北师大8年级数学(上) 第 9 讲 一次函数(一)
- 格式:doc
- 大小:255.65 KB
- 文档页数:4
《一次函数的应用(1)》教案教学内容北师大版八年级上册《一次函数的应用(1)》P89-90. 教学目标1、了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.2、经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法.3、经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.教学重点会根据条件用待定系数法求解一次函数的表达式.教学难点用待定系数法求解方程以及数形结合的使用.教学过程一、复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.二、初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.(1)写出v与t之间的关系式.(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结.这个问题涉及到数学对象的一个本质概念——基本量.由于一次函数有两个基本量k、b,所以需要两个条件来确定.三、深入探究内容1:例1在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数,一根弹簧不挂物体时长14.5cm;当所挂物体的质量为3kg时,弹簧长16cm.写出y与x之间的关系式,并求所挂物体的质量为4kg时弹簧的长度.解:设b=,根据题意,得y+kx14.5=b,①16=3k+b,②将5.14b代入②,得5.0=k.=所以在弹性限度内,5.14y.=x5.0+当4=x时,5.16⨯=y(厘米).+5.1445.0=即物体的质量为4千克时,弹簧长度为5.16厘米.目的:引例中设置的是利用函数图象求函数表达式,这个例子选取的是弹簧的一个物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步体会函数表达式是刻画现实世界的一个很好的数学模型.这道例题关键在于求一次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而解.教学注意事项:学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到y与x间的关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同.内容2:想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.求函数表达式的步骤有:1、设一次函数表达式.2、根据已知条件列出有关方程.3、解方程.4、把求出的k,b值代回到表达式中即可.目的:对求一次函数表达式方法的归纳和提升.在此基础上,教师可指出这种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法.四、反馈练习内容:1、如图,直线l是一次函数b=的图象,求它的表达kxy+式.2、若一次函数b=2的图象经过A(-1,1),则=b___xy+_,该函数图象经过点B(1,5).3、如图,直线l是一次函数b=的图象,填空:kxy+(1)=b____,=k____.(2)当30x时,=y____.=x____.(3)当30y时,==4、已知直线l与直线x=平行,且与yy2-轴交于点(0,2),求直线l的表达式.目的:四个练习旨在对学生求一次函数表达式的掌握情况进行反馈,以便及时调整教学进程.效果:四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.五、课时小结内容:总结本课知识与方法1、本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出k,b 的值,从而确定函数解析式.其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;(4)把k,b代回表达式中,写出表达式.2、本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.六、作业布置习题4.5。
北师大版数学八年级上册《1 函数》教案1一. 教材分析北师大版数学八年级上册《1 函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用进行初步了解的一节课。
本节课的内容包括函数的定义、函数的性质和函数图像的识别。
通过本节课的学习,学生将对函数有更深入的认识,为今后的数学学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、不等式等基础知识,具备了一定的逻辑思维能力和抽象思维能力。
但函数概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要运用生动形象的教学手段,帮助学生建立函数概念,引导学生理解函数的性质和图像。
三. 教学目标1.了解函数的定义,掌握函数的基本性质。
2.能够识别和绘制简单的函数图像。
3.培养学生的逻辑思维能力和抽象思维能力。
4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.函数的定义及其性质。
2.函数图像的识别和绘制。
五. 教学方法1.情境教学法:通过生活实例引入函数概念,激发学生兴趣。
2.讲授法:讲解函数的定义、性质和图像,引导学生理解。
3.实践操作法:让学生动手绘制函数图像,加深对函数的理解。
4.小组讨论法:分组讨论函数问题,培养学生的合作意识。
六. 教学准备1.教学PPT:包含函数的定义、性质、图像及实例。
2.练习题:包括简单函数的识别和绘制。
3.教学用具:黑板、粉笔、直尺、圆规等。
七. 教学过程1.导入(5分钟)通过一个生活实例,如温度随时间的变化,引入函数的概念。
引导学生思考:如何表示这种变化关系?引出函数的定义。
2.呈现(10分钟)讲解函数的定义、性质和图像,引导学生理解。
用PPT展示函数图像,让学生观察、分析。
3.操练(10分钟)让学生动手绘制一些简单函数的图像,如正比例函数、一次函数、二次函数等。
在绘制过程中,引导学生掌握函数图像的特点。
4.巩固(10分钟)出示一些练习题,让学生识别和绘制函数图像。
教师巡回指导,解答学生疑问。
一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。
根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x 与y 的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢?[生]①列表;②描点;③连线.三、做一做(1)作出一次函数y=-2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5.[生]列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.[师]由此看来,满足函数关系式y =-2x +5的x ,y 所对应的点(x ,y )都在一次函数y = -2x +5的图象上;反过来,一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x ,纵坐标y 都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线. [师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )[生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B )[生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7; 当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上.3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号.∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计。
第 9 讲
考点一:函数的定义
一次函数(一)
的值与之对应,
一般地,在某一变化过程中有两个变量 x 与 y,如果给定一个 x 值,y 都有 那么我们称 y 是 x 的函数,其中 x 是 ,y 是 。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分 式(分母不为 0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
1. 下列图象中,表示 y 是 x 的函数的个数有( A.1 个 B.2 个 C.3 个 ) D.4 个
2. 下列说法正确的是(
)
x2 A.变量 x,y 满足 x+3y=1,则 y 可以是 x 的函数; B.y= 与 y=x 表示同一个函数; x
C.变量 x,y 满足|y|=x,则 y 是 x 的函数; 3. 函数 y=2x-3 中,自变量 x 的取值范围是 函数 y 函数 y 函数 y
3 中,自变量 x 的取值范围是 1 x
D.变量 x,y 满足 y 2 =x,则 y 是 x 的函数。
; ; ; .
4 x 中,自变量 x 的取值范围是
x 1 中,自变量 x 的取值范围是 x2
4. 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离 y 与时间 x 的关系的大致图象是( )
A
B
C
D
第5题
5. 甲、乙两人在一次百米赛跑中,路程 s(米)与赛跑时间 t(秒)的关系如图所示,则下列说法正 确的是( ) B.甲先到达终点 C.乙用的时间短 D.乙比甲跑的路程多
A.甲、乙两人的速度相同
6. 洗 衣 机 在 洗 涤 衣 服 时 , 每 浆 洗 一 遍 都 经 历 了 注 水 、 清 洗 、 排 水 三 个 连 续 过 程 ( 工 作 前
第 1 页 共 1 页
洗 衣 机 内 无 水 ) . 在 这 三 个 过 程 中 , 洗 衣 机 内 的 水 量 y( 升 ) 与 浆 洗 一 遍 的 时 间 x( 分 ) 之间函数关系的图象大致为( )
A
B
C
D
第7题
7. 小刚、小强两人进行百米赛跑,小刚比小强跑得快,如果两人同时跑,小刚肯定赢,现在小刚让 小强先跑若干米,图中的射线 a,b 分别表示两人跑的路程与小刚追赶时间的关系,根据图象判断: 小刚的速度比小强的速度每秒快( A.1米 B.1.5米 ) D.2.5米
C.2米
8. 某 兴 趣 小 组 做 实 验 , 将 一 个 装 满 水 的 啤 酒 瓶 倒 置 ( 如 图 ) , 并 设 法 使 瓶 里 的 水 从 瓶 中 匀速流出.那么该倒置啤酒瓶内水面高度 h 随水流出的时间 t 变化的图象大致是( )
B. A.
C.
D.
9. 小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详, 父子高兴把家还. ” 如果用纵轴 y 表示父亲与儿子行进中离家的距离, 用横轴 x 表示父亲离家的时间, 那么下面的图象与上述诗的含义大致吻合的是( )
A.
B.
C.
D.
考点二:正比例函数和一次函数的概念
一般地,若两个变量 x,y 间的关系可以表示成 y kx b (k,b 为常数,k 0)的形式,则称 y 是 x 的一次函数(x 为 ,y 为 )。
特别地,当一次函数 y kx b 中 b=0 时(即 y kx )(k 为常数,k 0),称 y 是 x 的正比例函数。
1. 下列问题中,两个变量成正比例的是(
)
第 2 页 共 2 页
A.正方形的面积与它的边长 C.圆的面积和它的半径
B.一条边长确定的长方形,其周长与另一边长 D.半径确定的圆中,弧长与该弧所对的圆心角的度数 ) D.a,b 可取任意实数
2. 函数 y=(2-a)x+b-1 是正比例函数的条件是( A.a≠2 B.b=1 ) C.y=
C.a≠2 且 b=1
3. 下列函数中,一次函数是( A. y=8x 2 ; B.y=x+1;
8 ; x
D.y=
1 . x 1
4. 下列函数:①y=x;②y= A.1 B.2
x 4 ;③y= ;④y=2x+1,其中一次函数的个数是( 4 x
)
C.3 )
D.4
5. 下列说法中不正确的是(
A.一次函数不一定是正比例函数 C.正比例函数是特殊的一次函数 6. 如果点 A(-2,a)在函数 y= 7. 若函数 y = (3 −m ) x
m 2 8
B.不是一次函数就一定不是正比例函数 D.不是正比例函数就一定不是一次函数 . . 时 ,它 是 正 比 例 函 数 .
1 x +3的图象上,那么 a 的值等于 2
是正比例函数,则常数 m 的值是 时,它是一次函数,当 k=
8. 已知函数 y=(k-1)x+k2 -1,当 k
考点三:直接运用一次函数的图像与性质
y x o
y x
o
1. 一 次 函 数 y=x-2 的 图 象 大 致 是 (
)
A.
B.
C.
D. x2. .
2. 一 次 函 数 y=-x+3 的 图 象 上 有 两 点 A( x 1 , y 1 )、 B( x 2 , y 2 ),若 y 1 < y 2 ,则 x 1 3. 已 知 正 比 例 函 数 y= ( 3k-1 ) x, 若 y 随 x 的增大而增大, 则 k 的取值范围是
4. 已 知 一 次 函 数 y=-x+2 的 图 象 是 (
)
第 3 页 共 3 页
A.
B.
C.
D.
5. 下列函数中,y 随 x 的增大而减少的函数是( A.y=2x+8 B.y=-2+4x
) D.y=4x
C.y=-2x+8 )
6. 对于函数 y=-3x+1,下列结论正确的是( A.它的图象必经过点(-1,3) C.当 x>1 时,y<0
B.它的图象经过第一、二、三象限 D.y 的值随 x 值的增大而增大 )
7. P 1 (x 1 , y 1 ) , P 2 (x 2 , y 2 ) 是 正 比 例 函 数 y=-x 图 象 上 的 两 点 , 则 下 列 判 断 正 确 的 是 ( A. y1> y2 B. y1< y2 C. 当 x1< x2时 , y1> y2 D. 当 x1< x2时 , y1< y2
8. 若 一 次 函 数 y= ( 2-m ) x-2 的 函 数 值 y 随 x 的 增 大 而 减 小 , 则 m 的取值范围是
.
第 4 页 共 4 页
。