20竖直平面内的圆周运动模型
- 格式:docx
- 大小:144.67 KB
- 文档页数:10
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
竖直平面内的圆周运动及实例分析说明:竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以对此要根据牛顿第二定律的瞬时性解决问题:在变速圆周运动中,虽然物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,但向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。
同时,还可以向学生指出:此问题中出现的对支持面的压力大于或小于物重的现象,是发生在圆周运动中的超重或失重现象.一、教学目标:1.知识与技能:(1)理解匀速圆周运动是变速运动;(2)进一步理解向心力的概念;(3)掌握竖直平面内最高点和最低点的圆周运动。
2.过程与方法:通过对竖直平面内特殊点的研究,培养学生观察能力、抽象概括和归纳推理能力。
3.情感态度价值观:渗透科学方法的教育。
二、重点难点:教学重点:分析向心力来源.教学难点:实际问题的处理方法.向心力概念的建立及计算公式的得出是教学重点,也是难点。
通过生活实例及实验加强感知,突破难点。
三、授课类型:习题课四、上课过程:(一)、情景引入:(二)、两类模型——轻绳类和轻杆类(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆2v mgm,这时的速度是做圆周运=周运动)的条件是小球的重力恰好提供向心力,即r v=动的最小速度. (绳只能提供拉力不能提供支持力).min内侧的圆周运动,水流星的类此模型:竖直平面内的内轨道,竖直(光滑)圆弧运动(水流星在竖直平面内作圆周运动过最高点的临界条件),过山车运动等,word编辑版.刚好做:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点((2)轻杆模型(杆既可以提供拉力,也可提供支持力或. )的条件是在最高点的速度圆周运动.)侧向力A v小球的重力;①当=0 时,杆对小球的支持力v0<②当于小球的重力;<时,杆对小球的支持力gr v O于零;③当=时,杆对小球的支持力gr v力. ④当> 时,杆对小球提供gr:汽车过凸形拱桥,小球在竖直平面内的(光滑)圆环内运动,小球套类此模型在竖直圆环上的运动等。
竖直平面内的圆周运动模型考点规律分析(1)竖直平面内的圆周运动模型在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况,可分为三种模型。
一是只有拉(压)力,如球与绳连接、沿内轨道的“过山车”等,称为“轻绳模型”;二是只有推(支撑)力的,称为“拱桥模型”;三是可拉(压)可推(支撑),如球与杆连接,小球在弯管内运动等,称为“轻杆模型”。
(2)三种模型对比典型例题例1长度为L=0.50 m的轻质细杆OA,A端有一质量为m=3.0 kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0 m/s,g取10 m/s2,则此时细杆OA受到()A.6.0 N的拉力B.6.0 N的压力C.24 N的拉力D.24 N的压力[规范解答]设小球以速率v0通过最高点时,球对杆的作用力恰好为零,即mg =m v 20L得v 0=gL =10×0.50 m/s = 5 m/s 。
由于v =2.0 m/s< 5 m/s ,可知过最高点时,球对细杆产生压力,细杆对小球为支持力,如图所示,为小球的受力情况图。
由牛顿第二定律mg -N =m v 2L ,得N =mg -m v 2L =⎝ ⎛⎭⎪⎫3.0×10-3.0×2.020.50 N =6.0 N 由牛顿第三定律知,细杆OA 受到6.0 N 的压力。
[完美答案] B例2 一细绳与水桶相连,水桶中装有水,水桶与水一起以细绳的另一端点为圆心在竖直平面内做圆周运动,如图所示,水的质量m =0.5 kg ,水的重心到转轴的距离l =50 cm ,g 取10 m/s 2。
求:(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字)(2)若在最高点水桶的速率v =3 m/s ,求水对桶底的压力大小。
[规范解答] (1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小。
2024版新课标高中物理模型与方法竖直面内的圆周运动模型目录一.一般圆周运动的动力学分析二.竖直面内“绳、杆(单、双轨道)”模型对比分析三.竖直面内圆周运动常见问题与二级结论三.过拱凹形桥模型一.一般圆周运动的动力学分析如图所示,做圆周运动的物体,所受合外力与速度成一般夹角时,可将合外力沿速度和垂直速度分解,则由牛顿第二定律,有:Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2r作一般曲线运动的物体,处理轨迹线上某一点的动力学时,可先以该点附近的一小段曲线为圆周的一部分作曲率圆,然后即可按一般圆周运动动力学处理。
Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2ρ,ρ为曲率圆半径。
二.竖直面内“绳、杆(单、双轨道)”模型对比分析轻绳模型(没有支撑)轻杆模型(有支撑)常见类型过最高点的临界条件由mg=mv2r得v临=gr由小球能运动即可得v临=0对应最低点速度v低≥5gr对应最低点速度v低≥4gr绳不松不脱轨条件v低≥5gr或v低≤2gr不脱轨最低点弹力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力最高点弹力过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N=mv2r-mg向下压力(1)当v=0时,F N=mg,F N为向上支持力(2)当0<v<gr时,-F N+mg=m v2r,F N向上支持力,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=m v2r,F N为向下压力并随v的增大而增大在最高点的F N 图线取竖直向下为正方向取竖直向下为正方向三.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。
三大力场中竖直面内圆周运动模型特训目标特训内容目标1重力场中的竖直面内圆周运动的绳(或轨道内侧)模型(1T -6T )目标2重力场中的竖直面内圆周运动的杆(或管)模型(7T -12T )目标3电磁场中的竖直面内圆周运动模型(13T -18T )【特训典例】一、重力场中的竖直面内圆周运动的绳(或轨道内侧)模型1如图a ,在竖直平面内固定一光滑的半圆形轨道ABC ,小球以一定的初速度从最低点A 冲上轨道,图b 是小球在半圆形轨道上从A 运动到C 的过程中,其速度平方与其对应高度的关系图像。
已知小球在最高点C 受到轨道的作用力为2.5N ,空气阻力不计,B 点为AC 轨道中点,重力加速度g 取10m/s 2,下列说法正确的是()A.图b 中x =25m 2/s 2B.小球质量为0.2kgC.小球在A 点时重力的功率为5WD.小球在B 点受到轨道作用力为8.5N【答案】ABD【详解】A .小球在光滑轨道上运动,只有重力做功,故机械能守恒,有12mv 2A =12mv 2h +mgh 解得v 2A =v 2h +2gh 即x =9+2×10×0.8 m 2/s 2=25m 2/s 2,A 正确;B .依题意小球在C 点,有F +mg =m v 2C R 又v 2C =9m 2/s 2,2R =0.8m 解得m =0.2kg ,B 正确;C .小球在A 点时重力方向竖直向下,速度水平向右,二者夹角为90°,根据P =mgv cos θ可知重力的瞬时功率为零,C 错误;D .由机械能守恒,可得12mv 2A =12mv 2B +mgR 又因为小球在B 点受到的在水平方向上的合外力提供向心力,可得F B =mv 2BR联立,可得F B =8.5N ,D 正确。
故选ABD 。
2如图甲所示,一长为R 的轻绳,一端系在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系图像如图乙所示,图线与纵轴的交点坐标为a ,下列判断正确的是()A.利用该装置可以得出重力加速度,且g =RaB.绳长不变,用质量较大的球做实验,得到的图线斜率更大C.绳长不变,用质量较小的球做实验,得到的图线斜率更大D.绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标不变【答案】CD【详解】A .由图乙知当F =0时,v 2=a ,则有mg =mv 2R =ma R 解得g =a R 故A 错误;BC .在最高点,根据牛顿第二定律得F +mg =m v 2R整理得v 2=R m F +gR 图线的斜率为k =Rm 可知绳长不变,小球的质量越小,斜率越大,故B 错误,C 正确;D .由表达式v 2=RmF +gR 可知,当F =0时,有v 2=gR =a 可知图线与纵轴的交点坐标与小球质量无关,故D 正确。
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
竖直面内的圆周运动模型分析作者:柴彦龙来源:《卷宗》2013年第05期高中物理教学中,竖直面内的圆周运动问题较为常见。
相关内容也是学生普遍感觉到难以理解、难以处理的。
本文中就此问题进行了系统的总结,希望对广大物理教师的教学和学生的学习有所启发。
竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。
一、两类模型——轻绳模型和轻杆模型1.轻绳模型运动质点在一轻绳的作用下绕中心点作变速圆周运动。
由于绳子只能提供拉力而不能提供支持力。
所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有mg=m,式中的vmin是小球通过最高点的最小速度。
(2)质点能通过最高点的条件是v≥vmin=;在最高点可能存在两种情况:(1)即由重力和拉力的合力提供向心力(2)只有重力提供向心力在最低点只有一种情况绳上一定有拉力2.轻杆模型运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。
所以质点过最高点的最小速度为零,(临界速度)在最高点可能存在四种情况:(1)当v=0时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即N=mg;(2)杆上弹力为零,由重力提供向心力v=(3)当v>,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;即(4)当0在最低点只有一种情况杆上一定有向上的拉力两类模型的最大区别在于,在圆周最高点能否提供向上的支持力。
实际中可依据此判断具体题目中物理情境下属于哪种模型。
例1(07年全国2)如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R。
物理建模系列(七)竖直平面内圆周运动的两种模型1.模型构建在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.3.常用模型面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg【解析】 解法一:以小环为研究对象,设大环半径为R ,根据机械能守恒定律,得mg ·2R =12m v 2,在大环最低点有F N -mg =m v 2R ,得F N =5mg ,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为F ′N =F N ,方向竖直向下,故F =Mg +5mg ,由牛顿第三定律知C 正确.解法二:设小环滑到大环最低点时速度为v ,加速度为a ,根据机械能守恒定律12m v 2=mg ·2R ,且a =v 2R,所以a =4g ,以整体为研究对象,受力情况如图所示.F -Mg -mg =ma +M ·0 所以F =Mg +5mg ,C 正确. 【答案】 C[高考真题]1.(2016·上海卷,16)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大,平均速率为8πnrΔt【解析】 据题意,从b 图可以看出,在Δt 时间内,探测器接收到光的时间在增长,圆盘凸轮的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以从图看出有4次挡光,即圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,叶片转动速率为:v =8n πrΔt,故选项B 正确.【答案】 B2.(2016·浙江卷,20)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s【解析】 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由2.25mg =m v 21r 得v 1=30 m/s ;通过大圆弧时,由2.25mg =m v 22R得v 2=45 m/s ,B 项正确.赛车从小圆弧到大圆弧通过直道时需加速,故A 项正确.由几何关系可知连接大、小圆弧的直道长x =50 3 m ,由匀加速直线运动的速度位移公式:v 22-v 21=2ax得a ≈6.50 m/s 2,C 项错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t =13×2πrv 1≈2.79 s ,故D 项错误.【答案】 AB3.(2015·课标卷Ⅰ,22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg.(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为 ________ kg.(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.(4)N ;小车通过最低点时的速度大小为 ________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)【解析】 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.【答案】 (2)1.40 (4)7.9 1.4[名校模拟]4.(2018·山东烟台高三上学期期中)如图所示,水平圆盘可以绕竖直转轴OO ′转动,在距转轴不同位置处通过相同长度的细绳悬挂两个质量相同的物体A 、B .不考虑空气阻力的影响,当圆盘绕OO ′轴匀速转动达到稳定状态时,下列说法正确的是( )A .A 比B 的线速度小B .A 与B 的向心加速度大小相等C .细绳对B 的拉力大于细绳对A 的拉力D .悬挂A 与B 的细绳与竖直方向夹角相等【解析】 物体A 、B 绕同一轴转动,角速度相同,由v =ωr 知,v A <v B ,由a =ω2r 知,a A <a B ,由T sin θ=ma ,T cos θ=mg 及a A <a B 得T A <T B ,θA <θB ,故A 、C 正确.【答案】 AC5.(2018·广东惠州市高三上学期第二次调研)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的.其中一个玻璃盘通过从动轮与手摇主动轮链接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .玻璃盘的转动方向与摇把转动方向相反B .P 、Q 的线速度相同C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min【解析】 若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故A 正确;线速度也有一定的方向,由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故B 错误;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度:v =ωr =2n πr =2×10060×π×0.32m/s =0.5π m/s ≈1.6 m/s ,故C 正确;从动轮边缘的线速度:v c =ωr c =2×10060×π×0.02m/s =115π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即v z =v c ,所以主动轮的转速:n z =ωz 2π=v z r z 2π=115π2π×0.08=12.4r/s =25 r/min.故D 错误.【答案】 AC6.(2018·华中师大第一附中高三上学期期中)如图所示,ABC 为在竖直平面内的金属半圆环,AC 连线水平,AB 为固定的直金属棒,在金属棒上和圆环的BC 部分分别套着两个相同的小环M 、N ,现让半圆环绕对称轴以角速度ω做匀速转动,半圆环的半径为R ,小圆环的质量均为m ,棒和半圆环均光滑,已知重力加速度为g ,小环可视为质点,则M 、N 两环做圆周运动的线速度之比为( )A.gR 2ω4-g 2B .g 2-R 2ω4gC.g g 2-R 2ω4D .R 2ω4-g 2g【解析】 AB 杆倾角45°,对于M 环:mg =mrω2=m v 2Mr2v M =g ω.对于N 环:mg tan θ=mR sin θ·ω2=mωv N v N =R sin θ·ω=Rω1-g 2R 2ω4 所以v M ∶v N =g ∶R 2ω4-g 2,A 对,B 、C 、D 错. 【答案】 A课时作业(十二) [基础小题练]1.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同【解析】同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度不同,C 错误;根据公式F =ma ,质量相同,但是加速度不同,所以向心力大小不同,D 错误.【答案】 A2.(2018·甘肃河西五市联考)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A ,B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根细线承受的张力为( )A .23mgB .3mgC .2.5mgD .732mg【解析】 小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,根据动能定理得mg ·3L =12m v 22-12m v 21,由牛顿第二定律得3T -mg =m v 2232L ,联立得T =23mg ,故A 正确,B 、C 、D 错误.【答案】 A3.如图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1D .从动轮的转速为r 2r 1n 1【解析】 主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,故A 错误,B 正确;由ω=2πn 、v =ωr 可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,从动轮边缘线速度大小v =2πn 2r 2=2πn 1r 1,故C 、D 错误.【答案】 B4.(2018·山东青岛市即墨一中高三上学期期中)如图所示,甲、乙圆盘的半径之比为1∶2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动.两圆盘上分别放置质量为m 1和m 2的小物体,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.m 1距甲盘圆心为r ,m 2距乙盘圆心为2r ,此时它们正随圆盘做匀速圆周运动.下列判断正确的是( )A .m 1和m 2的线速度之比为1∶4B .m 1和m 2的向心加速度之比为2∶1C .随转速慢慢增加,m 1先开始滑动D .随转速慢慢增加,m 2先开始滑动【解析】 甲、乙两轮子边缘上的各点线速度大小相等,有:ω1R =ω22R ,则得ω1∶ω2=2∶1,所以物块相对圆盘开始滑动前,m 1与m 2的角速度之比为2∶1.根据公式:v =ωr ,所以:v 1v 2=ω1r ω2·2r =11,故A 错误.根据a =ω2r 得:m 1与m 2的向心加速度之比为 a 1∶a 2=(ω21r )∶(ω222r )=2∶1,故B 正确.根据μmg =mrω2=ma 知,m 1先达到临界角速度,可知当转速增加时,m 1先开始滑动,故C 正确,D 错误.【答案】 BC5.如图所示,水平放置的圆筒可以绕中心轴线匀速转动,在圆筒上的直径两端有两个孔A 、B ,当圆筒的A 孔转到最低位置时,一个小球以速度v 0射入圆筒,圆筒的半径为R ,要使小球能够不碰到筒壁首次离开圆筒,则圆筒转动的角速度可能为(已知重力加速度大小为g )( )A.n πgv 0,n =1,2,3,… B.(2n -1)πg 2v 0,n =1,2,3,…C.2n πg v 0-v 20-4Rg ,n =1,2,3,…D.2n πg v 0+v 20-4Rg,n =1,2,3,… 【解析】 若小球上升最大高度小于圆筒直径,小球从A 孔离开,则竖直上抛时间为t =2v 0g =2n πω,n =1,2,3,…,ω=n πgv 0,A 正确;若小球上升最大高度小于圆筒直径,从B 孔离开,则有t =2v 0g =(2n -1)πω,n =1,2,3,…,ω=(2n -1)πg 2v 0,B 正确;若小球上升最大高度大于直径,从B 孔离开,小球经过圆筒时间为t ,则有2R =v 0t -gt 22,圆筒转动时间为t =2n πω,n =1,2,3,…,解得ω=2n πgv 0-v 20-4Rg ,C 正确;若小球上升最大高度大于直径,从A 孔离开,则圆筒转动时间为t =(2n -1)πω,n =1,2,3,…,解得ω=(2n -1)πgv 0-v 20-4Rg,D 错误. 【答案】 ABC6.(2018·开封高三模拟)在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,则管状模型转动的最低角速度ω为( )A.gR B . g 2R C.2g RD .2g R【解析】 最易脱离模型内壁的位置在最高点,转动的最低角速度ω对应铁水在最高点受内壁的作用力为零,即mg =mω2R ,得:ω=gR,A 正确. 【答案】 A[创新导向练]7.生活实际——圆周运动中的自行车问题雨天在野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,并离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来【解析】 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情况下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F bd=mω2R ,在c 点有F c -mg =mω2R ,所以泥巴与轮胎在c 位置的相互作用力最大,容易被甩下,故B 、D 错误,C 正确.【答案】 C8.生活实际——通过“过山车”考查圆周运动最高点的临界问题如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR【解析】 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.【答案】 BC9.高新科技——圆周运动中的运动学问题应用实例某计算机读卡系统内有两个围绕各自固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度均为4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 s C.0.70 s D.0.84 s【解析】P的周期T P=2πr Pv=2π×0.284πs=0.14 s,同理Q的周期T Q=2πr Qv=2π×0.164πs=0.08 s,而经过的时间应是它们周期的整数倍,因此B项正确.【答案】 B10.科技生活——汽车后备箱升降学问汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O 点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等【解析】在合上后备箱盖的过程中,O′A的长度是变化的,因此A点相对O′点不是做圆周运动,A错误;在合上后备箱盖的过程中,A点与B点都是绕O点做圆周运动,相同的时间绕O点转过的角度相同,即A点与B点相对O点的角速度相等,但是OB大于OA,根据v=rω,所以B点相对于O点转动的线速度大,故B错误,C正确;根据向心加速度a=rω2可知,B点相对O点的向心加速度大于A点相对O点的向心加速度,故D错误.【答案】 C[综合提升练]11.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定,若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需<F供,物体将做近心运动.现有一根长L=1 m的刚性轻绳,其一端固定于O 点,另一端系着质量m=0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10 m/s2,则:(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F 1+mg =m v 21L,代入数据得绳中张力F 1=3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.(2018·山东潍坊高三上学期期中)如图所示,圆形餐桌中心有一半径为R 的圆盘,可绕穿过中心的竖直轴转动,圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计.当圆盘的角速度为 g 2R时,放置在圆盘边缘的小物体恰好滑上餐桌.已知小物体与餐桌间的动摩擦因数为0.25,最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)小物体与圆盘的动摩擦因数;(2)小物体恰好不从餐桌滑落时餐桌的最小半径.【解析】(1)设小物体与圆盘间的动摩擦因数为μ1,小物体恰好滑到餐桌上时圆盘的角速度为ω0μ1mg=mω20R代入数据解得:μ1=0.5.(2)小物体从圆盘甩出时的速度v1=ω0R设小物体与餐桌间的动摩擦因数为μ2,小物体在餐桌上滑动距离x1恰不滑出桌面,0-v21=2ax1a=-μ2g餐桌的最小半径R min=R2+x21联立解得:R min=2R【答案】(1)0.5(2)2R。
竖直平面内的圆周运动模型考点规律分析(1)竖直平面内的圆周运动模型 在竖直平面内做圆周运动的物体,三种模型。
一是只有拉(压)力,如球与绳连接、沿内轨道的“过山车”等,称为“轻纯模型”;二是只有推(支撑)力的,称为“拱桥模型”;三是可拉(压)可推 (支撑),如球与杆连接,小球在弯管内运动等,称为“轻杆模型”。
(2)三种模型对比轻绳模型拱桥模型轻杆模型弹力 弹力向下(也可弹力向上(也可弹力可能向下,可能特征能等于军)能等于零) 向上,也可能等于零运动至轨道最高点时的受力情况,可分为。
=0,即F 向=0,此 时F 、— 5囚,方向 向上①皆> 时* 小球能过最高 点;② U = x/^7 时,小球刚好过 最高点,③b < 时小球不能过最高点 ①心时• 车(物体)囱开 拱桥最高点做 产他运动;②订 <不7时车 (物体)能过最 高点且不离开 拱桥典型例题例1 长度为L = 0.50 m 的轻质细杆OA, A 端有一质量为 m=3.0 kg 的小 球,如图所示,小球以。
点为圆心在竖直平面内做圆周运动, 通过最高点时小球 的速率是2.0 m/s, g 取10 m/s 2,则此时细杆OA 受到( )A. 6.0 N 的拉力C. 24 N 的拉力 [规范解答] 设小球以速率V 0通过最高点时,球对杆的作用力恰好为零,2V 0mg= m [对速度 的理解 ①引〉/F 时*杆或 管道的外侧对球产 生向下的拉力或弹 力:②0=777时•球 在最高点只受重力, 不受杆或管道的作用力;③OVrV ,诉 时,杆或管道的内侧 对球产生向上的弹力B . 6.0 N 的压力临界特征 F N = 0 时.,ngi}1 位 =rn --- .得 u 尸f川“得vo = y/gL=q i0x0.50 m/s= 5[5m/s。
由于v = 2.0 m/s«5 m/s,可知过最高点时,球对细杆产生压力,细杆对小球为支持力,如图所示,为小球的受力情况图。
2由牛顿第二定律mg—N=m、L,2 2,1 v 2.0 一一得N=mg— m[= 3.0X 10-3.0X函N = 6.0 N由牛顿第三定律知,细杆OA受到6.0 N的压力。
[完美答案] B|—[规件*俄]----------------------------竖直面内圆周运动过顶点的问题关铸在于能不能过顶点,能过顶点的条件下物依的受力情况究竟是怎样的“ 下面是竖直面内圆周运动的求解思路:(1)确定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的悔界条件不同,其原因主要是“绳”不能支持物体,百“杆”既能支持物体•也能拉物体.(2)确定临界点“临=Jg;,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是表现为支持力还是拉力的临界点。
(3)确定研究状态;通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况已例2 —细绳与水桶相连,水桶中装有水,水桶与水一起以细绳的另一端点为圆心在竖直平面内做圆周运动,如图所示,水的质量m=0.5 kg,水的重心到转轴的距离l = 50 cm, g取10 m/s20求:(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字)(2)若在最高点水桶的速率v = 3 m/s,求水对桶底的压力大小。
[规范解答](1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小。
此时有:mg=v0m r则所求速率即为桶的最小速率:V0=® = 2.24 m/So(2)在最高点水桶的速率v= 3 m/s>2.24 m/s水桶能过最高点,此时桶底对水有一向下的压力,设为F N,2则由牛顿第二定律有:F N+ mg= m券代入数据可得:F N =4 N由牛顿第三定律可得水对桶底的压力:F N' =4 No[完美答案](1)2.24 m/s (2)4 N限件点拗-------------------------------纯、杆模型对比(1)纯模型、杆模型中小球做的都是变速圆周运动,在最高点、最低点时由小球竖直方向所受的合力充当向心力。
(2)在最低点的受力特点是一致的,在最高点杆、轨道可以提供竖直向上的支持力,而纯不能提供支持力,只能提供向下的拉力举一反三1.侈选)如图所示,长为L的轻杆一端固定一质量为m的小球,另一端有固定轴。
,杆可在竖直平面内绕轴O无摩擦转动,已知小球通过最高点P时,速度的大小为vp= 72gL,已知小球通过最低点Q时,速度的大小为VQ =、6gL,则小球的运动情况为()P丁、/ \十** */ 0 \I ■R■Jq I\ L /jg —QA.小球到达圆周轨道的最高点P时受到轻杆向上的弹力B.小球到达圆周轨道的最低点Q时受到轻杆向上的弹力C.小球到达圆周轨道的最高点P时不受轻杆的作用力D.若小球到达圆周轨道的最高点P速度增大,则在P点受到轻杆向下的弹力增大答案BD解析小球在P点的速度vP=q2g!>WL,所以小球在P点受到的弹力向下,且随着VP增大,受到向下的弹力增大,A、C错误,D正确。
在最低点Q点,由于重力向下,合力即向心力向上,故弹力一定向上,B正确。
2(多选)如图所示,半径为L的圆管轨道(圆管内径远小于轨道半径)竖直放置, 管内壁光滑,管内有一个小球(小球直径略小于管内径)可沿管运动,设小球经过最高点P 时的速度为v,则()•0A.v的最小值为VgLB.v若增大,球所需的向心力也增大C.当v由JgL逐渐减小时,轨道对球的弹力也减小D.当v由«L逐渐增大时,轨道对球的弹力也增大答案BD解析由于小球在圆管中运动,最高点速度可为零,A错误;根据向心力公式有Fn=m+,v若增大,球所需的向心力一定增大,B正确;因为圆管既可提供向上的支持力也可提供向下的压力,当v = 6L时,圆管弹力为零,故v由而逐渐减小时,轨道对球向上的支持力增大,v由6L逐渐增大时,轨道对球向下的压力也增大,C错误,D正确。
3杂技演员表演“水流星”,在长为1.6 m的细绳的一端,系一个与水的总质量为m=0.5 kg的盛水容器,以纯的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为 4 m/s,则下列说法正确的是(g=10 m/s2)( )A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为 5 N答案B解析“水流星”在最高点的速度v=4 m/s=ygL,由此知纯的拉力恰为零,且水恰不流出,“水流星”只受重力作用,容器底部受到的压力为零,故只有B 正确。
4.(纯模型)(多选)如图所示,用长为l的细纯拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()/ X/ ' \iA .小球在圆周最高点时所受的向心力一定为重力B .小球在最高点时绳子的拉力不可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为VglD.小球过最低点时绳子的拉力一定大于小球重力答案CD解析小球在圆周最高点时,向心力可能等于重力也可能等于重力与绳子的拉力之和,取决于小球的瞬时速度的大小,A错误;小球在圆周最高点时,如果向心力完全由重力充当,则绳子的拉力为零,B错误;小球刚好能在竖直面内做圆周运动,则在最高点,重力提供向心力,v=4gi, C正确;小球在圆周最低点时,具有竖直向上的向心加速度,处于超重状态,拉力一定大于重力,故D正确。
5.(纯模型)如图所示,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,若轨道半径为R,人体重为mg,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,则过山车在最高点时的速度大小为()解析由题意知,乘客受到座椅的压力F=mg, 则F+mg= 2mg=mvR,故最高点处速度大小v=V2gR, C正确。
6.(杆模型)如图所示,质量为m的小球固定在杆的一端,在竖直面内绕杆的另一端。
做圆周运动。
小球运动到最高点时速度为v= yJ1Lg, L是球心到O 点的距离,则球对杆的作用力是():0 ;- 1 1 ___A.2mg的拉力B.2mg的压力一 3 ___C.零D.2mg的压力答案BV, 2斛析当重力元全充当向心力时,球对杆的作用力为苓,mg=m—R-,解得v' =WL,而、y2gL</gL时,故杆对球是支持力,即mg—FN = mf,解得F N1 1 ...= 2mg,由牛顿第三定律,球对杆的压力为2mg,故选Bo7 .(轻杆模型)(多选)如图所示,小球m 在竖直放置的光滑的圆形管道内做圆 周运动,A .小球通过最高点时的最小速度是 VRg8 .小球通过最高点时的最小速度为零C.小球在水平线ab 以下的管道中运动时外侧管壁对小球一定无作用力D.小球在水平线ab 以下的管道中运动时外侧管壁对小球一定有作用力BD圆形管外侧、内侧都可以对小球提供弹力,故小球通过最高点的最小 A 错误,B 正确。
小球在水平线ab 以下时,合外力必须有指向圆心方向的分力提供向心力,故外侧管壁一定对小球有作用力,C 错误,D 正确。
9 .(杆模型)长L = 0.5 m 的轻杆,具一端连接着一个零件 A, A 的质量m=2 kg 。
现让A 在竖直平面内绕轻杆另一端 O 点做匀速圆周运动,如图所示。
在 A 通过最高点时,求下列两种情况下 A 对杆的作用力大小。
(g=10 m/s 2)(1)A 的速率为1 m/s ;(2)A 的速率为4 m/s 。
答案(1)16 N (2)44 N2解析 以A 为研究对象,设其受到杆的拉力为 F,则有mg+ F=m]解析速度为零,(1)代入数据v i=1 m/s,2 2一V1 _ 1 _ __可得F i = m g =2X 近―10 N = — 16 N,即A受到杆的支持力为16 No根据牛顿第三定律可得A对杆的作用力为压力,大小为16 No (2)代入数据V2=4 m/s,-v2 - 42” ........可得F2=m 1―g =2X 0-5- 10 N = 44 N,即A受到杆的拉力为44 No根据牛顿第三定律可得A对杆的作用力为拉力,大小为44 No。