某射手向一目标射击三次
- 格式:ppt
- 大小:76.00 KB
- 文档页数:11
Ⅱ、综合测试题 s388概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB =2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 125.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b的值为( D ).A.12B. 13C. 15D. 18.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += (A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)X N X X X μσ:是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = (B ). A. 1 B.14 C. 12D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
答案和题目概率论与数理统计(经管类)综合试题一(课程代码 4183 )一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在 题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是( B).A.ABABB.(AB)BABC. (A- B)+B=AD. AB AB2. 设P( A) 0,P(B) 0,则下列各式中正确的是( D).A. P(A- B)=P(A)- P(B)B.P(AB)=P(A)P(B)C. P(A+B)= P(A)+P(B)D. P(A+B)=P(A)+P(B)- P(AB)3.同时抛掷 3 枚硬币,则至多有 1 枚硬币正面向上的概率是(D).A. 1B.1 C.1D.186424.一套五卷选集随机地放到书架上, 则从左到右或从右到左卷号恰为 1,2,3,4,5 顺序的概率为( B).A.1B. 1C. 1D.112060 5 25.设随机事件 A ,B 满足 B A ,则下列选项正确的是( A).A. P(A B) P(A) P(B)B. P( A B) P(B)C.P(B | A) P( B)D. P( AB) P(A)6.设随机变量 X 的概率密度函数为 f (x),则 f (x)一定满足( C).A. 0 f ( x) 1B. f (x)连续C.f ( x)dx1D. f ( )17.设离散型随机变量 X 的分布律为 P( X k )bk , k1,2,... ,且 b0 ,则参数b2的值 为(D ).A.1B.1C. 1D.12358.设随机变量 X, Y 都服从 [0, 1]上的均匀分布, 则 E( X Y ) =( A ).A.1B.2C.1.5D.09.设总体 X 服从正态分布, EX1,E(X 2)2 , X 1 , X 2 ,..., X 10 为样本,则样本 均值 110~XX i10 i 1( D).A. N ( 1,1)B. N (10,1)C.N(10, 2)D. N(1,1)1010.设总体 X : N ( ,2),( X 1, X 2, X 3) 是来自 X 的样本,又 ?1X 1 aX 21X 342是参数的无偏估计,则 a = ( B).A. 1B. 1C.1D.14 23二、填空题(本大题共 15 小题,每小题 2 分,共 30 分)请在每小题的空格中填上正确答案。
题型:一、单项选择题15道题每题2分共30分;二、填空题15题每题2分共30分;三、计算题2题每题8分共16分;四、综合题2题共16分;五、应用题1题共8分。
1.一名射手连续向某目标射击三次,事件i A 表示第i 次射击时击中目标(1,2,3)i =,则“三次射击中恰有两次命中目标”表示为: 。
(A) 321A A A (B) 321A A A (C) 321321321A A A A A A A A A (D) 123A A A[ ]2.一名射手连续向某目标射击三次,事件i A 表示第i 次射击时击中目标(1,2,3)i =,则“三次射击至少有一次命中目标”表示为 。
(A) 321A A A (B) 321A A A(C) 321321321A A A A A A A A A (D) 123A A A [ ]3.一名射手连续向某目标射击三次,事件i A 表示第i 次射击时击中目标(1,2,3)i =,则“三次射击都命中目标”可表示为:(A) 321A A A (B) 321A A A(C) 321321321A A A A A A A A A (D) 123A A A [ ]4.设随机事件A 与B 互不相容,且,)(,)(00>>B P A P 则 。
(A) )()(B P A P -=1 (B) )()()(B P A P AB P = (C) 0=)(AB P (D) 1=)(B A P [ ]5.设随机事件A 与B 互不相容,且,)(,)(00>>B P A P 则 。
(A) )()(B P A P -=1 (B) )()()(B P A P AB P =(C) 1=)(B A P (D) 1=)(AB P [ ]6.设随机事件A 与B 互不相容,且,)(,)(00>>B P A P 则 。
(A) )()(B P A P -=1 (B) )()()(B P A P AB P =(C) )()()(B P A P B A P += (D) 1=)(B A P [ ]7. 抛一枚不均匀硬币,正面朝上的概率为32,将此硬币连抛4次,则恰好1次正面朝上的概率是 。
第三章 离散型随机变量率分布。
,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。
出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。
习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =, 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n +=}.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生;(2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABCABC ABC ABC ; (5) ABC ; (6) ()A BC .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)23A A ; (6)12A A .解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+.(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C).○2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P AB P A P B P AB P AB =-=--+=, 故()()1P A P B +=. 于是()1.P B p =-3. 已知()0.4P A =,()0.3P B =,()0.4P A B =, 求()P AB .解 由公式()()()()P A B P A P B P AB =+-知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB . 解 由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最大值, 最大值是多少? (2) 在什么条件下()P AB 取到最小值, 最小值是多少?解 ()()()()P AB P A P B P A B =+-=1.3()P A B -.(1) 如果A B B =, 即当A B ⊂时, P B A P =)( ()B =0.7, 则()P AB 有最大值是0.6 .(2) 如果)(B A P =1,或者A B S =时, ()P AB 有最小值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为ABC AB ⊂,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0. 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P AB C ==-=.习题1-41. 选择题在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品. (C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为023225C C C ⨯, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率; (3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有29C 种,两个球都是白球的取法有24C 种,一黑一白的取法有1154C C 种,由古典概率的公式知道(1) 两球都是白球的概率是2924C C ;(2)两球中一黑一白的概率是115429C C C ;(3)至少有一个黑球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和小于65;(2) 两数之积小于14;(3) 以上两个条件同时满足;(4) 两数之差的绝对值小于12的概率.解 设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0<X , Y <1}.,(1) P {X +Y <65}=1441172550.68125-⨯⨯=≈;(2) P {XY <14}=11411111ln 40.64444dx x⨯+=+≈⎰;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ⨯+-++-⎰⎰⎰≈0.593. (4) 解 设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|0<x , y <1}, 记A = {(x , y )|(x , y )∈S , |x -y |<12}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-⨯⨯⨯===, 其中 S A , S Ω分别表示A 与Ω的面积.习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件. (D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}. 解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 口袋中有b 个黑球、r 个红球, 从中任取一个, 放回后再放入同颜色的球a 个. 设B i ={第i 次取到黑球}, 求1234()P B B B B .解 用乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b ar a r b r a r b a b r b b +++⋅++⋅+++⋅+=注意, a = 1和a = 0分别对应有放回和无放回抽样.4. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则(0,1,2,3)i B i =表示“恰有i 发击中目标”.i B 为互斥的完备事件组. 于是没有击中目标概率为0()0.60.50.30.09P B =⨯⨯=, 恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =⨯⨯+⨯⨯+⨯⨯=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =⨯⨯+⨯⨯+⨯⨯=,恰有三发击中目标概率为3()0.40.50.70.14P B =⨯⨯=.又已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===⨯+⨯+⨯=∑5. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,i H 表示“取得球来至第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%,22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知,123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=⨯+⨯+⨯=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ⨯===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ⨯===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ⨯===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件. 解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立.(C)()()()P AB P A P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故AB 与,A 与B 及A 与B 也相互独立. 因此本题应选(D). (3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B 一定互斥. (D)()()()()()P A B P A P B P A P B =+-.解 因事件A 与B 独立, 故AB 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明P (B |A )=)(A B P 是事件A 与B 独立的充分必要条件.证 由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独立, 知事件A 与B 也独立, 因此()(),()()P B A P B P B A P B ==,从而()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对立事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独立.3. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+.由题设可知 A , B 和C 两两相互独立,,ABC =∅ 1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅=从而29()3()3[()]16P AB C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4. 某人向同一目标独立重复射击, 每次射击命中目标的概率为p (0<p <1), 求此人第4次射击时恰好第2次命中目标的概率.解 “第4次射击恰好第2次命中” 表示4次射击中第4次命中目标, 前3次射击中有一次命中目标. 由独立重复性知所求概率为1223(1)C p p -.5. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率; (3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==⨯=(2) ()()0.70.20.30.80.38;P AB P AB +=⨯+⨯= (3)()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总 习 题 一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396⨯=⨯.(1) 抽得一件为正品,一件为次品的概率为95559519.10099198⨯+⨯=⨯3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =∅(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221⨯+⨯+⨯=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ⨯====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
概率答案第一章习题1.1(P 6)1、写出下列随机试验的样本空间(1)同时抛掷三枚骰子,记录三颗骰子点数之和{3,4,5,6,7,….16,17,18}(2)单位圆内任取一点,记录其坐标{(x,y)| x ²+y ²<1}(3)生产新产品直至有10件合格品为止,记录生产的总件数{x|x ≥10且x ∈N}3、一名射手连续向某个目标射击三次,事件A i 表示第i 次射击时击中目标(i=1,2,3)。
试用文字叙述下列事件:(1)A 1∪A 2=“前两次至少有一次击中目标”;(2)2A =“第二次未击中目标”;(3)A 1A 2A 3=“前三次均击中目标”;(4)A 1⋃A 2⋃A 3=“前三次射击中至少有一次击中目标”;(5)A 3-A 2=“第三次击中但第二次未击中”;(6)A 32A =“第三次击中但第二次未击中”;(7)12A A U =“前两次均未击中”;(8)12A A =“前两次均未击中”;(9)(A 1A 2)⋃(A 2A 3)⋃(A 3A 1)=“三次射击中至少有两次击中目标”.4、 设A,B,C 表示三个事件,利用A,B,C 表示下列事件。
(1)A 发生,B,C 都不发生ABC(2)A,B 发生,C 不发生ABC(3)三个事件,A,B,C 均发生ABC(4)三个事件,A,B,C 至少有一个发生A ∪B ∪C(5)三个事件,A,B,C 都不发生ABC(6)三个事件中不多于一个事件发生AB BC AC U U(7)三个事件中不多于两个事件发生A B C U U(8)三个事件中至少有两个发生AB+AC+BC习题1.2(P 11)6、一口袋中有5个白球,3个黑球。
求从中任取两只球为颜色不同的球的概率。
设A=“从中任取两只球为颜色不同的球”,则:112538P(A)=/15/28C C C7、一批产品由37件正品,3件次品组成,从中任取3件,求(1)3件中恰有意见次品的概率组成实验的样本点总数为340C ,组成事件(1)所包含的样本点数为12337C C ,所以P 1=12337340C C C ⋅ ≈0.2022 (2)3件全为次品的概率组成事件(2)所包含的样本点数为33C ,所以 P 2=33340C C ≈0.0001 (3)3件全为正品的概率组成事件(3)所包含的样本点数为237C ,所以P 3=237340C C ≈0.7864 (4)3件中至少有一件次品的概率事件(4)的对立事件,即事件A=“三件全为正品”所包含的样本点数为337C ,所以P 4=1-P(A)=1-337340C C ≈0.2136 (5)3件中至少有两件次品的概率组成事件(5)所包含的样本点数为2133373C C C ⋅+,所以P 5=2133373340C C C C ⋅+ ≈0.01134 8、从0至9这10个数字钟,不重复地任取4个,求(1)能组成一个4位奇数的概率;(2)能组成一个4位偶数的概率。
综合练习一一、单项选择题1.设A 与B 为两个随机事件,则表示A 与B 不都发生是【 】.(A )A B (B )AB (C )AB (D )AB2.设A 、B 、C 为三个随机事件,则表示A 与B 都不发生,但C 发生的是【】. (A )A BC (B )()A B C + (C )ABC (D )A B C +3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为【】. (A )甲种产品滞销,乙种产品畅销 (B )甲、乙两种产品均畅销 (C )甲种产品滞销 (D )甲种产品滞销或乙种产品畅销4.对于任意两个事件A 与B ,均有=-)(B A P 【】. (A) )()(B P A P - (B) )()()(AB P B P A P +- (C) )()(AB P A P - (D) )()()(AB P B P A P -+5.已知事件A 与B 互斥,8.0)(=+B A P ,5.0)(=B P ,则=)(A P 【】. (A) 0.3 (B) 0.7 (C) 0.5 (D) 0.6 6.若21)(=A P ,31)(=B P ,61)(=AB P ,则A 与B 的关系为【】. (A) 互斥事件 (B) 对立事件 (C) 独立事件 (D) A B ⊃7.已知事件A 与B 相互独立,8.0)(=+B A P ,5.0)(=B P ,则()P A =【】. (A) 0.3 (B) 0.2 (C) 0.5 (D) 0.6 8.若事件A 与B 相互独立,0)(>A P ,0)(>B P ,则错误的是【 】. (A) A 与B 独立 (B) A 与B 独立 (C) )()()(B P A P B A P = (D) A 与B 一定互斥 9. 设事件A 与事件B 互不相容,则【 】.(A )()0P AB = (B )()()()P AB P A P B = (C )()1()P A P B =- (D )()1P AB =10. 设A 、B 为任意两个事件,且,()0A B P B ⊂>, 则下列选项必然成立的是【】. C A D C B C D D D B(A )()()P A P A B < (B ) ()()P A P A B ≤ (C )()()P A P A B > (D )()()P A P A B ≥二、填空题11.设C B A ,,为三个事件,试用C B A ,,表示下列事件:(1)C B A ,,中至少有一个发生 ; (2)C B A ,,中恰好有一个发生 ;(3)C B A ,,三个事件都发生 ; (4)C B A ,,三个事件都不发生 ;(5)B A ,都发生而C 不发生 ; (6)A 发生而C B ,都不发生 ;12. 某人向目标射击三次,事件=i A {第i 次击中},3,2,1=i ,用事件的运算关系表示下列各事件,(1)只击中第一枪 ; (2)只击中一枪 ___________; (3)三枪都未击中 ; (4)至少击中一枪 ; (5)目标被击中 ; (6)三次都击中 ;(7)至少有两次击中 _______________________________; (8)三次恰有两次击中 _____________. 13. 已知事件A 与B 相互对立,则AB = ,A B += ,()P AB = ,()P A B += .14. 已知3.0) (=B A P ,则=+)(B A P .15. 已知事件B A ⊂,9.0)(=+B A P ,3.0)(=AB P ,则=-)(A B P. 16. 设A 与B 为两个事件,且7.0)(=A P ,3.0)(=-B A P ,则=)(AB P .17. 已知事件A 与B 相互独立,4.0)(=A P ,3.0)(=B P ,则=+)(B A P. 18. 设,,A B C 是三个相互独立事件,且5.0)(=A P ,6.0)(=B P ,7.0)(=C P ,则()P A B C ++=. 19. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的.某学生靠猜测能答对4道题的概率是 . 20. 已知在3次独立重复试验中,事件A 至少发生一次的概率为2726,则事件A 在一次试验中A B C ++ABC ABC ABC ++ABC ABC ABC ABC 123A A A 123123123A A A A A A A A A ++123A A A 123A A A ++123A A A ++123A A A 123123123123A A A A A A A A A A A A +++123123123A A A A A A A A A ++∅U 01.07.06.06.058.094()()44151344C21. 设A 与B 相互独立,()0.5,()0.8P A P A B =+=,则()P B =,()P AB = . 22. 若112(),(),(),233P A P B P B A === 则()P A B = .23.投掷两个均匀骰子,出现点数之和为6*24. 设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则)(A P三、计算题24. 设4.0)(=A P ,3.0)(=B P ,6.0)(=+B A P ,求(1))(AB P ;(2)) (B A P ;(3)) (B A P ;(4))(B A P +.25. 已知7.0)(=A P ,()0.9P B =,()0.7P A B =,求()P A B +.四、解答题26. 某城市中发行2种报纸A 与B , 经调查, 在全市人中, 订阅A 报的有45%,订阅B 报的有35%, 同时订阅2种报纸A , B 的有10%. 求只订一种报纸的概率..06.021解:()由()()()()1P A B P A P B P AB +=+-得()()()()P AB P A P B P A B =+-+....;04030601=+-=()()()2P AB P A B =-()()P A P AB =-...;040103=-=()()()31P AB P A B =-+..;10604=-=()()()4P A B P AB +=()1P AB =-...10109=-=解:()()(|)P AB P B P A B =...,0907063=⨯=()()()()P A B P A P B P AB +=+-...0709063=+-..097=解:由题意得().,().,().,04503501P A P B P AB ===()()()P AB AB P AB P AB ∴+=+()()P A B P B A =-+-()()()()P A P AB P B P AB =-+-....0450103501=-+-..06=答:只订一种报纸的概率为..0627. 袋中有10个球,其中7个白球,3个红球,从中任取三个,求(1)全是白球的概率; (2)恰有两个白球的概率;(3)至少一个白球的概率.28. 一副扑克牌52张,每次抽一张,共抽取2次,分两种方式抽取, 求两张都是A 的概率. (1)取后不放回; (2)取后放回.*29.(配对问题)三个学生证混放在一起,现将其随意发给三名学生,试求事件A ={学生都没有拿到自己的学生证}的概率.解:()(全是白球)373101C P C =;724=()(恰有个白球)217331022C C P C =;2140=()(至少有个白球)(全是红球)311P P =-333101C C =-11120=-.119120=解:()(张都是)43125251P A =⨯;1221=()(张都是)44225252P A =⨯.1169=解:()2111323P A =⨯⨯=综合练习二一、单项选择题1. 已知离散型随机变量X 的概率分布表为:则下列计算结果中正确是【 】. (A) {3}0P X == (B) {0}0P X== (C) {1}1P X >-= (D) {4}1P X <= 2. 设随机变量X 的分布列如下,则c =【 】.(A) 0.1 (B) 0.2 (C) 1 (D) 2*3. 设随机变量X 的分布函数()F x ,在下列概率中可表示为}{)(a X P a F <-的是【 】.(A )}{a X P ≤ (B )}{a X P > (C )}{a X P ≥ (D )}{a X P =4. 设随机变量X 的概率密度为:(),020,cx x f x ≤≤⎧=⎨⎩其它 ,则c =【 】.(A) 1 (B) 2 (C)12 (D) 145. 设随机变量X 的概率密度为:()1,080,x x cf x ⎧≤≤⎪=⎨⎪⎩其它 ,则c =【 】.(A) 1 (B) 2 (C) 3 (D) 46. 设随机变量~(3,4)X N -,则随机变量=Y 【】~(0,1)N . (A)43-X (B) 43+X (C) 23-X (D) 23+X 7.设随机变量2~(10,)X N σ,且3.0}2010{=<<X P ,则=<<}100{X P 【】. (A) 0.3 (B) 0.2 (C) 0.1 (D) 0.58. 设随机变量X 服从泊松分布,且已知{}{}02P X P X ===,则参数λ=【 】.(A)12 (B) 2A A C D D A D D9. 设随机变量X 的概率分布律为⎪⎪⎭⎫⎝⎛1.03.06.0210,则E X =()【 】. (A) 1 (B)13(C) 0 (D) 05. 10. 有一批钢球,重量为10克、15克、20克的钢球分别占55%、20%、25%,现从中任取一个钢球,重量X 的期望为【 】. (A )12.1克 (B )13.5克 (C )14.8克 (D )17.6克11. 设随机变量~(,)X B n p ,则下列等式中【】恒成立. (A )12(-X E np 2)=(B )14)12(-=-np X E (C )1)1(4)12(--=-p np X D(D ))1(4)12(p np X D -=-12. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且0E X =(),则【 】. (A) 6,4a b =-= (B) 1,1a b =-= (C) 6,1a b == (D) 1,5a b ==13. 设随机变量~(2,16)X N ,则下列等式中不成立的是【 】.(A )()2E X =(B )()4D X =(C ){16}0P X == (D ) {2}0.5P X ≤=14. 设随机变量X ,且10)10(=X D ,则=)(X D 【 】.(A )101(B ) 1 (C ) 10 (D )100 二、填空题15. 某射手射击目标的命中率为8.0=p ,他向目标射击3枪,用X 表示命中的枪数,则随机变量2=X 的概率为___________.16. 设随机变量~(2,)X B p ,若9{1}25P X ≥=,则p ={2}P X = 17. 设随机变量X 服从泊松分布,且{1}{2}P X P X ===,则参数λ= ,{0}P X == ;{2}P X == ;{4}P X == . 18. 设X 服从()0,5上的均匀分布,则==}5{X P ____,=≤≤}42{X P ______,=≤≤}64{X P. D B D A B A .038422e -223e -0.02.0422e -19. 设每次试验失败的概率为(01)p p <<, 则在3次重复独立试验中成功2次的概率为________________.20. 设随机变量X ,4)13(=+-X E ,则=)(X E .21. 设随机变量)21,100(~B X ,则=)(X E _________; =+)32(X E _________. 22. 已知随机变量X ,且9)3(=X E ,4)2(=X D ,则=)(2X E . 23. 设X 和Y 相互独立,4)(=X D ,2)(=Y D ,则(32)D X Y -= .24. 设X 服从参数为λ的泊松分布,4)(=X D ,则=)(X E ,=λ .25. 设),(~b a U X ,3)(=X E ,3)(=X D ,则=a ,=b .26. 设X 服从指数分布,4)4(=X D ,则=)(X E .27. 设)4,2(~N X ,则=)(X E ,()D X = ,=)(2X E .三、计算题28. 6个零件中有4个正品2个次品,从中任取 3个零件,用X 表示所取出的 3 个零件中正品的个数, 求随机变量X 的概率分布.29.设随机变量X 在[2,5]上服从均匀分布,现对X 进行三次独立观测。