奥数专题之算式迷问题4
- 格式:doc
- 大小:18.50 KB
- 文档页数:3
三年级奥数竖式数字谜40题一、不带解析的竖式数字谜题目(20题)1. 在下面的竖式中,每个汉字代表一个数字,不同的汉字代表不同的数字,求使竖式成立的汉字所代表的数字。
好学生。
+ 好学生。
——————1 3 5 2.2. 下面竖式中的字母A、B、C各代表什么数字?A B C.+ A B C.————7 3 8.3. 在□里填上合适的数字,使竖式成立。
□ 2 □.+ 3 □ 5.——————5 6 8.4. 竖式中的△、□、○各代表一个数字,求出它们使竖式成立的值。
△□○.+ △□○.——————8 9 6.5. 求下面竖式中字母a、b、c所代表的数字。
a b c.+ a b c.——————9 4 2.6. 在下面的竖式中,填出合适的数字。
□ 7 □.+ 2 □ 4.——————4 5 9.7. 下面竖式中的数字被盖住了,只知道每个□代表一个数字,请把竖式补充完整。
□□.+ □□.————1 2 3.8. 竖式中,汉字“数”“学”“奥”“林”“匹”“克”分别代表不同的数字,求它们的值使竖式成立。
数学奥。
+ 林匹克。
——————1 9 9 8.9. 求下面竖式中的数字,使竖式成立。
□ 3 5.+ 4 □ 7.——————7 8 2.10. 在这个竖式中,A、B、C各是多少?A B C.+ 1 2 3.——————4 5 6.11. 请在下面竖式的□里填上合适的数字。
2 □ 7.+ □ 4 □.——————12. 竖式中的符号★、☆、▲各代表一个数字,求出它们的值。
★☆▲.+ ★☆▲.——————7 7 7.13. 下面竖式中的□里应该填什么数字?3 □ 9.+ 2 5 □.——————6 2 8.14. 在下面的竖式中,找出合适的数字填在□里。
□ 1 □.+ 3 □ 8.——————5 4 9.15. 求下面竖式中字母m、n、p所代表的数字。
m n p.+ m n p.——————16. 在竖式中,每个□代表一个数字,请确定这些数字使竖式成立。
算式谜一、知识要点一个完整的算式,缺少几个数字,那就成了一道算式谜。
解算式谜,就是要将算式中缺少的数字补齐,使它成为一道完整的算式。
解算式谜的思考方法是推理加上尝试,首先要仔细观察算式特征,由推理能确定的数先填上;不能确定的,要分几种情况,逐一尝试。
分析时要认真分析已知数字与所缺数字的关系,抓准解题的突破口。
二、精讲精练【例题1】在下面算式的□内,填上适当的数字,使算式成立。
答案:【思路导航】已知被乘数个位是8,积的个位是2,可推出乘数可能是4或9,但积的百位上是7,因而乘数只能是4,被乘数百位是1,那么十位上只能是9。
(算式见右上)练习1:在□里填上适当的数,使算式成立。
【例题2】□里填哪些数字,可使这道除法算式成为一道完整的算式?【思路导航】已知除数和商的某些位上的数,求被除数,可以从商的末位上的数与除数相乘的积想起,5630⨯=,可知被除数个位为0,再想商十位上的数与6的乘积为一位数,这个数只能是1,这样确定商的十位为1,最后被除数十位上的数为369+=。
练习2:在□里填上适当的数,使算式成立。
0659300305661160650300330030解题思路:560750(2)(1)48【例题3】在下面竖式的□里,各填入一个合适的数字,使算式成立。
答案:【思路导航】要求□里填哪些数,我们可以先想被除数的十位上的数是多少。
容易知道,被除数的十位数字比7大,只可能是8或9。
如果十位数字是8,那么商的个位只能是2;如果十位数字是9,那么商的个位是3或4。
所以,这道题有三种填法(见上页)。
练习3: □里可以填哪些数字?【例题4】在下面竖式的□里,各填入一个合适的数字,使算式成立。
答案:【思路导航】通过观察,我们发现,由于余数是7,则除数必须比7大,且被除数个位上应填7;由于商是4时是除尽的,所以被除数十位上应为2,同时3412 , 84=32⨯=⨯,因而除数可能是3或8,可是除数必须比7大,因而除数只能是8,因而被除数百位上是3,而商的百位上为0,商的千位是8或3,所以一共有两种填法(见上)。
算式之谜
算式谜一般是指那些含有未知数字或缺少运算符号的算式。
一般会出现:①数字之间进行加减乘除②文字或字母之间进行加减乘除
③将数字、符号填入等式,或在式子上加括号使等式成立。
例1 在下面算式的括号里填上合适的数。
7 6 ()5
+ () 4 7
()2 1 ()
例2 下面算式中四个字分别代表四个数,你能求出来吗?
新
新年
新年快
+ 新年快乐
2 0 0 1
新=()年=()快=()乐=()
例3 下面竖式中的“车”“兵”“炮”“马”“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?
兵炮马卒
+ 兵炮车卒
车卒马兵卒
例4 将0,1,2,3,4,5,6这七个数字填在圆圈和方格内,每个数字恰好出
例5 把“+”“-”“×”“÷”分别放在适当的圆圈中(每种运算符号只能用
15=15
常用计算规律:5和奇数相乘,积的末尾一定是5;5和偶数相乘,积的末尾一定是0;0乘任何数都得0;1乘任何数还得原数。
例6
×
3 1 0
例7
例8 用数字替换下面算式中的字母,使算式成立。
D C B A
+ A B C D
C D 0
例9 在1,2,3,4,5,6,7,8,9这九个数字之间加上“+”“—”两种运算符号,使其结果等于100(数字之间的顺序不能改变)。
1 2 3 4 5 6 7 8 9=100
例10 在下面的式子里加上括号,使等式成立。
7×9+12÷3—2=23。
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题一、数字迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、数字谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法数字谜【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?0191杯华24+例题精讲知识点拨教学目标5-1-2-1.加减法数字谜【考点】加法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第1题【解析】 由0+“杯”=4,知“杯”代表4(不进位加法);再由191+“华”=200,知“华”代表9.因此,“华杯”代表的两位数是94.【答案】94【例 2】 下面的算式里,四个小纸片各盖住了一个数字。
被盖住的四个数字的总和是多少?1+49【考点】加法数字谜 【难度】2星 【题型】填空 【关键词】华杯赛,初赛,第5题【解析】 149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。
于是,四个数字的总和是14+9=23。
【答案】23【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。
问:被加数至少是多少?【考点】加法数字谜 【难度】3星 【题型】填空 【关键词】第四届,华杯赛,初赛,第2题【解析】 从“被加数的数字和是和的数字和的三倍”这句话,可以推断出两点:①被加数可以被3整除。
1119761606三年级数字之谜练习题1、将数字0,1,3,4,5,6填入下面的□内,使等式成立,每个空格只填入一个数字,并且所填的数字不能重复。
□×□=2=□□÷□2、把数字1-9填在方格里,使等式成立,每个数字只能用一次。
□÷□=□÷□=□□□÷□□将数字1~9分别填在下面9个方格中,使算式成立。
□+□=□ (1) □-□=□ (2) □×□=□ (3) 将数字0~9填到○内,组成等式,每个数字只能用一次。
○+○=○ (1) ○-○=○ (2) ○×○=○○ (3)3、在下面算式的括号里填上合适的数。
4、在下面算式的括号里填上合适的数。
(1) ( )6( )( ) (2) ( )0( )( )+ 2( )1 5 - 3( ) 1 68 0 9 1 4 8 5 75、A 、B 、C 、D 分别代表4个不同的数字,相同的字母代表相同的数字,求使得下面算式成立A 、B 、C 、D 各自代表的数字。
A B C DA C D+ C D1 9 8 96、 下面的符号各表示几?□ 8 □+ □ 6 □ 3 □ □ 1 2 8□ 1 1 + □ 9 □ □ 8 1 □93183916187597、A 、B 、C 、D 分别代表不同的数字,它们各是什么数字时同上面的算式成立?A B C D- C D C A B C8、用0123456789、、、、、、、、、这十个数字组成下面的加法算式,每个数字只许用一次,现已写出3个数字,请把这个算式补齐.9、下面的算式里四个小纸片各盖住一个数字,问被盖住的四个数字的和是多少?94110、下面的算式里,每个方框代表一个数字,问:这6个方框中数字的总和是多少?991111.下面算式中不同的图形代表不同的数,不同的字母代表不同的数,请将算式842中的图形或字母还原成数字。
(1) 1 ○ 2 □ (2) A B C D - □ 1 △ + A B E D 3 ○ ○ E D C A D12、在下列竖式的空格内,各填入一个合适的数字,使竖式成立.977341219413、下面的符号代表几?982541318344114下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
算式谜(一)一、知识要点“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
二、精讲精练【例题1】在下面算式的括号里填上合适的数。
【思路导航】根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习1:(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
【例题2】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习2:【例题3】下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?【思路导航】这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
小学三年级奥数专题四:文字算式谜
专题简析:文字算式是一种数字谜,相同的文字或英文字母应表示相同的数字,不同的文字或英文字母应表示不同的数字。
解答时,要仔细观察算式的特征,认真分析,正确选择解题的突破口,最后通过尝试找寻正确答案。
例题1 下式中,每个字各代表一个不同的数字,其中“心”代表9,请问其他汉字分别代表哪个数字?
思路:“心”代表0,“心”ד心”=9×9=81,所以“少”=1,乘积就是111111111。
即:12345679×9=111111111
试一试:下面每个字代表不同的数字,这些汉字分别代表几?
(1)
(2)
(3)
3、在下面的竖式中,a、b、c、d各代表什么数字?。
2022-2023学年小学四年级思维拓展举一反三精编讲义专题04 算式谜知识精讲“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
典例分析【典例分析01】在下面算式的括号里填上合适的数。
7 6 ()5+ () 4 7()2 1 ()分析:根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
【典例分析02】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
腾飞龙腾飞+巨龙腾飞2 0 0 1分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
【典例分析03】在下面的方框中填上合适的数字。
算式谜【添运算符号】例1 能不能在下式的每个方框中,分别填入“+”或“-”,使等式成立?1□2□3□4□5□6□7□8□9=10(全国第三届“华杯赛”决赛口试试题)讲析:在只有加减法运算的算式中,如果只改变“+”、“-”符号,不会改变结果的奇偶性。
而1+2+……+9=45,是奇数。
所以无论在□中,怎样填“+”、“-”符号,都不能使结果为偶数。
例2 在下列□中分别填上适当的运算符号,使等式成立。
12□34□5□6□7□8=1990(1990年广州市小学数学邀请赛试题)讲析:首先凑足与1990接近的数。
12×34×5=2040,然后调整为:12×34×5-6×7-8=1990。
例3 在下面十八个数字之间适当的地方添上括号或运算符号,使等式成立(中南地区小学数学竞赛试题)讲析:可先凑足与1993接近的数。
1122+334+455+66+7+7=1991。
然后,用后面的二个8和二个9,凑成2,得1122+334+455+66+7+7-8-8+9+9=1993。
【横式填数】例1 如果10+9-8×7÷□+6-5×4=3,那么,“□”中所表示的数是______。
(上海市小学数学竞赛试题)讲析:等式左边能计算的,可先计算出来,得5—56÷□=3,∴□=28。
例2 在两个□中分别填上两个不同的自然数,使等式成立。
(全国第四届“华杯赛”决赛口试试题)讲析:时,等式都能成立。
所以,A=1994;B=1993×1994=3974042。
(1993年全国小学数学奥林匹克初赛试题)讲析:A+B=3。
例4 在下面的○、□和△中分别填上不同的自然数,使等式成立。
(1987年北大友好数学邀请赛试题)讲析:最大为:所以,○、□和△应填的数分别是2、3、9。
例5 在下面的□中,分别填上1、2、3、4、5、6、7、8、9中的一个数字(每个式子中的数字不能重复),使带分数算式:(第一届《从小爱数学》邀请赛试题)讲析:可从整数部分和小数部分分开考虑。
人教版五年级奥数练习:算式谜
例题4 把0、1、2、3、4、5、6、7、8、9这十个数字填入下面的小方格中,使三个等式都成立。
□+□=□
□-□=□
□×□=□□
分析在0~9这十个数中,因为A+0=A,A-0=A,A×0=0,所以,0不能填在加法和减法算式里,也不能填在乘法中作因数,0只能填在积的个位。
因此,第三个等式一定是5×2=10、5×4=20、5×6=30、5×8=40中的一个。
如果是5×2=10,剩下的3、4、6、7、8、9经计算不能使上面两个等式成立。
同样道理,5×6=30和5×8=40这两个算式也应被排除,正确的填法是3+6=9,8-1=7,5×4=20。
练习四
1,将1、2、3、4、5、6、7、8、9九个不同的数字分别填在○中,使下面的三个算式成立。
○+○=○○-○=○○×○=○
2,将0、1、2、3、4、5、6填到下面只有一、两位数的算式中,使等式成立。
○×○=○=○÷○
3,把0、1、2、3、4、5、6填到下面□里,使等式成立。
□×□□□+□+□=□。
奥数专题之算式迷问题4
1、□,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。
那么所填的3个数字之和是多少?
2、在下列各等式的方框中填入恰当的数字,使等式成立,并且算式中的数字关于等号左右对称:
(1)12×23□=□32×21,
(2)12×46□=□64×21,
(3)□8×891=198×8□,
(4)24×2□1=1□2×42,
(5)□3×6528=8256×3□。
3、在算式2×□□□=□□□的6个空格中,分别填入2,3,4,5,6,7这6个数字,使算式成立,并且乘积能被13除尽。
那么这个乘积是多少?
4、在下列算式的□中填上适当的数字,使得等式成立:
(1)6□□4÷56=□0□,
(2)7□□8÷37=□1□,
(3)3□□3÷2□=□17,
(4)8□□□÷58=□□6。
5、在算式40796÷□□□=□99……98的各个方框内填入适当的
数字后,就可以使其成为正确的等式。
求其中的除数。
6、我学数学乐×我学数学乐=数数数学数数学学数学
在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。
如果“乐”代表9,那么“我数学”代表的三位数是多少?
7、□÷(□÷□÷□)=24
在上式的4个方框内填入4个不同的一位数,使左边的数比右边的数小,并且等式成立。
8、(□+□+□+□)÷(□+□+□)=□
将2,3,4,5,6,7,8,9这8个数字分别填入上面算式的方框中,使等式成立。
9、○×○=□=○÷○
将0,1,2,3,4,5,6这7个数字填在上面算式的圆圈和方格内,每个数字恰好出现一次,组成只有一位数和两位数的算式。
问填在方格内的数是多少?
10、□×□=5□ 12+□-□=□把1至9这9个数字分别填入上面两个算式的各个方框中,使等式成立,这里有3个数字已经填好。
11、迎迎×春春=杯迎迎杯,数数×学学=数赛赛数,春春×春春=迎迎赛赛
在上面的3个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
如果这3个等式都成立,那么,“迎+春+杯+数+学+赛”等于多少?
12、迎+春×春=迎春,(迎+杯)×(迎+杯)=迎杯
在上面的两个横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
那么“迎+春+杯”等于多少?
13、□2+□2=□2,□2+□2+□2=□2+□2
在上面两个算式的各个方框中填入1至9中的不同自然数,使这两个等式成立。
那么第二个等式两端的结果是多少?
14、已知A,B,C,D,E,F,G,H,L,K分别代表0至9中的不同数字,且有下列4个等式成立:
K个H
D-K×L=F,E×E=HE,C÷K=G,H×H×……×H=B,求A+C。
15、已知a,b,c,d,e,f,g,h分别代表0至9中的8个不同数字,并且a≠0,e≠0,还知道有等式abcd-efgh=1994,那么两个四位数abcd与efgh之和的最大值是多少?最小值是多少?。