小学四年级奥数之算式谜(一)汇编
- 格式:doc
- 大小:20.50 KB
- 文档页数:9
四年级奥数题精选200题一、算式谜1.在下面的数中间填上“+”、“-”;使计算结果为100。
1 2 3 4 5 6 7 8 9=1002. ABCD+ACD+CD=1989;求A、B、C、D。
3. □4□□-3□89=3839。
4. 1ABCDE×3=ABCDE1;求A、B、C、D、E。
二、找规律5.找找规律填数76;2;75;3;74;4;( ); ( );2;3;4;5;8;7;( );( );2;1;4;1;8;1;( );( )。
6.在( )内填入适当的数1;1;2;3;5;8;( );( );1;1;1;3;5;9;( );( );0;1;2;3;6;11;( );( );7.找规律在( )内填上合适的数(1)0;1;3;8;21;55;( );(2)2;6;12;20;30;42;( );(3)1;2;4;7;11;16;( )。
(1)1;6;7;12;13;18;19;( );8.选择一个锐角三角形的一个内角是44度;其余两个角可能是()36度和100度90度和46度75度和61度18度和96度9.简便计算12×102-2469×56+32×56-5613×94+13×10-13×410.解决问题一个三角形的三个内角分别为∠1;∠2和∠3;∠2=2∠1;∠3=∠2;求∠1=?三、排列组合11.小华、小花、小马三个好朋友要在一起站成一排拍一张照片。
三个人争着要站在排头;无法拍照了。
后来照相师傅想了一个办法;说:"我给你们每人站在不同位置都拍一张;好不好?"这下大家同意了。
那么;照相师傅一共要给他们拍几张照片呢?12.二(1)班的小平、小宁、小刚、小超4人排了一个小块板;准备"六、一"演出。
在演出过程中;队形不断变化。
(都站成一排)算算看;他们在演出小快板过程中;一共有多少种队形变化形式?13."69"顺倒过来看还是"69";我们把这两个顺倒一样的数;称为一对数。
算式谜(一)一、【检查作业与评讲】二、【课前热身】三、【内容讲解】知识点:算式谜“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到冲破口,慢慢实验,分析求解,通常要运用倒推法、凑整法、估值法等。
例1:在下面算式的括号里填上适合的数。
7 6 ()5+ () 4 7()2 1 ()分析:按照题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习(1)在括号里填上适合的数。
(2)在方框里填上适合的数。
6 ()()□0 □□+ 2 ()1 5 -3 ()1 7()0 9 1 2 8 5 6(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
□□+ □□1 6 9例2:下面各式中“巨”、“龙”、“腾”、“飞”别离代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
腾飞龙腾飞+巨龙腾飞2 0 0 1分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习:(1) C D (2)式谜(3)澳门A C D 填式谜澳门归+A B C D +巧填式谜+庆澳门归1 9 8 9 1 9 9 5 1 9 9 9例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?兵炮马卒+ 兵炮车卒车卒马兵卒分析:这道题应以“卒”入手来分析。
第5周算式谜(一)一、知识要点“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
二、精讲精练【例题1】在下面算式的括号里填上合适的数。
【思路导航】根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习1:(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
【例题2】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习2:【例题3】下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?【思路导航】这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
5-1-1-1.算式謎(一)教學目標數字謎從形式上可以分為橫式數字謎與豎式數字謎,從運算法則上可以分為加減乘除四種形式的數字謎。
橫式與豎式亦可以互相轉換,本講中將主要介紹數字謎的一般解題技巧。
主要橫式數字謎問題,因此,會需要利用數論的簡單奇偶性等知識解決數字謎問題。
知識點撥一、基本概念填算符:指在一些數之間的適當地方填上適當的運算符號(包括括弧),從而使這些數和運算符號構成的算式成為一個等式。
算符:指+、-、×、÷、()、[]、{}。
二、解決巧填算符的基本方法(1)湊數法:根據所給的數,湊出一個與結果比較接近的數,再對算式中剩下的數字作適當的增加或減少,從而使等式成立。
(2)逆推法:常是從算式的最後一個數字開始,逐步向前推想,從而得到等式。
三、奇數和偶數的簡單性質(一)定義:整數可以分為奇數和偶數兩類(1)我們把1,3,5,7,9和個位數字是1,3,5,7,9的數叫奇數.(2)把0,2,4,6,8和個位數是0,2,4,6,8的數叫偶數.(二)性質:①奇數≠偶數.②整數的加法有以下性質:奇數+奇數=偶數;奇數+偶數=奇數;偶數+偶數=偶數.③整數的減法有以下性質:奇數-奇數=偶數;奇數-偶數=奇數;偶數-奇數=奇數;偶數-偶數=偶數.④整數的乘法有以下性質:奇數×奇數=奇數;奇數×偶數=偶數;偶數×偶數=偶數.例題精講模組一、巧填算符(一)巧填加減運算符號【例1】在下面算式適當的地方添上加號,使算式成立。
88888888=1000【考點】巧填算符之湊數法【難度】3星【題型】填空【解析】要在八個8之間只添加號,使和為1000,可先考慮在加數中湊出一個較接近1000的數,它可以是888,而888+88=976,此時,用去了五個8,剩下的三個8應湊成1000-976=24,這只要三者相加就行了。
本題的答案是:888+88+8+8+8=1000【答案】888+88+8+8+8=1000【例2】在等號左邊9個數字之間填寫6個加號或減號組成等式:1 2 3 4 56 7 8 9=101【考點】巧填算符之湊數法【難度】3星【題型】填空【關鍵字】迎春杯,中年級,初賽,第2題【解析】(不唯一)123456789101++++-+=或123456789101-+-+++=【答案】123456789101++++-+=或123456789101-+-+++=【例3】在下面的□中填入“+”、“一”,使算式成立:1110987654210=□□□□□□□□3□□【考點】巧填算符之湊數法【難度】3星【題型】填空【關鍵字】希望杯,4年級,初賽,5題【解析】11+10+9-8-7-6-5-4+3-2-1=0.(答案不唯一)【答案】11+10+9-8-7-6-5-4+3-2-1=0.(答案不唯一)【巩固】在下面的□中填入“+”、“一”,使算式成立:11109876321=□□□□□□5□4□□【考點】巧填算符之湊數法【難度】3星【題型】填空【關鍵字】希望杯,六年級,初賽,第2題,6分【解析】11+10+9……3+2=65,所以只要將其中和為32的幾項的加號改成減號即11-10-9-8+7+6-5+4+3+2=1【答案】11-10-9-8+7+6-5+4+3+2=1【例4】在下面算式中合適的地方,只添兩個加號和兩個減號使等式成立。
四年级数学思维训练:算式谜专题简析:“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
算式谜(一)例1:在下面算式的括号里填上合适的数。
能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
小试牛刀1:试一试,你能行的例2:下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
小试牛刀2:试一试,你能行的例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?分析:这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
小试牛刀3:试一试,你能行的例4:将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式。
○×○=□=○÷○分析:要求用七个数字组成五个数,这五个数有三个是一位数,有两个是两位数。
四年级奥数精选200题一、算式谜1. 在下面的数中间填上“+”、“-”,使计算结果为100。
1 2 3 4 5 6 7 8 9=1002. ABCD+ACD+CD=1989,求A、B、C、D。
3. □4□□-3□89=3839。
4. 1ABCDE×3=ABCDE1,求A、B、C、D、E。
二、找规律5.找找规律填数76,2,75,3,74,4,( ), ( );2,3,4,5,8,7,( ),( );2,1,4,1,8,1,( ),( )。
6.在( )内填入适当的数1,1,2,3,5,8,( ),( );1,1,1,3,5,9,( ),( );0,1,2,3,6,11,( ),( );7.找规律在( )内填上合适的数(1)0,1,3,8,21,55,( );(2)2,6,12,20,30,42,( );(3)1,2,4,7,11,16,( )。
(1)1,6,7,12,13,18,19,( );8.选择一个锐角三角形的一个内角是44度,其余两个角可能是()36度和100度 90度和46度 75度和61度 18度和96度9.简便计算12×102-2469×56+32×56-5613×94+13×10-13×410.解决问题一个三角形的三个内角分别为∠1,∠2和∠3,∠2=2∠1,∠3=∠2,求∠1=?三、排列组合11.小华、小花、小马三个好朋友要在一起站成一排拍一张照片。
三个人争着要站在排头,无法拍照了。
后来照相师傅想了一个办法,说:"我给你们每人站在不同位置都拍一张,好不好?"这下大家同意了。
那么,照相师傅一共要给他们拍几张照片呢?12.二(1)班的小平、小宁、小刚、小超4人排了一个小块板,准备"六、一"演出。
在演出过程中,队形不断变化。
(都站成一排)算算看,他们在演出小快板过程中,一共有多少种队形变化形式?13."69"顺倒过来看还是"69",我们把这两个顺倒一样的数,称为一对数。
第五周算式谜(一)专题简析:“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
1例1:在下面算式的括号里填上合适的数。
7 6 () 5+ () 4 7()2 1 ()分析:根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习一(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
6 ()()□0 □□2+2()1 5 -3()1 7()0 9 1 2 8 5 6 (3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
□□+ □□1 6 93例2:下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
腾飞龙腾飞+巨龙腾飞2 0 0 1分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
4练习二(1) C D (2)式谜(3)澳门A C D 填式谜澳门归+A B C D +巧填式谜+庆澳门归1 9 8 9 1 9 9 5 1 9 9 95例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
算式谜(一)一、知识要点“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
二、精讲精练【例题1】在下面算式的括号里填上合适的数。
【思路导航】根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习1:(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
【例题2】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习2:【例题3】下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?【思路导航】这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
第一讲乘除法数字谜(一)
专题简析:
解决算式谜题,关键是找准突破口,推理时应注意以下几点:
1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;
2.利用列举和筛选相结合的方法,逐步排除不合理的数字;
3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;
4.算式谜解出后,要验算一遍。
例1.在下面的方框中填上合适的数字。
分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一。
1、乘除法算式谜[问题一]在右面的□里填上合适的数字。
想:因为积的个位是6,那么两个因数个位相乘的积的个位也是6;一个因数十位上是6,如果它与比1大的数相乘,所得的积肯定是三位数,但两次乘得的积都是两位数,那另一个因数的十位和个位都只能填1。
解:[试一试]1、在下面的□里填上合适的数字。
2、在下面的□里填上合适的数字。
[问题二]下列算式中不同的汉字代表不同的数字,相同的汉字代表相同的数字。
它们各代表什么数字时算式成立。
想:(1)由积的个位是2,一个因数是3,推出另一个因数的各位数“杯”是4。
(2)4×3=12,在积的个位上写2,向十位进1,因为积的十位数“杯”为4,所以“金”×3的积的个位数1,由此“庚”是7。
(4)7×3=21,在积的百位上写1,向千位进2,因为积的千位数为7,所以“罗”×3的积的末位数应是5,由此“罗”是5。
(5)由积的万位数“罗”是5,可推得“华”为8。
解:答:华=8,罗=5,庚=7,金=1,杯=4。
[试一试]1、下面算式中的a、b、c、d这四个字母各应代表什么数字?2、下式中“数学俱乐部”分别代表哪些数字?[问题三]右面的乘法算式中,算、式、谜各代表一个互不相同的数字。
它们各代表什么数字时算式成立。
想:由算式谜×谜=□□□谜,可知谜不等于1或0,因此移只等于5或6。
(1)若谜=5,由于算式谜×算的乘积是三位数,所以“算”不大于3,且算式谜×算的乘积的百位上的数字大于等于3小于等于5,所以算=2。
由于算式谜×式=□□5,可知式是奇数,且小于5。
(2)若谜=6,同理,算式谜×算的乘积的百位上的数字,必须大于等于4且小于等于6,所以算=2,由于2式6×式=□□6,所以式=1,但216×216=46656,不符合题意。
解:如右图。
答:当算=2,式=3,谜=5时,算式成立。
第五周算式谜(一)
专题简析:
“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
例1:在下面算式的括号里填上合适的数。
7 6 () 5
+ () 4 7
()2 1 ()
分析:根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习一
(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
6 ()()□0 □□
+2()1 5 -3()1 7
()0 9 1 2 8 5 6 (3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
□□
+ □□
1 6 9
例2:下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
腾飞
龙腾飞
+巨龙腾飞
2 0 0 1
分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习二
(1) C D (2)式谜(3)澳门
A C D 填式谜澳门归
+A B C D +巧填式谜+庆澳门归
1 9 8 9 1 9 9 5 1 9 9 9
例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?
兵炮马卒
+ 兵炮车卒
车卒马兵卒
分析:这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
练习三
(1) B A (2) A B C (3)炮兵兵炮
A B + C D C -兵马兵
+ A B A B C D 马兵马
C A A
例4:将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式。
○×○=□=○÷○
分析:要求用七个数字组成五个数,这五个数有三个是一位数,有两个是两位数。
显然,方格中的数和被除数是两位数,其他是一位数。
0和1不能填入乘法算式,也不能做除数。
由于2×6=12(2将出现两次),2×5=10(经试验不合题意),2×4=8(7个数字中没有8),2×3=6(6不能成为商)。
因此,0、1、2只能用来组成两位数。
经试验可得:3×4=12=6=÷5
练习四
(1)将0、1、3、5、6、8、9这七个数字填在圆圈和方筐里,每个数字恰好出现一次组成一个整数算式。
○×○=□=○÷○
(2)填入1、2、3、4、7、9,使等式成立。
□÷□=□÷□
(3)用1、2、3、7、8这五个数字可以列成一个算式:
(1+3)×7=28。
请你用0、1、2、3、4、6这六个数字列成一个算式。
例5:把“+、-、×、÷”分别放在适当的圆圈中(运算符号只能用一次),并在方框中填上适当的数,使下面的两个等式成立。
36○0○15=15 21○3○5=□
分析:先从第一个等式入手,等式右边是15,与等式左边最后一个数15相同,因为0+15=15,所以,只要使36与0的运算结果为0就行。
显然,36×0+15=15
因为第一个等式已填“×”、“+”,在第二个等式中只有“-”、“÷”可以填,题目要求在方框中填整数,已知3不能被5整除,所以“÷”只能填在21与3之间,而3与5之间填“-”。
练习五
(1)把“+、-、×、÷”分别填入下面的圆圈中,并在方框中填上适当的整数,使下面每组的两个等式成立。
①9○13○7=100 14○2○5=□
②17○6○2=100 5○14○7=□
(2)将1 ~ 9这九个数字填入□中(每个数字只能用一次),组成三个等式。
□+□=□□-□=□□×□=□。