (1)(-∞,4] (2)(0,4]解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].(2)令t =x 2-2x ,则有y =⎝⎛⎭⎫14t,根据二次函数的图象可求得t ≥-1,结合指数函数y =⎝⎛⎭⎫14x的图象可得0<y ≤⎝⎛⎭⎫14-1,即0<y ≤4.4.换元法在和指数函数有关的复合函数中的应用典例 (1)函数y =⎝⎛⎭⎫14x -⎝⎛⎭⎫12x +1在区间[-3,2]上的值域是________. (2)函数f (x )=2211()2-++x x 的单调减区间为_________________________.思维点拨 (1)求函数值域,可利用换元法,设t =⎝⎛⎭⎫12x,将原函数的值域转化为关于t 的二次函数的值域.(2)根据复合函数的单调性“同增异减”进行探求. 解析 (1)因为x ∈[-3,2], 所以若令t =⎝⎛⎭⎫12x ,则t ∈⎣⎡⎦⎤14,8, 故y =t 2-t +1=⎝⎛⎭⎫t -122+34. 当t =12时,y min =34;当t =8时,y max =57.故所求函数值域为⎣⎡⎦⎤34,57. (2)设u =-x 2+2x +1,∵y =⎝⎛⎭⎫12u在R 上为减函数, ∴函数f (x )=2211()2-++x x 的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 答案 (1)⎣⎡⎦⎤34,57 (2)(-∞,1]温馨提醒 (1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利用换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化.[方法与技巧]1.通过指数函数图象比较底数大小的问题,可以先通过令x =1得到底数的值,再进行比较. 2.指数函数y =a x (a >0,a ≠1)的性质和a 的取值有关,一定要分清a >1与0<a <1. 3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成. [失误与防范]1.恒成立问题一般与函数最值有关,要与方程有解区别开来. 2.复合函数的问题,一定要注意函数的定义域.3.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0 (≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <1,f (x -2),x ≥1,则f (log 27)的值为________.答案 74解析 由于log 24<log 27<log 28,即2<log 27<3,log 27-2=log 274<1,因此f (log 27)=f (log 27-2)=f ⎝⎛⎭⎫log 274=227log 4=74. 2.已知a =22.5,b =2.50,c =(12)2.5,则a ,b ,c 的大小关系是__________.答案 a >b >c解析 a >20=1,b =1,c <(12)0=1,∴a >b >c .3.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是____________.答案 [2,+∞)解析 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.4.若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是__________. 答案 ⎝⎛⎭⎫0,12 解析 方程|a x -1|=2a (a >0且a ≠1)有两个实数根转化为函数y =|a x -1|与y =2a 有两个交点. ①当0<a <1时,如图(1),∴0<2a <1,即0<a <12.②当a >1时,如图(2),而y =2a >1不符合要求.综上,0<a <12.5.计算:⎝⎛⎭⎫3213-×⎝⎛⎭⎫-760+814×42- ⎝⎛⎭⎫-2323=________.答案 2 解析 原式=113133442222 2.331+-=⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭6.已知函数y =a x +b (b >0)的图象经过点P (1,3),如图所示,则4a -1+1b 的最小值为______. 答案 92解析 由函数y =a x+b (b >0)的图象经过点P (1,3),得a +b =3,所以a -12+b 2=1,又a >1,则4a -1+1b =⎝ ⎛⎭⎪⎫4a -1+1b ⎝ ⎛⎭⎪⎫a -12+b 2=2+12+2b a -1+a -12b ≥52+22b a -1·a -12b=92,当且仅当2b a -1=a -12b ,即a =73,b =23时取等号,所以4a -1+1b 的最小值为92. 7.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.答案 m >n解析 ∵a 2-2a -3=0,∴a =3或a =-1(舍).函数f (x )=3x 在R 上递增,由f (m )>f (n ),得m >n . 8.已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________. 答案 0解析 当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0. 9.已知函数()43132-+=ax x f x ⎛⎫⎪⎝⎭(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解 (1)当a =-1时,f (x )=⎝⎛⎭⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2]上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减,所以f (x )在(-∞,-2]上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2].(2)令g (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎨⎧ a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.10.已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.解 (1)∵f (x )=e x -⎝⎛⎭⎫1e x ,∴f ′(x )=e x +⎝⎛⎭⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立,∴f (x )在R 上是增函数.∴f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立,⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立,⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝⎛⎭⎫x +122-14对一切x ∈R 都成立, ⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝⎛⎭⎫t +122≤0, 又⎝⎛⎭⎫t +122≥0,∴⎝⎛⎭⎫t +122=0,∴t =-12. ∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立. B 组 专项能力提升(时间:20分钟)11.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是____________. 答案 f (-4)>f (1)解析 由题意知a >1,∴f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1).12.已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则在直角坐标系中函数g (x )=⎝⎛⎭⎫1a |x +b |的图象为________.答案 ②解析 f (x )=x -4+9x +1=x +1+9x +1-5≥29-5=1,取等号时x +1=9x +1,此时x =2.所以a =2,b =1,则g (x )=⎝⎛⎭⎫12|x +1|.g (x )的图象可以看作是y =⎝⎛⎭⎫12|x |的图象向左平移一个单位得到的,②符合要求.13.关于x 的方程⎝⎛⎭⎫32x =2+3a 5-a 有负数根,则实数a 的取值范围为__________.答案 ⎝⎛⎭⎫-23,34 解析 由题意,得x <0,所以0<⎝⎛⎭⎫32x <1,从而0<2+3a 5-a<1,解得-23<a <34. 14.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________. 答案 (-1,2) 解析 原不等式变形为m 2-m <⎝⎛⎭⎫12x ,因为函数y =⎝⎛⎭⎫12x 在(-∞,-1]上是减函数,所以⎝⎛⎭⎫12x ≥⎝⎛⎭⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝⎛⎭⎫12x 恒成立等价于m 2-m <2,解得-1<m <2.15.已知定义在实数集R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1. (1)求函数f (x )在(-1,1)上的解析式;(2)判断f (x )在(0,1)上的单调性;(3)当λ取何值时,方程f (x )=λ在(-1,1)上有实数解?解 (1)∵f (x )是x ∈R 上的奇函数,∴f (0)=0.设x ∈(-1,0),则-x ∈(0,1),f (-x )=2-x4-x +1=2x4x +1=-f (x ), ∴f (x )=-2x 4x +1,∴f (x )=⎩⎪⎨⎪⎧ -2x 4x +1,x ∈(-1,0),0,x =0,2x4x +1,x ∈(0,1).(2)设0<x 1<x 2<1,f (x 1)-f (x 2)=(1222x x -)+(221221+2+2-x x x x )(41x +1)(42x +1)=(21x -22x )(1-212+x x )(41x +1)(42x +1), ∵0<x 1<x 2<1,1222,x x ∴< 120221+=,x x >∴f (x 1)-f (x 2)>0,∴f (x )在(0,1)上为减函数.(3)∵f (x )在(0,1)上为减函数,∴2141+1<f (x )<2040+1,即f (x )∈⎝⎛⎭⎫25,12. 同理,f (x )在(-1,0)上时,f (x )∈⎝⎛⎭⎫-12,-25. 又f (0)=0,当λ∈⎝⎛⎭⎫-12,-25∪⎝⎛⎭⎫25,12, 或λ=0时,方程f (x )=λ在x ∈(-1,1)上有实数解.。
高一数学指数与指数函数试题答案及解析1.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.2.若,则在,,,中最大值是()A.B.C.D.【答案】C【解析】由指数函数的性质,得,;由幂函数的性质得,因此最大的是.【考点】指数函数和幂函数的性质.3.若函数有两个零点,则实数a的取值范围为【答案】【解析】研究函数与函数图像交点个数.当时,由于直线在轴的截距大于,所以函数与函数图像在及时各有一个交点. 当时,由于单调减,直线单调增,所以函数与函数图像只3在时有一个交点.【考点】指数函数图像4..【答案】【解析】原式=【考点】指数与对数5.设函数y=x3与的图像的交点为(x0,y),则x所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【答案】B【解析】由函数知识知函数y=x3与的图像的交点为(x0,y)的横坐标x即为方程的解,也是函数函数=的零点,由零点存在性定理及验证法知<0,故x0在区间(1,2)内.由题知x是函数=的零点,∵==-7<0,故选B.【考点】函数零点与函数交点的关系,零点存在性定理6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.8.设,且,则= ( )A.100B.20C.10D.【答案】A【解析】由题设,得,则,同理有,又,得,即,所以.故正确答案为A.【考点】指数式、对数式的运算9.函数在区间[0,1]上的最大值和最小值之和为.【答案】4【解析】因为在[0,1]上单调递增,在[0,1]上单调递减,所以在 [0,1]单调递增,所以y的最大值为,最小值为,所以最大值和最小值之和为4.【考点】指数函数和对数函数的单调性及利用单调性求最值10. (1)计算:(2)已知,求的值.【答案】(1);(2).【解析】(1)此题主要考查学生对指数运算法则、对数运算性质的掌握情况,以及对指数式、对数式整体与局部的认识,属基础题;(2)经过审题,若从已知条件中求出难度较大,由指数运算法则知,,所以所求式子中的,. 试题解析:(1)原式= 6分(2)因为得得所以原式= 12分【考点】1.指数运算法则;2.对数运算性质.11.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)初中所学单项式与多项式的运算法则和乘法公式,当指数变成分数时仍然适用;(2)对数的运算一般要转化为同底数的对数才能运用对数的运算法则.试题解析:(1);(2)原式=.【考点】(1)指数的运算;(2)对数的运算.12.集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有.(1)试判断=及是否在集合A中,并说明理由;(2)设ÎA且定义域为(0,+¥),值域为(0,1),,试写出一个满足以上条件的函数的解析式,并给予证明.【答案】(1),;(2)【解析】(1)根据题目给出的性质对函数与进行判断即可;(2)可以模仿(1)中的函数进行寻找,或者可以这么找,因为我们学了指数、对数、幂函数,而(1)中已经出现了对数函数与幂函数,所以是否可以考虑从指数函数中寻找.试题解析:(1),. 2分对于的证明. 任意且,即. ∴ 4分对于,举反例:当,时,,,不满足. ∴. 7分⑵函数,当时,值域为且. 9分任取且,则即. ∴. 14分【考点】1.函数性质;2.新定义型解答题;3.指数函数、对数函数、指数函数.13.三个数的大小关系为()A.B.C.D.【答案】D【解析】,,,故,选D.【考点】指数、对数函数性质.14.已知函数(1)若存在,使得成立,求实数的取值范围;(2)解关于的不等式;(3)若,求的最大值.【答案】(1)(2);②;③,,(3)【解析】(1)令,即成立 1分的最小值为0,当时取得 4分5分(2),令 6分① 7分② 8分③ⅰ 9分ⅱ 10分(3)令则12分13分,的最大值为 14分【考点】二次函数点评:主要是考查了二次函数的最值以及不等式的性质的运用,属于基础题。
指
数函数
2.1.1指数与指数幂的运算
(1)根式的概念 ①如果,,,1n
x
a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次
当n 是偶数时,正数a 的正的n
负的n
次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.
n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数
时,0a ≥.
n a =;当n
a =;当n
(0)
|| (0) a a a a a ≥⎧==⎨
-<⎩
. (2)分数指数幂的概念
①正数的正分数指数幂的意义是:
0,,,m
n
a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②
正数的负分数指数幂的意义是:
1()0,,,m m n
n a
a m n N a -+==>∈且1)n >.0
的负分数指
数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质
①
(0,,)
r s r s a a a a r s R +⋅=>∈ ②
()(0,,)
r s rs a a a r s R =>∈ ③
()(0,0,)r r r ab a b a b r R =>>∈
2.1.2指数函数及其性质
2.1指数函数练习
1.下列各式中成立的一项
( )
A .71
7
7)(m n m
n =
B .31243)3(-=-
C .4
3433)(y x y x +=+
D .
33
39=
2.化简)3
1
()3)((65
61
3
12
12
13
2b a b a b a ÷-的结果
( )
A .a 6
B .a -
C .a 9-
D .2
9a
3.设指数函数)1,0()(≠>=a a a x f x
,则下列等式中不正确的是
( )
A .f (x +y )=f(x )·f (y )
B .)
()
(y f x f y x f =-)
( C .)()]
([)(Q n x f nx f n
∈=
D .)()]([·
)]([)(+∈=N n y f x f xy f n
n
n
4.函数2
10
)
2()5(--+-=x x y
( )
A .}2,5|{≠≠x x x
B .}2|{>x x
C .}5|{>x x
D .}552|{><<x x x 或 5.若指数函数x
a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于
( )
A .
2
5
1+
B .
2
5
1+
- C .
2
5
1± D .
2
1
5± 6.当a ≠0时,函数y ax b =+和y b ax
=的图象只可能是 ( )
7.函数|
|2)(x x f -=的值域是
( ) A .]1,0(
B .)1,0(
C .),0(+∞
D .R
8.函数⎪⎩⎪
⎨⎧>≤-=-0
,0
,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围
( )
A .)1,1(-
B . ),1(+∞-
C .}20|{-<>x x x 或
D .}11|{-<>x x x 或
9.函数2
2)2
1(++-=x x y 得单调递增区间是
( )
A .]2
1,1[-
B .]1,(--∞
C .),2[+∞
D .]2,2
1
[ 10.已知2
)(x
x e e x f --=,则下列正确的是
( )
A .奇函数,在R 上为增函数
B .偶函数,在R 上为增函数
C .奇函数,在R 上为减函数
D .偶函数,在R 上为减函数
11.已知函数f (x )的定义域是(1,2),则函数)2(x
f 的定义域是 . 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 三、解答题: 13.求函数y x x =
--15
1
1
的定义域.
14.若a >0,b >0,且a +b =c ,
求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .
15.已知函数1
1
)(+-=x x a a x f (a >1).
(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.
16.函数f(x)=a x
(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值.
参考答案
一、DCDDD AAD D A
二、11.(0,1); 12.(2,-2); 三、13. 解:要使函数有意义必须:
x x x x x -≠-≠⎧⎨⎪
⎩⎪⇒≠≠⎧⎨⎩10
1
010
∴定义域为:{}
x x R x x ∈≠≠且01,
14. 解:r
r
r
r
r c b c a c b a ⎪⎭
⎫ ⎝⎛+⎪⎭
⎫ ⎝⎛=+,其中10,10<<<<
c
b
c a . 当r >1时,1=+<⎪
⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a r
r
,所以a r +b r <c r
; 当r <1时,1=+>⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a r
r
,所以a r +b r >c r .
15.解:(1)是奇函数.
(2)设x 1<x 2,则1111)()(221121+--+-=-x
x x x a a a a x f x f 。
=)
1)(1()1)(1()1)(1(212
121++-+-+-x x x x x x a a a a a a ∵a >1,x 1<x 2,∴a 1x <a
2
x . 又∵a 1x +1>0,a
2
x +1>0,
∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).
函数f(x)在(-∞,+∞)上是增函数.
16、 (1)若a>1,则f(x)在[1,2]上递增,
∴a 2-a =a 2,即a =3
2或a =0(舍去).
(2)若0<a<1,则f(x)在[1,2]上递减, ∴a -a 2=a 2,即a =1
2
或a =0(舍去),
综上所述,所求a 的值为12或3
2
.。