高中数学练习:指数与指数函数
- 格式:doc
- 大小:191.50 KB
- 文档页数:5
第二章函数2.4.2 指数函数(针对练习)针对练习针对练习一指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a>0,b>0).(1)a222.计算或化简下列各式:(1)(a-2)·(-4a-1)÷(12a-4)(a>0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0. 3.计算:(1)1111242 114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+-++⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a ba b a b->>⎛⎫⎪⎝⎭4.计算:(1)10132114(2)924---⎛⎫⎛⎫-⨯-+-⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯5.(1)()2163278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .47.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x8.下列函数中为指数函数的是( ) A .23x y =⋅ B .3x y =-C .3x y -=D .1x y =9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠110.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A.1 B .2C D .3针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,5413.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞ C .(,2]-∞ D .[2,)+∞17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,120.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,222.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0 C .5 D .923.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,225.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e --=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .4037.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-第二章 函数2.4.2 指数函数(针对练习)针对练习针对练习一 指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a >0,b >0).(1)a2 2.【答案】(1)52a ; (2)136a ; (3)7362a b ; (4)76a . 【解析】 【分析】由根式与有理数指数幂的关系,结合指数幂的运算性质化简求值即可. (1)原式=11522222a a a a +⋅==. (2)原式=22313333262a a a a +⋅==. (3)原式=1221711333233332622222()()a ab a a b a b a b +⋅===.(4)原式=55722666a a a a --⋅==. 2.计算或化简下列各式: (1)(a -2)·(-4a -1)÷(12a -4)(a >0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0.【答案】(1)-13a ;(2)-1679.【解析】 【分析】直接根据指数幂的运算性质计算即可. 【详解】(1)原式21434114(12)33a a a a ----+=-÷=-=-(2)原式213227118500--⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭213323()5002)12-⎡⎤=-+-+⎢⎥⎣⎦=49+20+1=- 1679. 3.计算:(1)1111242114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+++ ⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a b a b a b ->>⎛⎫ ⎪⎝⎭【答案】(1)-16 (2)(0,0)a a b b>> 【解析】 【分析】(1)根据分数指数幂的运算规则化简计算即可; (2)根据分数指数幂的运算规则化简得出结果. (1)原式=111222411010233-⎫⎫⎛⎫⨯⨯++⨯+ ⎪⎝⎭⎝⎭⎝⎭(12410223⎫=⨯-⨯+⎝⎭220216=-+=-(2)原式543311233(0,0)a baa b bab a b-==>> 4.计算:(1)1132114(2)924---⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯【答案】(1)196(2)【解析】 【分析】(1)利用指数幂的运算性质即可求解.(2)利用根式与分数指数幂的互化以及指数幂的运算性质即可求解. (1)原式1111924()1218236=-⨯-+=++-=. (2)原式24119555636333222221[(8)](10)10(2)1010102---=⨯÷=⨯÷=⨯721102=⨯=== 5.(1)()21603278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.【答案】(1)8π+;(2)85. 【解析】 【分析】(1)(2)均根据指数幂的运算性质即可计算; 【详解】(1)原式233(2)=-1+|3﹣π|162(2)+=4﹣1+π﹣3+23=π+8.(2)原式3332223322248510a b a b--⋅==.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】直接根据指数函数的定义依次判断即可. 【详解】根据指数函数的定义,知①①中的函数是指数函数, ①中底数不是常数,指数不是自变量,所以不是指数函数; ①中4x 的系数是1-,所以不是指数函数; ①中底数40-<,所以不是指数函数. 故选:B .7.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x【答案】A 【解析】 【分析】根据指数函数定义判断. 【详解】B 中底数90-<,C 中指数是1x -,不是x ,D 中5x 前面系数不是1,根据指数函数定义,只有A 中函数是指数函数, 故选:A.8.下列函数中为指数函数的是( )A .23x y =⋅B .3x y =-C .3x y -=D .1x y =【答案】C 【解析】 【分析】根据指数函数的定义,逐项判定,即可求解. 【详解】根据指数函数的定义知,()0,1xy a a a =>≠,可得函数23x y =⋅不是指数函数;函数3x y =-不是指数函数;函数3x y -=是指数函数;函数1x y =不是指数函数. 故选:C.9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1【答案】C 【解析】 【分析】根据已知条件列不等式,由此求得正确选项. 【详解】由已知得244101a a a a ⎧-+=⎪>⎨⎪≠⎩,即2301a a a a ⎧+=⎪⎨⎪≠⎩,解得3a =.故选:C10.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A .1 B .2 CD .3【答案】C 【解析】 【分析】由指数函数所过的点求解析式,进而求(1)f -的值. 【详解】由题意,21(2)3f a ==,又a >0,则a =①()x f x =,故1(1)f --== 故选:C针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数的解析式可得函数2x y -=是以12为底数的指数函数,再根据指数函数的图像即可得出答案. 【详解】解:由122xxy -⎛⎫== ⎪⎝⎭,得函数2x y -=是以12为底数的指数函数,且函数为减函数,故D 选项符合题意. 故选:D.12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,54【答案】C 【解析】 【分析】由直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b 即可求解. 【详解】解:直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,511423>>, 所以a ,b ,c ,d 的值分别是12,1354, 故选:C.13.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-【答案】C 【解析】 【分析】令10x -=求出定点的横坐标,即得解. 【详解】解:令10,1-=∴=x x .当1x =时,()1111=2f a -=+,所以函数()f x 的图象过点()1,2. 故选:C.14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +【答案】B 【解析】 【分析】由指数函数过定点的性质进行求解. 【详解】()x f x a =的图象恒过定点()0,1,所以()1x f x a =+的图象恒过定点()0,2故选:B15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1【答案】B 【解析】 【分析】根据指数函数的知识确定正确选项. 【详解】当10x -=,即1x =时,()12f =, 所以()f x 过定点()1,2. 故选:B针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞C .(,2]-∞D .[2,)+∞【答案】D 【解析】 【分析】根据函数的定义域定义求解即可. 【详解】要使得函数y 则390x -≥,39x ≥,233x ≥,解得2x ≥.故函数y [2,)+∞. 故选:D.17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞【答案】D 【解析】求出使函数式有意义的自变量的范围即得、 【详解】由21020x x ⎧-≥⎨-≠⎩得02x x ≥⎧⎨≠⎩,即[0,2)(2,)x ∈⋃+∞.故选:D.18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】求得4x f ⎛⎫= ⎪⎝⎭0,结合指数函数的性质求解即可. 【详解】因为()f x =所以4x f ⎛⎫= ⎪⎝⎭因为44440,44,1,44x x x x -≥≤≤≤,所以4xf ⎛⎫⎪⎝⎭的定义域为(],4-∞,故选A .【点睛】本题主要考查函数的定义域以及指数函数的单调性的应用,是基础题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,1【答案】B 【解析】 【分析】抽象函数的定义域求解,要注意两点,一是定义域是x 的取值范围;二是同一对应法则下,取值范围一致. 【详解】()y f x =的定义域为()0,1,1021x-∴<<,即121121x x ⎧-<-<⎨≠⎩,10x x <⎧∴⎨≠⎩,解得:1x <且0x ≠, ()()21x F x f ∴=-的定义域为()(),00,1-∞⋃.故选:B .20.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1【答案】C 【解析】 【分析】由题意可得10x a -≥,对a 讨论,分1,01a a ><<,运用指数函数的单调性,列不等式即可得到a 的范围. 【详解】要使函数0y a >且1)a ≠有意义, 则10x a -≥, 即01x a a ≥=, 当1a >时,0x ≥;当01a <<时,0x ≤,因为y =的定义域为(],0-∞ 所以可得01a <<符合题意,a ∴的取值范围为01a <<,故选C.【点睛】本题考查函数的定义域以及指数函数的单调性,注意运用偶次根式被开方式非负,意在考查分类讨论思想与运算能力,属于中档题.针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,2【答案】D 【解析】 【分析】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,转求二次函数与指数函数的值域即可.【详解】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,①()222111t x x x =-=--≥-,①(],2120ty ⎛⎫⎪⎭∈= ⎝,①函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2,故选:D22.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0C .5D .9【答案】A 【解析】 【分析】设23x t =,则2()21=-+f t t t 利用函数()f t 单调性可得答案. 【详解】设23x t =,则()22()211=-+=-f t t t t (3t ), 对称轴为1t =,所以()f t 在[)3,+∞上单调递增,所以2min ()(3)32314f t f ==-⨯+=.故选:A.23.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞【答案】C 【解析】 【分析】将函数化为121xyy+=-,利用20x >列出关于y 的不等式,解出不等式即可. 【详解】设2121x x y -=+,由原式得121xy y +=-,20x >, 101yy+∴>-, ①11y -<<,即函数()f x 的值域为(1,1)-. 故选:C24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,2【答案】A 【解析】 【分析】先求出12x y -=在[)1,+∞上的取值范围,再利用分段函数的值域进行求解.【详解】因为12x y -=在[)1,+∞上单调递增, 所以当1≥x 时,1022=1x y -=≥, 若函数()f x 的值域为R ,则1201231a a a ->⎧⎨-+≥⎩, 解得102a ≤<. 故选:A.25.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32【答案】C 【解析】当0a >且1a ≠时,函数为指数型函数,需要分情况进行讨论解决.当1a >时,函数2x y a =-是增函数;当01a <<时,函数2x y a =-是减函数,由此结合条件建立关于a的方程组,解之即可求得答案. 【详解】当1a >时,2xy a =-在[]1,1-上为增函数, 211523a a-=⎧⎪∴⎨-=-⎪⎩,解得3a =;当01a <<时,2xy a =-在[]1,1-上为减函数,523121a a⎧-=-⎪⎪∴⎨⎪-=⎪⎩,解得13a =.综上可知:3a =或13. 故选:C 【点睛】关键点点睛:本题主要考查了指数函数的单调性和值域,解题的关键是利用函数的单调性求解函数值域,但含有参数时往往需要讨论.针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞【答案】A 【解析】 【分析】利用复合函数的单调性“同增异减”来解题. 【详解】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞. 故选:A.27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】根据复合函数单调性法则“同增异减”求解即可. 【详解】解:因为函数2231y x x =-+在区间3,4⎛⎫-∞ ⎪⎝⎭上单调递减,在3,4⎡⎫+∞⎪⎢⎣⎭上单调递增,函数12xy ⎛⎫= ⎪⎝⎭在定义域内是单调递减函数,所以,根据复合函数单调性法则“同增异减”得223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:D28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-【答案】C 【解析】 【分析】根据复合函数单调性来求得a 的取值范围. 【详解】依题意函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,15xy =在R 上递减, 2y x ax =+的开口向上,对称轴为2ax =-,根据复合函数单调性同增异减可知,122a a -≤⇒≥-. 故选:C29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据分段函数的性质,以及函数()f x 在R 上单调递减,结合指数函数的性质,可知011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,求解不等式,即可得到结果. 【详解】①函数()f x 在R 上单调递减,①011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,解得1233a <≤,实数a 的取值范围是12,33⎛⎤⎥⎝⎦. 故选:A.30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,【答案】C 【解析】 【分析】根据()f x 的单调性列不等式组,由此求得a 的取值范围. 【详解】 函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,,若()f x 在R 上为单调递增函数,则()14201421a a a a ⎧->⎪>⎨⎪-⨯≤⎩,解得423a ≤<;若()f x 在R 上为单调递减函数,则()142001421a a a a ⎧-<⎪<<⎨⎪-⨯≥⎩,无解. 综上所述,实数a 的取值范围为423⎡⎫⎪⎢⎣⎭,. 故选:C针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<【答案】C 【解析】 【分析】根据指数函数的单调性判断指数式的大小关系. 【详解】由题设,42a -=,2b =,122c =,又2x y =在定义域上递增, ①a c b <<. 故选:C.32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a【答案】B 【解析】 【分析】结合指数函数、幂函数的单调性确定正确选项. 【详解】4x y =在R 上递增,14y x =在()0,∞+上递增.123111334442422893c a b ==<==<==.故选:B33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞【答案】A 【解析】 【分析】根据指数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; 【详解】解:因为12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭等价于214a a +<-,解得1a <,即原不等式的解集为(,1)-∞ 故选:A34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞【答案】B 【解析】【分析】利用指数函数的单调性得到自变量的范围,进而得到指数函数的值域. 【详解】 由221139x x -+⎛⎫ ⎪⎝⎭可得2212(2)1339x x x -+--⎛⎫= ⎪⎝⎭,因为3x y =在R 上单调递增, 所以2124x x +-+即x 2+2x -3≤0, 解得:31x -≤≤ , 所以31222x y -=,即函数2x y =的值域是1,28⎡⎤⎢⎥⎣⎦,故选:B .35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-【答案】D 【解析】 【分析】先根据题干条件和函数13xy ⎛⎫= ⎪⎝⎭的单调性得到a b >,A 选项可以利用函数的单调性进行判断,BC 选项可以举出反例,D 选项用不等式的基本性质进行判断. 【详解】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,若1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则a b >,对于选项A :若a b >,因为()3f x x =单调递增,所以33a b >,故A 错误;对于选项B :当a b >时,若0c ,则ac bc =,故B 错误;对于选项C :由a b >,不妨令1a =,2b =-,则此时11ab>,故C 错误; 对于选项D :由不等式性质,可知D 正确. 故选:D.针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e--=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .40【答案】A 【解析】 【分析】根据()0.1f t =列式,并根据给出参考数据,结合指数函数的性质解相应的指数方程,即可得答案. 【详解】解:因为()0.1f t =,0.22(340)1()1t f t e--=+,所以0.22(340)10.11t e--=+,即0.22(340)011t e --=+,所以0.22(340)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈, 所以0.22(23).240t e e --≈,所以()0.22340 2.2t --≈,解得10t ≈. 故选:A.37.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天【答案】B 【解析】 【分析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为0 3.22R =,10T =,01R rT =+,所以可以得到01 3.2210.22210R r T --===0.2220(0)1I e ⨯==,由题意可知0.2224t e >,ln 42ln 220.696.20.2220.2220.222t ⨯>=≈≈ 所以至少需要7天,累计感染病例数增加至(0)I 的4倍 故选:B38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h【答案】C 【解析】 【分析】根据已知的函数模型以及已知数据,待定系数即可求得结果. 【详解】由题意知1080e b =,1010120e e e k b k b +==⋅,所以()21051201ee 10809kk===, 所以51e 3k =,所以151e 27k =,所以15151ee e 10804027k bk b +=⋅=⨯=. 故选:C .39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时【答案】D 【解析】 【分析】根据题意建立方程组,进而解出11e ,e b k ,然后将22代入即可求得答案. 【详解】由题意,331133e 1922411e e 19282e24b k k k b+⎧=⇒==⇒=⎨=⎩,所以该食品在22C ︒的保鲜时间是2222e e e 1192484k b k b +=⋅=⨯=.故选:D.40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-【答案】A 【解析】 【分析】把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+可求得实数k 的值.【详解】由题意,把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+中得2080e 2060k -+=,可得201e2k-=, 所以,20ln 2k -=-,因此,ln 220k =. 故选:A.。
4.2.1 指数函数的概念必备知识基础练1.(多选)下列函数是指数函数的有( ) A .y =x 4B .y =(12)xC .y =22xD .y =-3x2.已知某种细胞分裂时,由1个分裂成2个,2个分裂成4个……依此类推,那么1个这样的细胞分裂3次后,得到的细胞个数为( )A .4个B .8个C .16个D .32个3.如果指数函数f (x )=a x(a >0,且a ≠1)的图象经过点(2,4),那么a 的值是( ) A . 2 B .2 C .3 D .44.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2xC .(12)xD .(22)x5.已知f (x )=3x -b(b 为常数)的图象经过点(2,1),则f (4)的值为( )A .3B .6C .9D .86.已知函数f (x )=⎩⎪⎨⎪⎧2x,x <0,3x ,x >0,则f (f (-1))=( )A .2B . 3C .0D .127.已知函数y =a ·2x和y =2x +b都是指数函数,则a +b =________.8.已知函数f (x )是指数函数,且f (-32)=525,则f (3)=________.关键能力综合练1.若函数y =(m 2-m -1)·m x是指数函数,则m 等于( ) A .-1或2 B .-1 C .2 D .122.函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +3,x ≤0,则f (f (-2))的值为( )A .14B .12C .2D .43.若函数f (x )=(12a -1)·a x是指数函数,则f (12)的值为( )A .-2B .2C .-2 2D .2 24.若函数y =(2a -1)x(x 是自变量)是指数函数,则a 的取值范围是( ) A .a >0且a ≠1 B .a ≥0且a ≠1 C .a >12且a ≠1 D .a ≥125.某产品计划每年成本降低p %,若三年后成本为a 元,则现在成本为( ) A .a (1+p %)元 B .a (1-p %)元 C .a (1-p %)3元 D .a1+p %元 6.(多选)设指数函数f (x )=a x(a >0,且a ≠1),则下列等式中正确的是( ) A .f (x +y )=f (x )f (y ) B .f (x -y )=f (x )f (y )C .f (xy)=f (x )-f (y ) D .f (nx )=[f (x )]n(n ∈Q )7.某厂2018年的产值为a 万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为________万元.8.若函数y =(k +2)a x+2-b (a >0,且a ≠1)是指数函数,则k =________,b =________. 9.已知指数函数f (x )=a x(a >0,且a ≠1), (1)求f (0)的值;(2)如果f (2)=9,求实数a 的值.10.已知函数f (x )=(a 2+a -5)a x是指数函数. (1)求f (x )的表达式;(2)判断F (x )=f (x )-f (-x )的奇偶性,并加以证明.核心素养升级练1.某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y 千克粮食,则y 关于x 的解析式为( )A .y =360(1.041.012)x -1B .y =360×1.04xC .y =360×1.04x1.012D .y =360(1.041.012)x2.已知函数f (x )=⎩⎪⎨⎪⎧3x(x >0)2x -3(x ≤0),若f (a )-f (2)=0,则实数a 的值等于________.3.截止到2018年底,我国某市人口约为130万.若今后能将人口年平均递增率控制在3‰,经过x 年后,此市人口数为y (万).(1)求y 与x 的函数关系y =f (x ),并写出定义域;(2)若按此增长率,2029年年底的人口数是多少?(3)哪一年年底的人口数将达到135万?4.2.1 指数函数的概念必备知识基础练1.答案:BC解析:对于A,函数y =x 4不是指数函数, 对于B,函数y =(12)x是指数函数;对于C,函数y =22x=4x是指数函数; 对于D,函数y =-3x不是指数函数. 2.答案:B解析:由题意知1个细胞分裂3次的个数为23=8. 3.答案:B解析:由题意可知f (2)=a 2=4,解得a =2或a =-2(舍). 4.答案:A解析:由题意,设f (x )=a x(a >0且a ≠1), 因为f (2)=2,所以a 2=2,解得a = 2. 所以f (x )=(2)x. 5.答案:C 解析:f (2)=32-b=1=30,即b =2,f (4)=34-2=9.6.答案:B解析:f (-1)=2-1=12,f (f (-1))=f (12)=312= 3.7.答案:1解析:因为函数y =a ·2x是指数函数,所以a =1, 由y =2x +b是指数函数,所以b =0,所以a +b =1. 8.答案:125解析:设f (x )=a x(a >0且a ≠1),则f (-32)=a -32=525=5-32,得a =5,故f (x )=5x,因此,f (3)=53=125.关键能力综合练1.答案:C解析:由题意可得⎩⎪⎨⎪⎧m 2-m -1=1m >0m ≠1,解得m =2.2.答案:C解析:由题意f (-2)=-2+3=1,∴f (f (-2))=f (1)=2. 3.答案:B解析:因为函数f (x )=(12a -1)·a x 是指数函数,所以12a -1=1,即a =4,所以f (x )=4x,那么f (12)=412=2.4.答案:C解析:由于函数y =(2a -1)x(x 是自变量)是指数函数,则2a -1>0且2a -1≠1,解得a >12且a ≠1.5.答案:C解析:设现在成本为x 元,因为某产品计划每年成本降低p %,且三年后成本为a 元, 所以(1-p %)3x =a , 所以x =a(1-p %)3.6.答案:ABD解析:因指数函数f (x )=a x(a >0,且a ≠1),则有: 对于A,f (x +y )=ax +y=a x ·a y=f (x )f (y ),A 中的等式正确;对于B,f (x -y )=a x -y=a x·a -y=a x a y =f (x )f (y ),B 中的等式正确;对于C,f (x y )=a x y ,f (x )-f (y )=a x -a y ,显然,a xy≠a x -a y,C 中的等式错误;对于D,n ∈Q ,f (nx )=a nx =(a x )n =[f (x )]n,D 中的等式正确. 7.答案:a (1+7%)4解析:2018年产值为a ,增长率为7%. 2019年产值为a +a ×7%=a (1+7%)(万元).2020年产值为a (1+7%)+a (1+7%)×7%=a (1+7%)2(万元). ……2022年的产值为a (1+7%)4万元. 8.答案:-1 2解析:根据指数函数的定义,得⎩⎪⎨⎪⎧k +2=1,2-b =0,解得⎩⎪⎨⎪⎧k =-1,b =2.9.解析:(1)f (0)=a 0=1. (2)f (2)=a 2=9,∴a =3.10.解析:(1)由a 2+a -5=1,可得a =2或a =-3(舍去), ∴f (x )=2x.(2)F (x )=2x -2-x,定义域为R , ∴F (-x )=2-x-2x=-F (x ), ∴F (x )是奇函数.核心素养升级练1.答案:D解析:不妨设现在乡镇人口总数为a ,则现在乡镇粮食总量为360a ,故经过x 年后,乡镇人口总数为a (1+0.012)x ,乡镇粮食总量为360a (1+0.04)x, 故经过x 年后,人均占有粮食y =360a (1+0.04)xa (1+0.012)x =360(1.041.012)x. 2.答案:2解析:由已知,得f (2)=9; 又当x >0时,f (x )=3x, 所以当a >0时,f (a )=3a, 所以3a-9=0,所以a =2. 当x <0时,f (x )=2x -3, 所以当a <0时,f (a )=2a -3, 所以2a -3-9=0,所以a =6, 又因为a <0,所以a ≠6. 综上可知a =2.3.解析:(1)2018年年底的人口数为130万;经过1年,2019年年底的人口数为130+130×3‰=130(1+3‰)(万);经过2年,2020年年底的人口数为130(1+3‰)+130(1+3‰)×3‰=130(1+3‰)2(万);经过3年,2021年年底的人口数为130(1+3‰)2+130(1+3‰)2×3‰=130(1+3‰)3(万).……所以经过的年数与(1+3‰)的指数相同,所以经过x年后的人口数为130(1+3‰)x(万).即y=f(x)=130(1+3‰)x(x∈N*).(2)2029年年底,经过了11年,过2029年底的人口数为130(1+3‰)11≈134(万).(3)由(2)可知,2029年年底的人口数为130(1+3‰)11≈134<135.2030年年底的人口数为130(1+3‰)12≈134.8(万),2031年年底的人口数为130(1+3‰)13≈135.2(万).所以2031年年底的人口数将达到135万.。
高中数学:指数函数的图像和性质练习及答案指数函数的图象与性质1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-25.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.指数函数的定义域7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( ) A.(0,1)B.(2,4)C.(,1)D.(1,2)8.函数y=的定义域是________.指数函数的值域9.函数y=的值域为________.10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.指数函数的性质11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)指数幂的大小比较14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()指数方程的解法17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.指数不等式的解法20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( ) A.a>0B.a>1C.a<1D.0<a<122.不等式<2-2x的解集是________.指数函数的单调性23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( ) A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)26.函数y=的递增区间是________.27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.指数函数的最值28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.429.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a233.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.答案1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d【答案】A【解析】作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<d<c.故选A.2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.【答案】C【解析】由1>n>m>0可知①②应为两条递减指数函数曲线,故只可能是选项C或D,进而再判断①②与n和m的对应关系,不妨选择特殊点,令x=1,则①②对应的函数值分别为m和n,由m<n知选C.故选C.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.【答案】D【解析】当a>1时,y=a x-为增函数,且在y轴上的截距为0<1-<1,排除A,B.当0<a<1时,y=a x-为减函数,且在y轴上的截距为1-<0,故选D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-2【答案】C【解析】y=2x向上,向右分别平移2个单位得f(x)的图象,所以f(x)=2x-2+2.5.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)【答案】D【解析】方程|a x-1|=2a(a>0且a≠1)有两个不相等的实数根转化为函数y=|a x-1|与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.【答案】(1)f(x)=其图象如图所示.(2)证明由图知,f(x)在(-∞,1]上是减函数,在[1,+∞)上是增函数,故结合条件知必有a<1.若c≤1,则2a<2,2c≤2,所以2a+2c<4;若c>1,则由f(a)>f(c),得1-2a-1>2c-1-1,即2c-1+2a-1<2,所以2a+2c<4.综上知,总有2a+2c<4.7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( )A.(0,1)B.(2,4)C.(,1)D.(1,2)【答案】A【解析】根据题意可知1<2x<2,则0<x<1,所以函数f(2x)的定义域是(0,1).8.函数y=的定义域是________.【答案】(-∞,]【解析】要使函数y=有意义,则必须()3x-1-≥0,即()3x-1≥()3,∴3x-1≤3,解得x≤.∴函数y=的定义域是(-∞,].故答案为(-∞,].9.函数y=的值域为________.【答案】[0,4)【解析】∵2x>0,∴0≤16-2x<16,则0≤<4,故函数y=的值域为[0,4).10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.【答案】[3,5]【解析】因为指数函数y=3x在区间[0,1]上是增函数,所以30≤3x≤31,即1≤3x≤3,于是1+2≤3x+2≤3+2,即3≤f(x)≤5.11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数【答案】B【解析】因为f(x),g(x)的定义域均为R,且f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)为偶函数,g(x)为奇函数,故选B.12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).【答案】③④【解析】①指数函数的定义域为R,故①错误;②指数函数的值域是(0,+∞),故②错误;③∵f(x)=()x=2-x,∴指数函数f(x)=2x和f(x)=()x关于y轴对称,故③正确;④当a>1时,y=ax是增函数;当0<a<1时,y=ax是减函数,所以指数函数都是单调函数,故④正确.故答案为③④.13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)【答案】=【解析】∵对于指数函数f(x)=a x(a>0,a≠1),任意取x 1、x2∈R,有f(x1)f(x2)===f(x1+x2).故答案为=.14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定【答案】A【解析】考察函数y=()x与y=()x知,前者是一个增函数,后者是一个减函数,∴>()0=1,()5<()0=1,∴>()5,即a>b,故选A.15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a【答案】C【解析】∵<()b<()a<1,且y=()x在R上是减函数.∴0<a<b<1,∴指数函数y=a x在R上是减函数,∴a b<a a,∴幂函数y=x a在R上是增函数,∴a a<b a,∴a b<a a<b a,故选C.16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()【答案】B【解析】∵y=f(x+1)是偶函数,故函数的图象关于直线x=1对称,则f()=f(),f()=f(),又∵当x≥1时,f(x)=3x-1为增函数,且<<,故f()<f()<f(),即f()<f()<f(),故选B.17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}【答案】D【解析】因为2是它们的公共元素,所以2a=2,a=1,b=2,因此M∪N={1,2,3},选D.18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.【答案】(3,0),(2,2)【解析】方程2m·3n-3n+1+2m=13变形为3n(2m-3)+2m=13.(*)∵m,n为非负整数,∴当m=0,1时,经验证无解,应舍去.当m=2时,(*)化为3n+22=13,解得n=2.此时方程的非负整数解为(2,2).当m=3时,(*)化为5·3n+23=13,即3n=1,解得n=0.当m≥4时,2m-3≥13,左边>右边,(*)无非负整数解.综上可知:方程2m·3n-3n+1+2m=13的非负整数解(m,n)=(3,0),(2,2).故答案为(3,0),(2,2).19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.【答案】(-3,0)【解析】令()x=t,∵方程有正根,∴t∈(0,1).方程转化为t2+2t+a=0,∴a=1-(t+1)2.∵t∈(0,1),∴a∈(-3,0).20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<【答案】A【解析】由题意可得≤3x≤33,再根据函数y=3x在R上是增函数,可得-≤x<3,故选A.21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( )A.a>0B.a>1C.a<1D.0<a<1【答案】D【解析】∵f(-2)=a2,f(-3)=a3.f(-2)>f(-3),即a2>a3,故0<a<1.选D.22.不等式<2-2x的解集是________.【答案】{x|x>3,或x<-1}【解析】原不等式化为<()2x,又y=()x为减函数,故x2-3>2x,解得{x|x>3,或x<-1}.23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)【答案】B【解析】设u=(x+3)2,y=()u,∵u=(x+3)2在(-∞,-3]上递减,在[-3,+∞)上递增,而y=()u在R上递减,∴y=在[-3,+∞)上递减.24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( )A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)【答案】B【解析】由题意知函数为指数函数,且为实数集R上的增函数,所以底数1-2a>1,解得a<0.25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)【答案】D【解析】因为函数f(n)=是增函数,所以解得4<a<8.26.函数y=的递增区间是________.【答案】[2,+∞)【解析】函数y=的单调递增区间即为y=x2-4x+3的单调递增区间,∵y=x2-4x+3的单调递增区间为[2,+∞),故答案为[2,+∞).27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.【答案】(1)a=1,得f(x)=,∵∈(0,1),∴f(x)的外层函数是一个递减的指数函数;令t=x2-4x+3,则其减区间为(-∞,2),增区间为(2,+∞).∴f(x)的增区间为(-∞,2),减区间为(2,+∞)(2)∵f(x)有最大值为3,∈(0,1),函数t=ax2-4x+3有最小值-1,∴函数t=ax2-4x+3在区间(-∞,)上是减函数,在区间(,+∞)上是增函数由此可得,a>0且f()==3,得-+3=-1,解之得a=1.综上所述,当f(x)有最大值3时,a的值为1.28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.4【答案】B【解析】y=a x(a>1)在[1,2]上是增函数,最大值为a2,最小值为a1,所以a2-a1=2,解得a=2或a=-1(舍).29.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.【答案】令3x=t,∵-1≤x≤1,∴≤t≤3,∴y=t2-2t-1=(t-1)2-2(其中≤t≤3).∴当t=1时(即x=0时),y取得最小值-2,当t=3时(即x=1时),y取得最大值2. 30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.【答案】(1)∵t=3x在[-1,2]是单调增函数,∴t max=32=9,t min=3-1=.(2)令t=3x,∵x∈[-1,2],∴t∈[,9],原方程变为:f(x)=t2-2t+4,∴f(x)=(t-1)2+3,t∈[,9],∴当t=1时,此时x=0,f(x)min=3,当t=9时,此时x=2,f(x)max=67.题组10 与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称【答案】A【解析】设函数y=f(x)=,则此函数的定义域为R.f(-x)===-f(x),故函数是奇函数,故它的图象关于原点O对称,故选A.32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a2【答案】B【解析】∵f(x)是奇函数,g(x)是偶函数,∴由f(x)+g(x)=ax-a-x+2,①得f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2,②①+②,得g(x)=2,①-②,得f(x)=ax-a-x.又g(2)=a,∴a=2,∴f(x)=2x-2-x,∴f(2)=22-2-2=.33.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.【答案】(1)由已知得∴k=1,a=,∴f(x)=2x.(2)函数g(x)为奇函数.证明:g(x)=,其定义域为R,又g(-x)===-=-g(x),∴函数g(x)为奇函数.。
• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
专题3.5 指数与指数函数(真题测试)一、单选题1.(2007·山东·高考真题(理))已知集合{}1,1M =-,11|24,Z 2x N x x +⎧⎫=<<∈⎨⎬⎩⎭,则MN =A .{}1,1-B .{}1-C .{}0D .{}1,0-2.(2022·北京·高考真题)己知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+=D .1()()3f x f x --=3.(2012·四川·高考真题(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .4.(2014·江西·高考真题(文))已知函数f (x )=2,0,2,0x xa x x -⎧⋅≥⎨<⎩(a ∈R ),若((1))1f f -=,则a =( ) A .14B .12C .1D .25.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .6.(2013·全国·高考真题(文))若存在正数x 使2x (x -a )<1成立,则a 的取值范围是 A .(-∞,+∞)B .(-2, +∞)C .(0, +∞)D .(-1,+∞)7.(2015·山东·高考真题(文))设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是 A .a b c <<B .a cb << C .b ac <<D .b c a <<8.(2014·陕西·高考真题(文))下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()3f x x =B .()3xf x =C .()23f x x = D .()12xf x ⎛⎫= ⎪⎝⎭二、多选题9.(2021·江苏·南京市中华中学高三期中)已知a b >,0ab ≠,则( ) A .a b >B .1133a b -->C .33a b >D .11a b< 10.(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .11.(2022·山东潍坊·高三期末)已知函数x x x xe ef xe e,则下列结论中正确的是( )A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在定义域上是减函数D .()f x 无最小值,无最大值12.(2022·全国·高三专题练习)已知函数2,0(),2,0x xa x f x a R a x -⎧-+<=∈⎨->⎩,下列结论正确的是( ) A .()f x 为奇函数B .若()f x 在定义域上是增函数,则1a ≤C .若()f x 的值域为R ,则1a <D .当1a ≤时,若()(34)0f x f x ++>,则(1,0)(0,)x ∈-+∞ 三、填空题13.(2022·全国·高三专题练习)函数()f x =的定义域为______.14.(2012·山东·高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =______.15.(2015·山东·高考真题(理))已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________.16.(2022·浙江·乐清市知临中学模拟预测)设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.四、解答题17.(2021·新疆·伊宁市第一中学高三期中(理))若(1)()42(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,求实数a 的取值范围.18.(2021·福建龙岩·高三期中)已知()2221x m f x -=++是奇函数. (1)求m 的值;(2)求()f x 的值域.19.(2021·福建·永安市第三中学高中校高三期中)已知指数函数()(0xf x a a =>且1)a ≠的图象过点129⎛⎫ ⎪⎝⎭,.(1)求函数()xf x a =的解析式;(2)已知()()1f x f >,求x 的取值范围;20.(2021·安徽省六安中学高三阶段练习(文))已知函数()()33xf x k a b ⋅=++-(0a >,且1a ≠)是指数函数.(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-.21.(2021·重庆市涪陵高级中学校高三阶段练习)设()e e x x f x -=-()R x ∈.(1)判断并证明函数()y f x =的奇偶性;(2)解不等式()()22f x f x -≤.22.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.专题3.5 指数与指数函数(真题测试)一、单选题1.(2007·山东·高考真题(理))已知集合{}1,1M =-,11|24,Z 2x N x x +⎧⎫=<<∈⎨⎬⎩⎭,则MN =A .{}1,1-B .{}1-C .{}0D .{}1,0-【答案】B 【解析】 【分析】利用指数函数的单调性化简集合N ,然后利用交集的定义运算即得. 【详解】函数2x y =是增函数,则不等式11242x +<<,即112222x -+<< ∴112,x -<+<即21x -<<,所以{}{}|21,Z 1,0N x x x =-<<∈=-,又{}1,1M =-, ∴{}1.M N ⋂=- 故选:B.2.(2022·北京·高考真题)己知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+= D .1()()3f x f x --=【答案】C 【解析】 【分析】直接代入计算,注意通分不要计算错误. 【详解】()()1121112121212x x x x xf x f x --+=+=+=++++,故A 错误,C 正确;()()11212121121212122121x x x x x x x xf x f x ----=-=-==-++++++,不是常数,故BD 错误; 故选:C .3.(2012·四川·高考真题(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A . B .C .D .【答案】C 【解析】 【分析】对a 进行分类讨论,结合指数函数的单调性以及函数图像平移变换,即可得出答案. 【详解】①当1a >时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于1a >,则A 错误; 又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故B 错误;②当01a <<时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于01a <<,则D 错误;又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故C 正确; 故选:C4.(2014·江西·高考真题(文))已知函数f (x )=2,0,2,0x xa x x -⎧⋅≥⎨<⎩(a ∈R ),若((1))1f f -=,则a =( ) A .14B .12C .1D .2【答案】A 【解析】 【分析】先求出(1)f -的值,再求((1))f f -的值,然后列方程可求得答案【详解】解:由题意得(1)(1)22f ---==,所以2((1))(2)241f f f a a -==⋅==,解得a =14.故选:A5.(2018·全国·高考真题(文))函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.(2013·全国·高考真题(文))若存在正数x 使2x (x -a )<1成立,则a 的取值范围是 A .(-∞,+∞) B .(-2, +∞)C .(0, +∞)D .(-1,+∞)【答案】D 【解析】由题意知,存在正数x ,使12xa x >-,所以,而函数12xy x =-在(0,)+∞上是增函数,所以(0)1y y >=-,所以1a >-,故选D.7.(2015·山东·高考真题(文))设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是 A .a b c << B . a c b << C .b a c << D .b c a <<【答案】C 【解析】 【详解】由0.6x y =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C . 8.(2014·陕西·高考真题(文))下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()3f x x =B .()3xf x =C .()23f x x = D .()12xf x ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【详解】试题分析:A 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()3x y f x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3xf x =是定义在R 上增函数,所以B 正确;C 选项:由()()23f x y x y +=+,()()f x f y 2233x y =⋅23()xy =,得()()()f x y f x f y +≠,所以C 错误;D 选项:函数()12xf x ⎛⎫= ⎪⎝⎭是定义在R 上减函数,所以D 错误;故选B.二、多选题9.(2021·江苏·南京市中华中学高三期中)已知a b >,0ab ≠,则( ) A .a b >B .1133a b -->C .33a b >D .11a b< 【答案】BC 【解析】对A ,D 可取反例;对B ,C 可利用函数的单调性判断; 【详解】对A ,取1,2a b ==-,则||||a b >不成立,故A 错误; 对B ,11a b a b >⇒->-,∴1133a b -->,故B 成立;对C ,33a b a b >⇒>,故C 成立; 对D ,取1,1a b ==-,11a b<不成立; 故选:BC10.(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .【答案】AC 【解析】【分析】依题意可得a 、b 两个数一个大于1,一个大于0且小于1,再分类讨论,结合指数函数的性质判断即可; 【详解】解:令()()()0f x x a x b =--=,解得1x a =、2x b =,根据二次函数图形可知,a 、b 两个数一个大于1,一个大于0且小于1,①当1a >,01b <<时,则()x g x a b =-在定义域上单调递增,且()001g a b b =-=-,即()001g <<,所以满足条件的函数图形为C ;②当1b >,01a <<时,则()x g x a b =-在定义域上单调递减,且()0010g a b b =-=-<,所以满足条件的函数图形为A ; 故选:AC11.(2022·山东潍坊·高三期末)已知函数x x x xe ef x e e,则下列结论中正确的是( )A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在定义域上是减函数D .()f x 无最小值,无最大值 【答案】BD 【解析】 【分析】求解0x x e e --≠,可判断A ;利用函数奇偶性的定义可判断B ;比较(1),(1)f f -可判断C ;分离常数得到2211x f x e ,分析单调性及函数值域可判断D【详解】选项A ,0x x e e --≠,解得0x ≠,故()f x 的定义域为{|0}x x ≠,选项A 错误;选项B ,函数定义域关于原点对称,且()()x x x x e ef x f x e e --+-==--,故()f x 是奇函数,选项B 正确;选项C ,()121212121110,(1)011e e e e e ef f e e e e e e ----++++-==<==>----,故(1)(1)f f -<,即()f x 在定义域上不是减函数,选项C 不正确;选项D ,()22212111x x x x x x x e e e f x e e e e --++===+---,令20x t e =>,211y t =+-,由于2x t e =在R 上单调递增,211y t =+-在(0,1),(1,)+∞分别单调递减,故函数()f x 在(,0),(0,)-∞+∞分别单调递减,且x →-∞时,()1f x →-,0x -→时,()f x →-∞,0x +→时,()f x →+∞,x →+∞时,()1f x →,故函数()f x 的值域为(,1)(1,-∞-⋃+∞),无最小值,无最大值,选项D 正确故选:BD12.(2022·全国·高三专题练习)已知函数2,0(),2,0x xa x f x a R a x -⎧-+<=∈⎨->⎩,下列结论正确的是( )A .()f x 为奇函数B .若()f x 在定义域上是增函数,则1a ≤C .若()f x 的值域为R ,则1a <D .当1a ≤时,若()(34)0f x f x ++>,则(1,0)(0,)x ∈-+∞ 【答案】ABD 【解析】 【分析】分段函数奇偶性判断需要分段判断,分段函数的单调性需要列两段分别单调,衔接处单调即可. 【详解】当0x <时,0x ->,()2,()2(2)()x x x f x a f x a a f x ---=-+-=-=--+=-;当0x >时,0x -<,()2,()2()x x f x a f x a f x =--=-+=-.则函数()f x 为奇函数,故A 正确;若()f x 在定义域上是增函数,则0022a a --+≤-,即1a ≤,故B 正确;当0x <时,()2xf x a -=-+在区间(,0)-∞上单调递增,此时值域为(,1)a -∞-;当0x >时,()2x f x a =-在区间()0,∞+上单调递增,此时值域为(1,)a -+∞.要使得()f x 的值域为R ,则11a a ->-,即1a >,故C 错误;当1a ≤时,由于0022a a --+≤-,则函数()f x 在定义域上是增函数,由()(34)0f x f x ++>,得()(34)f x f x >--,则034034x x x x ≠⎧⎪--≠⎨⎪>--⎩解得(1,0)(0,)x ∈-+∞,故D 正确.故选:ABD. 三、填空题13.(2022·全国·高三专题练习)函数()f x =的定义域为______.【答案】[)()0,11,+∞【解析】【分析】结合分式型,二次根号型函数的定义即可求解. 【详解】由题知,021********x xx x x x x ⎧⎧≥-≥≥⎧⎪⎪⇒⇒⎨⎨⎨≠-≠-≠≠⎪⎪⎩⎩⎩且,所以()f x 的定义域为[)()0,11,+∞,故答案为:[)()0,11,+∞.14.(2012·山东·高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =______.【答案】14【解析】 【详解】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x = 不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意15.(2015·山东·高考真题(理))已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________. 【答案】32-【解析】 【详解】若1a > ,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+= ,此方程组无解; 若01a << ,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=- ,解得1{22a b ==- ,所以32a b +=-. 16.(2022·浙江·乐清市知临中学模拟预测)设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______. 【答案】[1,2]【解析】 【分析】由1x >,求得()f x 的范围,再求得||()2x a f x -=的单调性,讨论1a <,1a 时函数()f x 在1x 的最大值,即可得到所求范围. 【详解】解:因为()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,当1x >时()112f x x =-+函数单调递减且()12f x <,当1x ≤时()122x ax af x ---⎛⎫== ⎪⎝⎭,可得在x a >时函数单调递减,在x a <单调递增,若1a <,1x ,则()f x 在x a =处取得最大值,不符题意; 若1a ,1x ,则()f x 在1x =处取得最大值,且11122a -⎛⎫≥⎪⎝⎭,解得12a , 综上可得a 的范围是[]1,2. 故答案为:[]1,2 四、解答题17.(2021·新疆·伊宁市第一中学高三期中(理))若(1)()42(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,求实数a 的取值范围. 【答案】[4,8). 【解析】 【分析】根据分段函数的单调性的判定方法,列出不等式组,即可求解. 【详解】由题意,函数(1)()42(1)2xa x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则满足114024122a a a a⎧⎪>⎪⎪->⎨⎪⎪⎛⎫-⨯+≤ ⎪⎪⎝⎭⎩,解得48a ≤<, 所以实数a 的取值范围[4,8).18.(2021·福建龙岩·高三期中)已知()2221x m f x -=++是奇函数. (1)求m 的值; (2)求()f x 的值域. 【答案】(1)-2 (2)11-(,) 【解析】【分析】(1)因为()f x 为奇函数,且在0x =处有意义,所以()00f =,便可求出m 的值;(2)在(1)的前提下,对于复合函数分解成若干基本初等函数,然后逐个求其值域,从而求出()f x 的值域. (1)因为()f x 为奇函数,所以()00f =,即2022m +=,解得2m =-. 经检验:当2m =-时,()f x 为奇函数; (2)由(1)知()2121xf x -=-+,因为211x -+∈+∞(,), 所以20221x -∈+(,),于是()11f x ∈-(,),因此()f x 的值域为11-(,). 19.(2021·福建·永安市第三中学高中校高三期中)已知指数函数()(0xf x a a =>且1)a ≠的图象过点129⎛⎫ ⎪⎝⎭,.(1)求函数()xf x a =的解析式;(2)已知()()1f x f >,求x 的取值范围;【答案】(1)()13xf x ⎛⎫= ⎪⎝⎭(2)()1,1- 【解析】 【分析】(1)将点129⎛⎫ ⎪⎝⎭,代入()(0xf x a a =>且1)a ≠,解之即可得出答案;(2)根据指数函数的单调性即可得出答案. (1)解:将点129⎛⎫ ⎪⎝⎭,代入()(0xf x a a =>且1)a ≠,得:219a =,解得13a =,所以()13xf x ⎛⎫= ⎪⎝⎭;(2)因为1013<<,所以函数()13xf x ⎛⎫= ⎪⎝⎭为减函数,由()()1f x f >,得1x <,解得11x -<<, 所以()()1f x f >的解为()1,1-.20.(2021·安徽省六安中学高三阶段练习(文))已知函数()()33xf x k a b ⋅=++-(0a >,且1a ≠)是指数函数.(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-. 【答案】(1)2k =-,3b = (2)答案见解析 【解析】 【分析】(1)根据指数函数的定义列出方程,即可得解;(2)分1a >和01a <<两种情况讨论,结合指数函数的单调性即可得解. (1)解:因为()()33x f x k a b =++-(0a >,且1a ≠)是指数函数, 所以31k +=,30b -=, 所以2k =-,3b =; (2)解:由(1)得()xf x a =(0a >,且1a ≠),①当1a >时,()xf x a =在R 上单调递增,则由()()2743f x f x ->-, 可得2743x x ->-,解得2x <-;②当01a <<时,()xf x a =在R 上单调递减,则由()()2743f x f x ->-, 可得2743x x -<-,解得2x >-,综上可知,当1a >时,原不等式的解集为(),2-∞-; 当01a <<时,原不等式的解集为()2,-+∞.21.(2021·重庆市涪陵高级中学校高三阶段练习)设()e e x xf x -=-()R x ∈.(1)判断并证明函数()y f x =的奇偶性;(2)解不等式()()22f x f x -≤.【答案】(1)奇函数,证明见解析; (2)[]1,2- 【解析】 【分析】(1)利用函数奇偶性的定义判断证明即可;(2)根据指数函数单调性以及函数单调性的性质判断()y f x =的单调性,再由单调性去掉f 转化为解一元二次不等式即可求解. (1)()e e x x f x -=-是R 上的奇函数,证明如下:()e e x x f x -=-的定义域为R 关于原点对称,()()()e e e e x x x x f x f x ---=-=--=-,所以()e e x xf x -=-是R 上的奇函数.(2)因为e x y =为R 上的增函数,1ee xxy -==为R 上的减函数, 所以()e e x xf x -=-为R 上的增函数,若()()22f x f x -≤,则22x x -≤即220x x --≤,可得()()210x x -+≤,解得:12x -≤≤,所以不等式()()22f x f x -≤的解集为:[]1,2-.22.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围. 【答案】(1)证明见解析(2)[]4,4- 【解析】 【分析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令33x x t -=-,根据x 的范围,可得t 的范围,原式等价为()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,只需()min 4h t ≥-即可,分别讨论823m -≤-、88323m -<-<和823m -≥三种情况,根据二次函数的性质,计算求值,分析即可得答案. (1)由已知可得()f x 的定义域为R , 任取12,x x ∈R ,且12x x <,则()()12f x f x -()()1122121121333331313x x x x x x x x x ---+⎛⎫=---=-+ ⎪⎝⎭,因为130x >,121103x x ++>,21130x x --<,所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数. (2)()()()()223333x x x xf x mf x m --⎡⎤+=-+-⎣⎦,令33x x t -=-,则当[]1,1x ∈-时,88,33t ⎡⎤∈-⎢⎥⎣⎦,所以()()22f x mf x t mt ⎡⎤+=+⎣⎦.令()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,则只需()min 4h t ≥-. 当823m -≤-,即163m ≥时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递增, 所以()min 86484393h t h m ⎛⎫=-=-≥- ⎪⎝⎭,解得256m ≤,与163m ≥矛盾,舍去;当88323m -<-<,即161633m -<<时,()h t 在8,32m ⎡⎤--⎢⎥⎣⎦上单调递减,在8,23m ⎡⎤-⎢⎥⎣⎦上单调递增,所以()2min424m m h t h ⎛⎫=-=-≥- ⎪⎝⎭,解得44m -≤≤;当823m -≥即163m ≤-时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递减, 所以()min 86484393h t h m ⎛⎫==+≥- ⎪⎝⎭,解得256m ≥-,与163m ≤-矛盾,舍去. 综上,实数m 的取值范围是[]4,4-.。
第三章 §3 第1课时A 组·素养自测一、选择题1.下列各函数中,是指数函数的是( D ) A .y =x 3B .y =1xC .y =5x +1D .y =52x[解析] 根据指数函数的定义:形如y =a x(a >0,且a ≠1)的函数叫作指数函数,结合选项从而可知y =52x=25x为指数函数,故选D .2.函数y =(3-1)x在R 上是( D ) A .增函数 B .奇函数 C .偶函数D .减函数[解析] ∵0<3-1<1,∴函数y =(3-1)x在R 上是减函数. 3.函数y =1-2x,x ∈[0,1]的值域是( B ) A .[0,1]B .[-1,0]C .⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎦⎥⎤-12,0 [解析] ∵0≤x ≤1,∴1≤2x≤2, ∴-1≤1-2x≤0,选B .4.函数f (x )=πx与g (x )=⎝ ⎛⎭⎪⎫1πx的图象关于( C ) A .原点对称 B .x 轴对称 C .y 轴对称D .直线y =-x 对称[解析] 设点(x ,y )为函数f (x )=πx的图象上任意一点,则点(-x ,y )为g (x )=π-x=⎝ ⎛⎭⎪⎫1πx的图象上的点.因为点(x ,y )与点(-x ,y )关于y 轴对称,所以函数f (x )=πx 与g (x )=⎝ ⎛⎭⎪⎫1πx的图象关于y 轴对称,选C . 5.已知1>n >m >0,则指数函数①y =m x,②y =n x的图象为( C )[解析] 由于0<m <n <1,所以y =m x 与y =n x都是减函数,故排除A 、B 项,作直线x =1与两个曲线相交,交点在下面的是函数y =m x的图象,故选C .6.若12<⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a<1,则( D )A .a <b <0B .b >a >1C .0<b <a <1D .0<a <b <1[解析] ∵y =⎝ ⎛⎭⎪⎫12x 在R 上是减函数,12<⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a <1=⎝ ⎛⎭⎪⎫120,∴0<a <b <1.二、填空题7.若函数y =(k +2)a x+2-b (a >0,且a ≠1)是指数函数,则k =__-1__,b =__2__.[解析] 根据指数函数的定义,得⎩⎪⎨⎪⎧k +2=12-b =0,解得⎩⎪⎨⎪⎧k =-1b =2. 8.函数y =2(a -1)x是刻画指数衰减变化规律的模型,则a 的取值范围是__(1,2)__. [解析] 由题意得0<a -1<1,∴1<a <2. 三、解答题 9.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12,其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析] (1)因为函数图象过点⎝ ⎛⎭⎪⎫2,12, 所以a2-1=12,则a =12. (2)由(1)得f (x )=⎝ ⎛⎭⎪⎫12x -1(x ≥0).由x ≥0,得x -1≥-1,于是0<⎝ ⎛⎭⎪⎫12x -1≤⎝ ⎛⎭⎪⎫12-1=2.所以所求函数的值域为(0,2].10.求下列函数的定义域和值域. (1)y =35x -1;(2)y =2x +1.[解析] (1)由5x -1≥0,得x ≥15.故所求函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≥15.由5x -1≥0,得y ≥1.故所求函数值域为{y |y ≥1}. (2)所求函数定义域为R , 由2x>0,可得2x+1>1. 故所求函数值域为{y |y >1}.B 组·素养提升一、选择题1.函数y =a |x |(a >1)的图象是( B )[解析] ∵y =a |x |为偶函数,∴其图象关于y 轴对称,当x >0时,y >1,与y =a x(a >1)的图象一致,故选B .2.定义运算a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (b <a ),如1*2=1,则函数f (x )=2x *2-x的值域是( D )A .(0,1)B .(0,+∞)C .[1,+∞)D .(0,1][解析] 由题意知函数f (x )的图象如图,∴函数的值域为(0,1],故选D .3.(多选题)函数y =a x-1a(a >0,a ≠1)的图象可能是( CD )[解析] 当a >1时,1a ∈(0,1),因此x =0时,0<y =1-1a <1,且y =a x-1a在R 上单调递增,故C 符合;当0<a <1时,1a >1,因此x =0时,y <0,且y =a x-1a在R 上单调递减,故D 符合.故选CD .4.(多选题)设指数函数f (x )=a x(a >0且a ≠1),则下列等式中不正确的有( CD ) A .f (x +y )=f (x )f (y )B .f (x -y )=f (x )f (y )C .f (nx )=nf (x )(n ∈Q )D .[f (xy )]n =[f (x )]n [f (y )]n (n ∈N *)[解析] f (x +y )=ax +y=a x a y=f (x )f (y ),A 正确;f (x -y )=a x -y=a x a -y=a x a y =f (x )f (y ),B 正确;f (nx )=a nx =(a x )n ,nf (x )=na x ≠(a x )n ,C 不正确;[f (xy )]n=(a xy )n,[f (x )]n[f (y )]n=(a x )n(a y )n=(a x +y )n≠(a xy )n,D 不正确.二、填空题5.已知y =f (x )是R 上的奇函数,当x >0时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-12=__-2__.[解析] 因为当x >0时,f (x )=4x,所以f ⎝ ⎛⎭⎪⎫12=412=2. 又因为f (x )是R 上的奇函数,所以f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-2.6.已知a >0,且a ≠1,若函数f (x )=2a x-4在区间[-1,2]上的最大值为10,则a =或17__. [解析] 若a >1,则函数y =a x在区间[-1,2]上是递增的,当x =2时,f (x )取得最大值f (2)=2a 2-4=10,即a 2=7,又a >1,所以a =7. 若0<a <1,则函数y =a x在区间[-1,2]上是递减的,当x =-1时,f (x )取得最大值f (-1)=2a -1-4=10,所以a =17.综上所述,a 的值为7或17.7.若函数f (x )=a x-1(a >0且a ≠1)的定义域、值域都是[0,2],则实数a 的值为__.[解析] 当a >1时,由题意得⎩⎪⎨⎪⎧f (0)=0f (2)=a 2-1=2,解得a =3. 当0<a <1时,由题意得⎩⎪⎨⎪⎧f (0)=2f (2)=a 2-1=0,无解. 综上可知a =3. 三、解答题8.函数f (x )=k ·a -x(k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8). (1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-1f (x )+1,试判断函数g (x )的奇偶性,并给出证明.[解析] (1)由已知得⎩⎪⎨⎪⎧k =1,k ·a -3=8, ∴k =1,a =12,∴f (x )=2x.(2)函数g (x )为奇函数.证明:g (x )=2x-12x +1,其定义域为R ,又g (-x )=2-x-12-x +1=1-2x 1+2x =-2x-12x+1=-g (x ), ∴函数g (x )为奇函数.9.已知函数f (x )=a x(a >0且a ≠1)在区间[-2,2]上的函数值总小于2,求a 的取值范围.[解析] 当a >1时,f (x )=a x在[-2,2]上是增函数, 则f (x )max =f (2)=a 2<2,所以1<a <2; 当0<a <1时,f (x )=a x在[-2,2]上是减函数, 则f (x )max =f (-2)=a -2<2,所以22<a <1. 综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫22,1∪(1,2).。
一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C .21y x =-与1y x =-D .lg y x =与21lg 2y x =2.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.已知函数()()3,<1log ,1a a x a x f x x x ⎧--=⎨≥⎩的值域..是R ,那么实数a 的取值范围是( ) A .31,2⎛⎤ ⎥⎝⎦B .()1,+∞C .()()0,11,3D .3,32⎡⎫⎪⎢⎣⎭5.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞D .()5,1[1,)3-∞-6.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<7.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)8.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .129.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--10.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c11.函数2()ln(43)f x x x =+-的单调递减区间是( )A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<.14.函数()log 31a y x =+-.(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny ++=上(其中m ,0n >),则12m n+的最小值等于__________. 15.设函数2()ln(1)f x x x =+,若()23(21)0f a f a +-<,则实数a 的取值范围为_____.16.函数()()cos1log sin f x x =的单调递增区间是____________. 17.函数()()212log 56f x x x =-+的单调递增区...间是__________. 18.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.已知函数122()log 2xf x x-=+. (1)求函数()f x 的定义域,并判断其奇偶性;(2)判断()f x 在其定义域上的单调性,并用单调性定义证明. 23.已知函数()421()x x f x a a R =-+⋅-∈. (1)当1a =时,求()f x 的值域; (2)若()f x 在区间[]1,0-的最大值为14-,求实数a 的值. 24.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.25.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+. (1)若2m =-,求AB ;(2)若A B A ⋃=,求实数m 的取值范围.26.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数; C.y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.A解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤,由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.A解析:A 【分析】当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,从而可得答案. 【详解】由题意,()f x 的值域为R ,当0<a <1时,当1≥x 时,log 0a y x =≤,所以当1x <时,()3y a x a =--的值域必须要包含()0,+∞,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 所以不满足()f x 的值域为R .当1a >时,当1≥x 时,[)log 0a y x =∈+∞,, 所以当1x <时,()3y a x a =--的值域必须要包含()0-∞,, 若3a =时,当1x <时,3y a =-=-,不满足()f x 的值域为R .若3a >时,当1x <时,()3y a x a =--单调递减,()332y a x a a =-->- 所以不满足()f x 的值域为R .若13a <<时,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 要使得()f x 的值域为R ,则320a -≥,即32a ≤ 所以满足条件的a 的取值范围是:312a <≤, 故选:A .【点睛】关键点睛:本题考查根据函数的值域求参数的范围,解答本题的关键是当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,属于中档题. 5.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.6.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<, 故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.7.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.8.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4xf f x -=,所以()341mf m m m =+=⇒= 则()31xf x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx =时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.9.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.10.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.11.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确;④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--, 又1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确. 故答案为:①③④【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1);(2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0),解题时注意整体思想的应用.14.8【分析】根据函数平移法则求出点得再结合基本不等式即可求解【详解】由题可知恒过定点又点在直线上故当且仅当时取到等号故的最小值等于8故答案为:8【点睛】本题考查函数平移法则的使用基本不等式中1的妙用属 解析:8【分析】根据函数平移法则求出点A ()2,1--,得21m n +=,再结合基本不等式即可求解【详解】由题可知,()log 31a y x =+-恒过定点()2,1--,又点A 在直线 10mx ny ++=上,故21m n +=,()121242448n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当122n m ==时取到等号,故12m n+的最小值等于8 故答案为:8【点睛】本题考查函数平移法则的使用,基本不等式中“1”的妙用,属于中档题15.【分析】根据已知可得为奇函数且在上单调递增不等式化为转化为关于自变量的不等式即可求解【详解】的定义域为是奇函数设为增函数在为增函数在为增函数在处连续的所以在上单调递增化为等价于即所以实数的取值范围为 解析:1(1,)3- 【分析】根据已知可得()f x 为奇函数且在R 上单调递增,不等式化为()23(12)f a f a <-,转化为关于自变量的不等式,即可求解.【详解】()f x 的定义域为R ,()()))ln10f x f x x x +-=+==,()f x ∴是奇函数,设,[0,)()x u x x =∈+∞为增函数,()f x 在[0,)+∞为增函数,()f x 在(,0)-∞为增函数,()f x 在0x =处连续的,所以()f x 在R 上单调递增,()23(21)0f a f a +-<,化为()23(12)f a f a <-,等价于2312a a <-,即213210,13a a a +-<-<<, 所以实数a 的取值范围为1(1,)3-.故答案为: 1(1,)3-【点睛】本题考查利用函数的单调性和奇偶性解不等式,熟练掌握函数的性质是解题的关键,属于中档题. 16.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题 解析:[2,2),()2k k k Z ππππ++∈ 【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果.【详解】()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >, 所以22,()2k x k k Z ππππ+≤<+∈, 故答案为:[2,2),()2k k k Z ππππ++∈【点睛】 本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题. 17.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间.【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >. 所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞. 故答案为:(),2-∞.【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.18.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可.【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-,故()f x 关于1x =对称;又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-,故可得()()()()4222f x f x f x f x +=++=-+=,故函数()f x 是周期为4的函数.则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-, 则()()()()()320191131e f f f e f e f e e -=-=--=--=-.故答案为:31e e --.【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期. 19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集.【详解】当1x ≤时,1()2x f x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞.故答案为:[)0,+∞.【点睛】 本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题 解析:81,3⎛⎫ ⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+- 31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<, 即8log log 3x x x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭ 故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.22.(1)定义域为(2,2)-,奇函数(2)函数()f x 在(2,2)-上为增函数,证明见解析【分析】(1)根据真数大于0可得定义域,根据奇函数的定义可得函数为奇函数;(2)设1222x x -<<<,根据对数函数的单调性可得12()()f x f x <,再根据定义可证函数()f x 在(2,2)-上为增函数.【详解】(1)由函数有意义得202x x->+,解得22x -<<, 所以函数的定义域为(2,2)-, 因为1112222()log log ()22x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭, 所以函数为奇函数.(2)因为124()log 12f x x ⎛⎫=-+⎪+⎝⎭,所以函数()f x 在(2,2)-上为增函数, 证明:设1222x x -<<<,则120224x x <+<+<,则1244122x x >>++,则124411022x x -+>-+>++, 因为1012<<,所以12()()f x f x <,所以函数()f x 在(2,2)-上为增函数, 【点睛】思路点睛:判断函数的奇偶性的思路:①求出定义域,并判断其是否关于原点对称;②若定义域不关于原点对称,则函数为非奇非偶函数,若定义域关于原点对称,再判断()f x -与()f x 的关系,若()()f x f x -=-,则函数为奇函数;若()()f x f x -=,则函数为偶函数.23.(1)3,4⎛⎤-∞- ⎥⎝⎦;(2)a =【分析】(1)令()20,xt =∈+∞,可得21y t t =-+-,利用二次函数的性质可求出; (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,可得21y t at =-+-,讨论对称轴2a t =的取值范围结合二次函数的性质即可求出.【详解】(1)()2()421221x x x x f x a a =-+⋅-=-+⋅-.令()20,xt =∈+∞,21y t at =-+-,1a =时,2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. ∴当12t =时,max 34y =-,∴3,4y ⎛⎤∈-∞- ⎥⎝⎦, 所以()f x 的值域为3,4⎛⎤-∞- ⎥⎝⎦. (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,22211124a y t at t a ⎛⎫=-+-=---+ ⎪⎝⎭, 其图象的对称轴为2a t =. ①当122a ≤,即1a ≤时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, 当12t =时,max 1111424y a =-+-=-,解得2a =,与1a ≤矛盾; ②当12a ≥,即2a ≥时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增, 当1t =时,max 1114y a =-+-=-,解得74a =,与2a ≥矛盾, ③当1122a <<,即12a <<时,函数y 在1,22a ⎡⎤⎢⎥⎣⎦上单调递增,在,12a ⎡⎤⎢⎥⎣⎦上单调递减.当2a t =时,2max 11144y a =-=-,解得a =,舍去a =综上,a =【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路;(1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b +的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.24.(1)(5,5)- (2)奇函数,见解析【分析】(1)若()f x 有意义,则需满足505x x->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可.【详解】(1)由题,则505x x->+,解得55x -<<,故定义域为()5,5-(2)奇函数,证明:由(1),()f x 的定义域关于原点对称,因为()()33355log log log 1055x x f x f x x x +--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明.25.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞ 【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案.(2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案.【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤, 故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆, 当B =∅时,213m m -≥+,解得4m ≥;当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤. 综上所述:[][)1,24,m ∈-+∞.【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力. 26.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =- 【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可. 【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121x a f x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121x x x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x x x f x f x -----=--=-=-=+++.故()2121x x f x -=+ (2) 先求解4|()|5f t =,此时()214215t t f t -==±+. 当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==. 因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-. 故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =-【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题.。
高中数学-指数与指数函数练习题1、已知 1.22a =,0.81()2b -=,52log 2c =,则,,a b c 的大小关系为( ) A.c b a <<B.c a b <<C.b a c <<D.b c a <<2、不论a 为何值时,函数(1)22x a y a =--恒过定点,则这个定点的坐标是( ) A.1(1,)2-B.1(1,)2C.1(1,)2--D.1(1,)2-3、已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为log 26a +,则a 的值为( ) A.12B.14C.2D.44、若函数()(1)(0,1)x x f x k a a a a -=-->≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是下图中的( )5、已知函数,0()(3)4,0x a x f x a x a x ⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是________.6、若函数2,0()2,0xx x f x x -⎧<⎪=⎨->⎪⎩,则函数[()]y f f x =的值域是________.7、已知2()f x x =,1()()2x g x m =-,若对1[1,3]x ∀∈-,2[0,2]x ∃∈,12()()f x g x ≥,则实数m 的取值范围是________.8、已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求,a b 的值; (2)解关于t的不等式22(2)(21)0f t t f t -+-<.9、定义在[1,0)(0,1]-⋃上的奇函数()f x ,已知当[1,0)x ∈-时,1()()42x xaf x a R =-∈.(1)求()f x 在(0,1]上的最大值;(2)若()f x 是(0,1)上的增函数,求实数a 的取值范围.10、已知定义在R 上的函数||1()22x x f x =-.(1)若3()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.答案——指数与指数函数1、已知 1.22a =,0.81()2b -=,52log 2c =,则,,a b c 的大小关系为( ) A.c b a <<B.c a b <<C.b a c <<D.b c a <<解:a =21.2>2,而b =⎝ ⎛⎭⎪⎫12-0.8=20.8,所以1<b <2,c =2log 52=log 54<1,所以c <b <a .答案 A2、不论a 为何值时,函数(1)22x a y a =--恒过定点,则这个定点的坐标是( ) A.1(1,)2-B.1(1,)2C.1(1,)2--D.1(1,)2-解:y =(a -1)2x -a 2=a ⎝ ⎛⎭⎪⎫2x -12-2x ,令2x -12=0,得x =-1,则函数y =(a -1)2x-a 2恒过定点⎝ ⎛⎭⎪⎫-1,-12.答案 C3、已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为log 26a +,则a 的值为( ) A.12B.14C.2D.4解:由题意知f (1)+f (2)=log a 2+6,即a +log a 1+a 2+log a 2=log a 2+6,a 2+a -6=0,解得a =2或a =-3(舍). 答案 C4、若函数()(1)(0,1)x x f x k a a a a -=-->≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是下图中的( )解:函数f (x )=(k -1)a x -a -x 为奇函数,则f (0)=0,即(k -1)a 0-a 0=0,解得k =2,所以f (x )=a x -a -x ,又f (x )=a x -a -x 为减函数,故0<a <1,所以g (x )=log a (x +2)为减函数且过点(-1,0). 答案 A5、已知函数,0()(3)4,0x a x f x a x a x ⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是________. 解:对任意x 1≠x 2,都有1212()()0f x f x x x -<-成立,说明函数y =f (x )在R 上是减函数,则0<a <1,且(a -3)×0+4a ≤a 0,解得0<a ≤14. 答案 ⎝ ⎛⎦⎥⎤0,146、若函数2,0()2,0x x x f x x -⎧<⎪=⎨->⎪⎩,则函数[()]y f f x =的值域是________.解:当x >0时,有f (x )<0;当x <0时,有f (x )>0.故f (f (x ))=⎩⎨⎧ 2f x ,f x <0,-2-f x ,f x >0=⎩⎨⎧2-2-x ,x >0,-2-2x,x <0. 而当x >0时,-1<-2-x<0,则12<2-2-x <1.而当x <0时,-1<-2x <0,则-1<-2-2x <-12. 则函数y =f (f (x ))的值域是⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1答案 ⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,17、已知2()f x x =,1()()2x g x m =-,若对1[1,3]x ∀∈-,2[0,2]x ∃∈,12()()f x g x ≥,则实数m 的取值范围是________.解:x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122-m ,⎝ ⎛⎭⎪⎫120-m ,即g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m ,故m ≥14. 答案 ⎣⎢⎡⎭⎪⎫14,+∞8、已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求,a b 的值;(2)解关于t 的不等式22(2)(21)0f t t f t -+-<.解:(1)因为f (x )是奇函数,所以f (0)=0,即-1+b 2+a =0,解得b =1,所以f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a .解得a =2.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数(此外可用定义或导数法证明函数f (x )在R 上是减函数).又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫t ⎪⎪⎪t >1或t <-13. 9、定义在[1,0)(0,1]-⋃上的奇函数()f x ,已知当[1,0)x ∈-时,1()()42x xaf x a R =-∈. (1)求()f x 在(0,1]上的最大值;(2)若()f x 是(0,1)上的增函数,求实数a 的取值范围. 解:(1)设x ∈(0,1],则-x ∈[-1,0), f (-x )=14-x -a 2-x =4x-a ·2x , ∵f (-x )=-f (x ),∴f (x )=a ·2x -4x ,x ∈(0,1].令t =2x,t ∈(1,2],∴g (t )=a ·t -t 2=-⎝ ⎛⎭⎪⎫t -a 22+a24,当a2≤1,即a ≤2时,g (t )max 不存在;当1<a 2<2,即2<a <4时,g (t )max =g ⎝ ⎛⎭⎪⎫a 2=a 24;当a2≥2,即a ≥4时,g (t )max =g (2)=2a -4.综上,当a ≤2时,f (x )的最大值不存在;当2<a <4时,f (x )的最大值为a 24;当a ≥4时,f (x )的最大值为2a -4. (2)∵函数f (x )在(0,1)上是增函数,∴f ′(x )=a ln 2×2x -ln 4×4x =2x ln 2·(a -2×2x )≥0, ∴a -2×2x ≥0恒成立, ∴a ≥2×2x .∵2x ∈(1,2),∴a ≥4. 10、已知定义在R 上的函数||1()22x x f x =-. (1)若3()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围. 解:(1)当x <0时, f (x )=0,无解; 当x ≥0时,f (x )=2x -12x ,由2x-12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12, ∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t -1), ∵22t -1>0,∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5],故m 的取值范围是[-5,+∞).。
高中数学练习:指数与指数函数
基础巩固(时间:30分钟)
1.函数y=a x-(a>0,且a≠1)的图象可能是( D )
解析:若a>1时,y=a x-是增函数;
当x=0时,y=1-∈(0,1),A,B不满足;
若0<a<1时,y=a x-在R上是减函数;
当x=0时,y=1-<0,C错,D项满足.故选D.
2.(湖南永州第三次模拟)下列函数中,与函数y=2x-2-x的定义域、单调性与奇偶性均一致的是( B )
(A)y=sin x (B)y=x3
(C)y=()x (D)y=log
x
2
解析:y=2x-2-x在(-∞,+∞)上是增函数且是奇函数,
y=sin x不单调,y=log
x定义域为(0,+∞),y=()x是减函数,三者不满足,只有y=x3的定
2
义域、单调性、奇偶性与之一致.
3.函数f(x)=a x-1(a>0,a≠1)的图象恒过点A,下列函数中图象不经过点A的是( A )
(A)y= (B)y=|x-2|
(2x)
(C)y=2x-1 (D)y=log
2
解析:由题意,得点A(1,1),将点A(1,1)代入四个选项,y=的图象不过点A(1,1).
4.设x>0,且1<b x<a x,则( C )
(A)0<b<a<1 (B)0<a<b<1
(C)1<b<a (D)1<a<b
解析:因为x>0时,1<b x,所以b>1.
因为x>0时,b x<a x,所以x>0时,()x>1.
所以>1,所以a>b.所以1<b<a.
5.函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( D )
(A)a>1,b<0
(B)a>1,b>0
(C)0<a<1,b>0
(D)0<a<1,b<0
解析:由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.
函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.
6.已知f(x)=2x+2-x,f(m)=3,且m>0,若a=f(2m),b=2f(m),c=f(m+2),则a,b,c的大小关系为( D )
(A)c<b<a (B)a<c<b
(C)a<b<c (D)b<a<c
解析:因为f(m)=2m+2-m=3,m>0,
所以2m=3-2-m>2,b=2f(m)=2×3=6,
a=f(2m)=22m+2-2m=(2m+2-m)2-2=7,
c=f(m+2)=2m+2+2-m-2=4·2m+·2-m>8,
所以b<a<c.故选D.
7.下列说法正确的序号是.
①函数y=的值域是[0,4);
②(a>0,b>0)化简结果是-24;
③+的值是2π-9;
④若x<0,则=-x.
解析:由于y=≥0(当x=2时取等号),
又因为4x>0,所以16-4x<16得y<,即y<4,所以①正确;
②中原式====-24,正确;由于
+=|π-4|+π-5=4-π+π-5=-1,所以③不正确.
由于x<0,所以④正确.
答案:①②④
8.不等式<4的解集为.
解析:因为<4,所以<22,
所以x2-x<2,即x2-x-2<0,解得-1<x<2.
答案:{x|-1<x<2}
9.(鸡西模拟)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= . 解析:若a>1,则f(x)=a x+b在[-1,0]上是增函数,
所以则a-1=0,无解.
当0<a<1时,则f(x)=a x+b在[-1,0]上是减函数,
所以解得
因此a+b=-.
答案:-
能力提升(时间:15分钟)
10.若函数f(x)=a|2x-4|(a>0,且a≠1),满足f(1)=,则f(x)的单调递减区间是( B )
(A)(-∞,2] (B)[2,+∞)
(C)[-2,+∞) (D)(-∞,-2]
解析:由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=()|2x-4|.由于y=|2x-4|在(-∞,
2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.
11.(湖南郴州第二次教学质量检测)已知函数f(x)=e x-,其中e是自然对数的底数,则关于x的不等式f(2x-1)+f(-x-1)>0的解集为( B )
(A)(-∞,-)∪(2,+∞) (B)(2,+∞)
(C)(-∞,)∪(2,+∞) (D)(-∞,2)
解析:易知f(x)=e x-在R上是增函数,
且f(-x)=e-x-=-(e x-)=-f(x),
所以f(x)是奇函数.
由f(2x-1)+f(-x-1)>0,得f(2x-1)>f(x+1),
因此2x-1>x+1,
所以x>2.
12.(衡阳三中模拟)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是( D )
(A)(-2,1) (B)(-4,3)
(C)(-3,4) (D)(-1,2)
解析:因为(m2-m)·4x-2x<0在x∈(-∞,-1]上恒成立,
所以(m2-m)<在x∈(-∞,-1]上恒成立,
由于f(x)=在x∈(-∞,-1]上单调递减,
所以f(x)≥2,
所以m2-m<2,
所以-1<m<2.故选D.
13.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是. 解析:由于g(x)=a|x+b|是偶函数,知b=0,
又g(x)=a|x|在(0,+∞)上单调递增,得a>1.
则g(b-1)=g(-1)=g(1),
故g(a)>g(1)=g(b-1).
答案:g(a)>g(b-1)
14.已知函数f(x)=a x(a>0,a≠1)在区间[-1,2]上的最大值为8,最小值为m.若函数g(x)=(3-10m)是单调增函数,则a= .
解析:根据题意,得3-10m>0,解得m<;
当a>1时,函数f(x)=a x在区间[-1,2]上单调递增,
最大值为a2=8,解得a=2,最小值为m=a-1==>,不合题意,舍去;
当0<a<1时,函数f(x)=a x在区间[-1,2]上单调递减,最大值为a-1=8,解得a=,最小值为
m=a2=<,满足题意.综上,a=.
答案:
15.函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是.
解析:由f(x+1)=f(1-x)知y=f(x)的图象关于x=1对称,所以b=2.
又f(0)=3,得c=3.则f(b x)=f(2x),f(c x)=f(3x).
当x≥0时,3x≥2x≥1,且f(x)在[1,+∞)上是增函数,
所以f(3x)≥f(2x).
当x<0时,0<3x<2x<1,且f(x)在(-∞,1]上是减函数,
所以f(3x)>f(2x),从而有f(c x)≥f(b x).
答案:f(c x)≥f(b x)。