18学年下学期高二第二次质量调研考试数学(理)试题(附答案)
- 格式:doc
- 大小:722.00 KB
- 文档页数:9
华中师大一附中2018—2019学年度下学期期中检测高二年级理科数学试题时限:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,复数=3+i z ,则表示复数1+iz的点在 A .第一象限B .第二象限C .第三象限D .第四象限2.一物体的运动方程是21(2s at a =为常数),则该物体在0t t =时的瞬时速度是A .012at B .02at C .0at D .0at -3.曲线sin =+xy x e 在点(0,1)处的切线斜率是 A .1- B .1 C .2 D .2-4.已知三个正态分布密度函数22()2()2i i x i ix μσϕπσ--=(x ∈R ,=1,2,3i )的图象如图所示,则A .123μμμ<=,123σσσ=>B .123μμμ<=,123σσσ=<C .123μμμ>=,123σσσ=>D .123μμμ>=,123σσσ=< 5.设01p <<,随机变量X 的分布列是X0 1 2P 2p 12p -12则当p 在(0,1)内增大时, A .()E X 增大B .()E X 减小C .()E X 先增大,后减小D .()E X 先减小,后增大6.设0()sin f x x =,10()()f x f x '=,21()()f x f x '=,…,1()()n n f x f x +'=,n ∈N ,则2019()f x = A .sin x -B .sin xC .cos x -D .cos x7.一次考试中,某班级数学成绩不及格的学生占20%,数学成绩和物理成绩都不及格的学生占 15%,已知该班某学生数学成绩不及格,则该生物理成绩也不及格的概率为 A .0.15B .0.2C .0.3D .0.758.设函数()f x 在定义域内可导,()y f x =的图象如图所示, 则导函数()f x '的图象可能是A B C D9.分别抛掷2枚质地均匀的硬币,设“第1枚为正面”为事件A ,“第2枚为正面”为事件B ,“2枚结果相同”为事件C ,有下列三个命题: ①事件A 与事件B 相互独立; ②事件B 与事件C 相互独立; ③事件C 与事件A 相互独立. 以上命题中,正确的个数是 A .0B .1C .2D .310.若130()3()d f x x f x x =+⎰,则10()d f x x =⎰A .1-B .13-C .14-D .18-11.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围是A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-12.若函数()f x 满足2()2()e x xf x f x x '-=,2(2)2e f =-,则当0x >时,()f xA .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值又无极小值二、填空题:本大题共4小题,每小题5分,共20分. 13.设复数z 满足1i 1zz+=-,则||z = . 14.如图,CDEF 是以O 为圆心,半径为1的圆的内接正方形,点H 是劣弧EF 的中点,将一颗豆子随机地扔到圆O 内,用A 表示事件“豆子落在扇形OCFH 内”,B表示事件“豆子落在正方形CDEF 内”,则(|)P B A = .15.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布)50,1000(2N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.定海神针在变形时永远保持为圆柱体,其底面半径原为12cm 且以每秒1cm 的等速率缩短,而长度以每秒20cm 的等速率增长.已知神针之底面半径只能从12cm 缩到4cm 为止,且知在这段变形过程中,当底面半径为10cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为 cm . 三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知1i z =+,a ,b 为实数. (1)若234z z ω=+-,求||ω; (2)若221i 1z az b z z ++=--+,求a ,b 的值.18.(12分)袋中有20个大小相同的球,其中标号为0的有10个,标号为n 的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号.求X 的分布列、数学期望和方差.19.(12分)已知221()(ln )x f x a x x x-=-+,a ∈R .求()f x 的单调增区间.20.(12分)Monte-Carlo 方法在解决数学问题中有广泛的应用.下面利用Monte-Carlo 方法来估算定积分140d x x ⎰.考虑到140d x x ⎰等于由曲线4y x =,x 轴,直线1x =所围成的区域M 的面积,如图,在M 外作一个边长为1正方形OABC .在正方形OABC 内随机投掷n 个点,若n 个点中有m 个点落入M 中,则M 的面积的估计值为mn,此即为定积分140d x x ⎰的估计值.现向正方形OABC 中随机投掷10000个点,以X 表示落入M 中的点的数目.(1)求X 的期望()E X 和方差()D X ;(2)求用以上方法估算定积分140d x x ⎰时,140d x x ⎰的估计值与实际值之差在区间(-0.01,0.01)的概率.21.(12分)已知函数2()ln(1)(0)(0)2f x x f x f x '=+--+.(1)求)(x f 的解析式; (2)若2()f x x ax b ≤++,求32b a -+的最小值. 22.(12分)已知函数2()e l n x f x a x b x =+,曲线()y f x =在(1,(1))f 处的切线方程为(3e 1)(1)e y x =--+.(e 2.71828=2e 1.649,e 7.389≈,e0.495≈1.640,e-0.703≈0.495)(1)求a ,b 的值; (2)证明:11()10f x >.华中师大一附中2018—2019学年度下学期期中检测高二理科数学参考答案一、选择题:本大题共12小题,每小题5分,共60分.1-5.DCCBB6-10.CDADD11-12.AB二、填空题:本大题共4小题,每小题5分,共20分.13.114.2π15.91616.4三、解答题:本大题共6小题,共70分.17.(1)2(1i)3(1i)41i ω=++--=--,所以||2ω=5分 (2)由条件,得()(2)i1i ia b a +++=-,所以()(2)i 1i a b a +++=+所以121a b a +=⎧⎨+=⎩,解得12a b =-⎧⎨=⎩……………………………………………………………………………5分18.X 的分布列为……………………………………………………………………………………………………………………4分∴11131()01234 1.522010205E x =⨯+⨯+⨯+⨯+⨯=……………………………………………………4分∴2222211131()(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5)22010205D x =-⨯+-⨯+-⨯+-⨯+-⨯ 2.75=……………………………………………………………………………………………………………………4分19.()f x 的定义域为(0,)+∞,223322(2)(1)'()a ax x f x a x x x x--=--+=…………………………………2分 当0a ≤时,若(0,1)x ∈,则'()0f x >,()f x 单调递增…………………………………………………2分 当0a >时,3(1)22'()a x f x x x x a a ⎛-=⎝(i)当02a <<21a> 当(0,1)x ∈或2,x a ⎫∈+∞⎪⎪⎭时,'()0f x >,()f x 单调递增………………………………………2分 (ii)当2a =21a,在(0,)+∞上,'()0f x ≥,()f x 单调递增……………………………………2分 (iii)当2a >时,201a<当2x a ⎛∈ ⎝或(1,)x ∈+∞时,'()0f x >,()f x 单调递增………………………………………2分 综上所述,当0a ≤时,()f x 在(0,1)上单调递增当02a <<时,()f x 在(0,1),2,a ⎫+∞⎪⎪⎭上单调递增 当2a =时,()f x 在(0,)+∞上单调递增当2a >时,()f x 在2x a ⎛∈ ⎝,(1,)+∞上单调递增……………………………………………………2分20.(1)依题意,每个点落入M 中的概率为1400.2p x dx ==⎰,~(100000.2)X B ,所以()100000.22000E X =⨯=,()100000.20.81600D X =⨯⨯=……………………………6分 (2)依题意,所求概率为0.010.20.0110000X P ⎛⎫-<-< ⎪⎝⎭2099100001000019010.010.20.01(19002100)0.20.810000tt t t X P P X C -=⎛⎫-<-<=<<=⨯⨯ ⎪⎝⎭∑209919001000010000100001000000.20.80.20.80.99330.00620.9871tt ttt t t t CC --===⨯⨯-⨯⨯=-=∑∑………………………………………………………………………………………………………………………12分21.(1)由已知得(0)2f =,2()ln(1)(0)22f x x f x x '=+--+从而1()2(0)21f x f x x ''=--+,(0)1f '=- 于是2()ln(1)22f x x x x =++-+由于2121()2211x f x x x x -'=+-=++,故当2(1,)2x ∈--时,()0f x '>;当2(22x ∈-时,()0f x '<;当2()x ∈+∞时,()0f x '> 从而()f x 的单调增区间为2(1,-和2)+∞ 单调减区间为22(22-……………………………………………………………………………………6分(2)由已知条件得ln(1)(2)2b x a x ≥+-++设()ln(1)(2)2g x x a x =+-++,则1()(2)1g x a x '=-++ ①若20a +≤,则()0g x '>,()g x 无最大值 ②若20a +>,则当1(1,1)2x a ∈--+时,()0g x '>;当1(1,)2x a ∈-+∞+时,()0g x '< 从而()g x 在1(1,1)2a --+上单调递增,在1(1,)2a -+∞+上单调递减故()g x 有最大值1(1)3ln(2)2g a a a -=+-++所以2()f x x ax b ≤++等价于3ln(2)b a a ≥+-+ 因此3ln(2)22b a a a a --+≥++ 设ln(2)()2a a h a a -+=+,则21ln(2)()(2)a h a a ++'=+ 当12,2ea ⎛⎫∈-- ⎪⎝⎭时,()0h a '<;当12,e a ⎛⎫∈-+∞⎪⎝⎭时,()0h a '> 所以()h a 在12,2e⎛⎫-- ⎪⎝⎭上单调递减,在12,e ⎛⎫-+∞ ⎪⎝⎭上单调递增 故()h a 有最小值1(2)1e eh -=- 从而31e 2b a -≥-+当且仅当12,e3ln(2),a b a a ⎧=-⎪⎨⎪=+-+⎩即12,e 12,e a b ⎧=-⎪⎪⎨⎪=+⎪⎩时,32b a -+的最小值为1e -……………………………………………………………………………………………………12分22.(1)函数()f x 的定义域为(0,)+∞,()2(1)e x b f x ax x x'=++由题意可得(1)e=e f a =,(1)3e 3e 1f a b '=+=-故1a =,1b =-………………………………………………………………………………………………4分 (2)解法一:由(1)知,2()e ln x f x x x =-,从而11()10f x >等价于152211ln e 10xx x x+>设函数12e ()x g x x=,则321()()e 2x g x x x -'=-所以当1(0,)2x Î时,()0g x '<;当1(,)2x ∈+∞时,()0g x '>故()g x 在1(0,)2单调递减,在1(,)2+∞单调递增,从而()g x 在(0,)+∞的最小值为121()2e 2g =设函数5211ln 10()x h x x+=,则7275()(ln )42h x x x -'=-+所以当710(0,e )x -Î时,()0h x '>;当710(e,)x -∈+∞时,()0h x '<故()h x 在710(0,e)-单调递增,在710(e ,)-+∞单调递减,从而()h x 在(0,)+∞的最大值为771042(e)e 5h -=因为5625e 4>54e 2172422e e 5> 综上,当0x >时,()()g x h x >,即11()10f x >…………………………………………………………12分分。
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
2024-2025学年广东省清远市高二上学期期中联合学业质量监测考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.将1枚质地均匀的硬币抛掷2次,恰好出现1次正面向上的概率是( )A. 0B. 14C. 12D. 342.直线3x+3y+3=0的倾斜角为( )A. 30∘B. 60∘C. 120∘D. 150∘3.已知空间向量a=(−2,1,m),b=(1,−1,0),c=(−1,2,n),若a、b、c共面,则m+n=( )A. −1B. 0C. 1D. 24.已知直线l1:x−y+3=0,l0:x−y−1=0,若l1关于l0对称的直线为l2,则直线l2的方程是( )A. x−y−3=0B. x−y+5=0C. x−y+3=0D. x−y−5=05.已知过点P(4,m)(m≠0)作圆C:x2+y2−4y=0的两条切线PA,PB,切点分别为A,B,则直线AB必过定点( )A. (2,1)B. (1,2)C. (1,1)D. (1,12)6.若直线ax+by−1=0(a>0,b>0)平分圆(x−1)2+(y−1)2=4,则1a +2b的最小值是( )A. 2B. 5C. 3+22D. 427.在平行六面体(底面是平行四边形的棱柱)ABCD−A1B1C1D1中,有∠A1AB=∠A1AD=∠BAD=60∘,AB=AD=2,AC1=22,则AA1=( )A. 22B. 2C. 2D. 48.已知圆C1:x2+y2−2x−4y−7=0和圆C2:(x+3)2+(y+1)2=12交于两点,点P在圆C1上运动,点Q在圆C2上运动,则下列说法正确的是( )A. 圆C1和圆C2关于直线8x+6y−5=0对称B. 圆C1和圆C2的公共弦长为223C. |PQ|的取值范围为[0,5+23]D. 若M为直线x−y+8=0上的动点,则|PM|+|MQ|的最小值为109−43二、多选题:本题共3小题,共18分。
2022-2023学年四川省成都市高二下学期期中考试数学(理)试题一、单选题1.已知i 为虚数单位,复数1iiz -=,则z =()A .1B .2C .3D .2【答案】B【分析】由复数的四则运算可得1i z =--,再由复数模的计算公式求解即可.【详解】解:因为21i (1i)i(i i )1i i i iz --⋅===--=--⋅,所以22(1)(1)2z =-+-=.故选:B.2.如图茎叶图记录了甲乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则运动员乙成绩的方差为()A .2B .3C .9D .16【答案】A【分析】根据甲、乙二人的平均成绩相同求出x 的值,再根据方差公式求出乙的方差即可.【详解】因为甲乙二人的平均成绩相同,所以8789909193888990919055x+++++++++=,解得2x =,故乙的平均成绩8889909192905++++=,则乙成绩的方差222222[(8890)(8990)(9090)(9190)(9290)]25s -+-+-+-+-==.故选:A.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,则双曲线C 的离心率为()A .2B .2C .3D .5【答案】D 【分析】先求得ba,进而求得双曲线的离心率.【详解】依题意,双曲线的一条渐近线方程为20,2x y y x -==,所以2222222,15b c c a b b e a a a a a +⎛⎫=====+= ⎪⎝⎭.故选:D4.已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是()A .若m α ,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α ,m n ⊥,则n α⊥【答案】B【分析】根据空间直线与平面间的位置关系判断.【详解】对于A ,若m α ,n α∥,则m 与n 相交、平行或异面,故A 错误;对于B ,若m α⊥,n α⊥,由线面垂直的性质定理得m n ∥,故B 正确;对于C ,若m α⊥,m n ⊥,则n α∥或n ⊂α,故C 错误;对于D ,若m α ,m n ⊥,则n 与α相交、平行或n ⊂α,故D 错误.故选:B .5.“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由直线()34420m x y -+-=与直线220mx y +-=平行可求得m 的值,集合充分条件、必要条件的定义判断可得出结论.【详解】若直线()34420m x y -+-=与直线220mx y +-=平行,则()()23442342m mm m ⎧-=⎪⎨--≠-⎪⎩,解得4m =.因此,“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的充要条件.故选:C.6.执行该程序框图,若输入的a 、b 分别为35、28,则输出的=a ()A .1B .7C .14D .28【答案】B【分析】根据程序框图列举出循环的每一步,即可得出输出结果.【详解】第一次循环,35a =,28b =,a b ¹成立,a b >成立,则35287a =-=;第二次循环,7a =,28b =,a b ¹成立,a b >不成立,则28721b =-=;第三次循环,7a =,21b =,a b ¹成立,a b >不成立,则21714b =-=;第四次循环,7a =,14b =,a b ¹成立,a b >不成立,则1477b =-=.7a b ==,则a b ¹不成立,跳出循环体,输出a 的值为7.故选:B.7.函数()()22e xf x x x =-的图像大致是()A .B .C .D .【答案】B【分析】由函数()f x 有两个零点排除选项A ,C ;再借助导数探讨函数()f x 的单调性与极值情况即可判断作答.【详解】由()0f x =得,0x =或2x =,选项A ,C 不满足,即可排除A ,C由()()22e x f x x x =-求导得()()22e xx x f '=-,当2x <-或2x >时,()0f x ¢>,当22x -<<时,()0f x '<,于是得()f x 在(),2-∞-和()2,+∞上都单调递增,在()2,2-上单调递减,所以()f x 在2x =-处取极大值,在2x =处取极小值,D 不满足,B 满足.故选:B8.已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).若直线323x y +=与曲线C 相交于不同的两点,A B ,则AB 的值为A .12B .32C .1D .3【答案】C【详解】分析:消参求出曲线C 的普通方程:22(1)1x y -+=,再求出圆心(1,0)到直线的距离d ,则弦长222AB r d =-.详解:根据22cos sin 1θθ+=,求出曲线C 的普通方程为22(1)1x y -+=,圆心(1,0)到直线的距离3233231d -==+,所以弦长222AB r d =-321=14=-,选C.点睛:本题主要考查将参数方程化为普通方程,直线与圆相交时,弦长的计算,属于中档题.9.过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【答案】A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A10.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是A .413B .21313C .926D .31326【答案】A【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒=,所以213DF AB =.所以所求概率为224=1313DEF ABC S S ∆∆⎛⎫= ⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,4=AD ,E 为PC 的中点,则面PCD 与直线BE 所成角的余弦值为()A .35B .23015C .2515D .10515【答案】D【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得面PCD 与直线BE 所成角的余弦值.【详解】因为PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()2,0,0B 、()2,4,0C 、()0,4,0D 、()002P ,,、()1,2,1E ,设平面PCD 的法向量为(),,n x y z = ,()2,0,0DC =uuu r,()0,4,2DP =-uuu r ,则20420n DC x n DP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取1y =,可得()0,1,2n = ,()1,2,1BE =- ,所以,4230cos ,1565BE n BE n BE n⋅===⨯⋅,所以,22230105sin ,1cos ,11515BE n BE n ⎛⎫=-=-= ⎪ ⎪⎝⎭,因此,面PCD 与直线BE 所成角的余弦值为10515.故选:D.12.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是()①01a <<;②122x x a +<;③121x x ⋅>;④2111x x a->-;A .1个B .2个C .3个D .4个【答案】C【分析】由()0f x =可得1ln xa x+=,设()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,利用导数分析函数()g x 的单调性与极值,数形结合可判断①;构造函数()()2h x f x f x a ⎛⎫=-- ⎪⎝⎭,其中10x a <<,分析函数()h x 的单调性,可判断②③;分析出1211e x x <<<、1210x x a<<<,利用不等式的基本性质可判断④.【详解】由()0f x =可得ln 1x a x+=,令()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,()2ln xg x x '=-,由()0g x '>可得01x <<,即函数()g x 的单调递增区间为()0,1,由()0g x '<可得1x >,即函数()g x 的单调递减区间为()1,+∞,且当10e x <<时,()ln 10x g x x+=<,当1e x >时,()ln 10x g x x +=>,如下图所示:由图可知,当01a <<时,直线y a =与函数()g x 的图象有两个交点,①对;对于②,由图可知,1211ex x <<<,因为()11ax f x a x x -'=-=,由()0f x ¢>可得10x a<<,由()0f x '<可得1x a >,所以,函数()f x 的增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则必有1210x x a <<<,所以,110x a <<,则121x a a->,令()()222ln ln h x f x f x x a x x ax a a a ⎛⎫⎛⎫⎛⎫=--=----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中10x a <<,则()212112022a x a h x a x x x x a a ⎛⎫- ⎪⎝⎭'=-+=<⎛⎫-- ⎪⎝⎭,则函数()h x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,所以,()110h x h a ⎛⎫>= ⎪⎝⎭,即()1120f x f x a ⎛⎫--> ⎪⎝⎭,即()112f x f x a ⎛⎫<- ⎪⎝⎭,又()20f x =,可得()212f x f x a ⎛⎫<- ⎪⎝⎭,因为函数()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则212x x a >-,即122x x a +>,②错;对于③,由1122ln 1ln 1ax x ax x =+⎧⎨=+⎩,两式相加整理可得()1212ln 22x x x x a a ++=>,所以,()12ln 0x x >,可得121x x >,③对;对于④,由图可知1211ex x <<<,则11x ->-,又因为21x a >,所以,2111x x a->-,④对.故选;C.【点睛】证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3)应用对数平均不等式12121212ln ln 2x x x xx x x x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.二、填空题13.已知函数()sin cos f x x x =+,则π4f ⎛⎫'= ⎪⎝⎭______.【答案】0【分析】求出()f x ',代值计算可得出π4f ⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos f x x x =+,则()cos sin f x x x '=-,故πππcos sin 0444f ⎛⎫'=-= ⎪⎝⎭.故答案为:0.14.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.15.已知函数f (x )=e x +ax ﹣3(a ∈R ),若对于任意的x 1,x 2∈[1,+∞)且x 1<x 2,都有()()()211212x f x x f x a x x -<-成立,则a 的取值范围是__.【答案】(﹣∞,3]【分析】原不等式等价于()()1212f x a f x a x x ++<,构造()()f x ah x x+=,由函数单调性的定义可知,h (x )在[1,+∞)上单调递增,即有h '(x )≥0在[1,+∞)上恒成立,亦即a ﹣3≤xe x ﹣e x 在[1,+∞)上恒成立,构造g (x )=x e x ﹣e x ,由导数求解函数g (x )的最小值,即可得到a 的取值范围.【详解】原不等式等价于()()1212f x a f x a x x ++<,令()()f x ah x x+=,则不等式等价于h (x 1)<h (x 2)对于任意的x 1,x 2∈[1,+∞)且x 1<x 2都成立,故函数h (x )在[1,+∞)上单调递增,又函数f (x )=e x +ax ﹣3,则()e 3x ax a h x x +-+=,所以h '(x )2e e 30x x x ax -+-=≥在[1,+∞)上恒成立,即x e x﹣e x +3﹣a ≥0在[1,+∞)上恒成立,即a ﹣3≤x e x ﹣e x 在[1,+∞)上恒成立,令g (x )=x e x ﹣e x ,因为g '(x )=x e x >0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上单调递增,则g (x )≥g (1)=0,所以a ﹣3≤0,解得a ≤3,所以实数a 的取值范围是(﹣∞,3].故答案为:(﹣∞,3].16.已知点F 为抛物线28y x =的焦点,()2,0M -,点N 为抛物线上一动点,当NFNM最小时,点N 恰好在以M 、F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为______.【答案】222+【分析】作出图形,分析可知MN 与抛物线28y x =相切时,NFNM取最小值,设直线MN 的方程为2x my =-,将该直线的方程与抛物线的方程联立,求出m 的值,进而可求出点N 的坐标,利用双曲线的定义求出a 的值,结合c 的值可得出22221b ca a=-,即为所求.【详解】抛物线28y x =的焦点为()2,0F ,其准线为:2l x =-,如下图所示:过点N 作NE l ⊥,垂足为点E ,由抛物线的定义可得NF NE =,易知//EN x 轴,则NMF MNE ∠=∠,所以,cos cos NF NE MNE NMF MNMN==∠=∠,当NFNM取最小值时,NMF ∠取最大值,此时,MN 与抛物线28y x =相切,设直线MN 的方程为2x my =-,联立228x my y x=-⎧⎨=⎩可得28160y my -+=,则264640m ∆=-=,解得1m =±,由对称性,取1m =,代入28160y my -+=可得28160y y -+=,解得4y =,代入直线MN 的方程2x y =-可得2x =,即点()2,4N ,则224NF =+=,()2222442MN =++=,设双曲线的标准方程为()222210,0x y a b a b -=>>,由双曲线的定义可得2424a MN NF =-=-,所以,()221a =-,又因为2c =,则()221221c a ==+-,所以,()222221211222b c a a =-=+-=+.故答案为:222+.三、解答题17.在直角坐标系xOy 中,直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,设()2,0M ,求MA MB 的值.【答案】(1)3230x y --=,24y x=(2)323【分析】(1)根据直线参数方程消掉参数t 即可得到直线的普通方程;(2)由直线参数方程中t 的几何意义即可求解.【详解】(1)∵直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∴消去t 可得直线l 的普通方程为:3230x y --=.∵曲线C 的极坐标方程为2sin 4cos 0ρθθ-=,即22sin 4cos 0ρθ-ρθ=,又∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为24y x =.(2)将12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入24y x =,得238320t t --=,显然0∆>,即方程有两个不相等的实根,设点A ,B 在直线l 的参数方程中对应的参数分别是1t ,2t ,则1283t t +=,12323t t =-,∴12323MA MB t t ==.18.已知函数()32f x x x ax b =-++,若曲线()y f x =在()()0,0f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)求函数()y f x =在[]22-,上的最小值.【答案】(1)1a =-;1b =(2)9-【分析】(1)根据函数的切线方程即可求得参数值;(2)判断函数在[]22-,上单调性,进而可得最值.【详解】(1)由已知可得()01f b ==.又()232f x x x a '=-+,所以()01f a '==-.(2)由(1)可知()321f x x x x =--+,()2321f x x x '=--,令()0f x ¢>,解得13x <-或1x >,所以()f x 在12,3⎡⎫--⎪⎢⎣⎭和[]1,2上单调递增,在1,13⎡⎫⎪⎢⎣⎭上单调递减.又()29f -=-,()10f =,所以函数()y f x =在[]22-,上的最小值为9-.19.某校组织全体学生参加“数学以我为傲”知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),……,[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数(同一组中的数据用该组区间中点值代表);(2)现在按分层抽样的方法在[80,90)和[90,100]两组中抽取5人,再从这5人中随机抽取2人参加这次竞赛的交流会,求两人都在[90,100]的概率.【答案】(1)70.5(2)110【分析】(1)根据频率分布直方图直接代入平均数的计算公式即可求解;(2)根据分层抽样在[)80,90分组中抽取的人数为15531015⨯=+人,在[]90,100分组中抽取的人数为2人,利用古典概型的概率计算公式即可求解.【详解】(1)由频率分布直方图的数据,可得这100名学生得分的平均数:()450.01550.015650.02750.03850.015950.011070.5x =⨯+⨯+⨯+⨯+⨯+⨯⨯=分.(2)在[)80,90和[]90,100两组中的人数分别为:100×(0.015×10)=15人和100×(0.01×10)=10人,所以在[)80,90分组中抽取的人数为15531015⨯=+人,记为a ,b ,c ,在[]90,100分组中抽取的人数为2人,记为1,2,所以这5人中随机抽取2人的情况有:()()()()()()()()()(){},,,1,2,1,2,1,2,12ab ac bc a a b b c c Ω=,共10种取法,其中两人得分都在[]90,100的情况只有(){}12,共有1种,所以两人得分都在[]90,100的概率为110P =.20.在如图所示的几何体中,四边形ABCD 是边长为2的正方形,四边形ADPQ 是梯形,PD //QA ,PD ⊥平面ABCD ,且22PD QA ==.(1)求证:BC ⊥平面QAB ;(2)求平面PBQ 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)66【分析】(1)由PD ⊥平面ABCD ,PD //QA ,可得QA ⊥平面ABCD ,进而得到QA BC ⊥,结合BC AB ⊥,进而得证;(2)以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点建立空间直角坐标系,找出平面PBQ 与平面PCD 的法向量,根据两面的法向量即可求解.【详解】(1)证明:∵PD ⊥平面ABCD ,PD //QA ,∴QA ⊥平面ABCD .∵BC ⊂平面ABCD ,∴QA BC ⊥.在正方形ABCD 中,BC AB ⊥,又AB QA A ⋂=,AB ,QA ⊂平面QAB ,∴BC ⊥平面QAB .(2)建立空间直角坐标系如图:以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点,则有()2,2,0B ,()002P ,,,()2,0,1Q ,()0,2,1QB =- ,()2,0,1PQ =- ,设平面PBQ 的一个法向量为(),,m x y z = ,则有00m QB m PQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020y z x z -=⎧⎨-=⎩,令2z =,则1x =,1y =,()1,1,2m = ,易知平面PCD 的一个法向量为()1,0,0n =r ,设平面PBQ 与平面PCD 所成二面角的平面角为α,则16cos 616m n m n α⋅===⨯⋅ ,即平面PBQ 与平面PCD 所成锐二面角的余弦值66.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别为1F 、2F ,P 为C 的上顶点,且12PF F △的周长为423+.(1)求椭圆C 的方程;(2)设过定点()0,2M 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)2214x y +=(2)332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由椭圆的定义以及离心率可得出a 、c 的值,进而可求得b 的值,由此可得出椭圆C 的方程;(2)分析可知直线l 的斜率存在,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由0∆>结合0OA OB ⋅> 可求得k 的取值范围.【详解】(1)设椭圆C 的半焦距为c .因为12PF F △的周长为121222423PF PF F F a c ++=+=+,①因为椭圆C 的离心率为32,所以32c a =,②由①②解得2a =,3c =.则221b a c =-=,所以椭圆C 的方程为2214x y +=.(2)若直线l x ⊥轴,此时,直线l 为y 轴,则A 、O 、B 三点共线,不合乎题意,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,联立()22221141612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,()()()222Δ164411216430k k k =-+⨯=->,解得234k >,由韦达定理可得1221641k x x k +=-+,1221241x x k =+,则()()()2121212122224y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,A 、O 、B 不共线,则cos 0AOB ∠>,即()()()22221212121221213216412441k k k OA OB x x y y k x x k x x k +-++⋅=+=++++=+ 22164041k k -=>+,解得204k <<,所以,2344k <<,解得322k -<<-或322k <<,所以实数k 的取值范围为332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2ln f x x x ax a =-+.(1)若()f x a ≤,求a 的取值范围;(2)若()f x 存在唯一的极小值点0x ,求a 的取值范围,并证明()0210a f x -<<.【答案】(1)1[,)e +∞(2)12a <;证明见解析;【分析】(1)可利用分离参数法,将问题转化为ln x a x ≥恒成立,然后研究ln ()x g x x=的单调性,求出最大值;(2)通过研究()f x '在()0,∞+内的变号零点,单调性情况确定唯一极小值点;若不能直接确定()f x '的零点范围及单调性,可以通过研究()g x '的零点、符号来确定()f x '的单调性,和特殊点(主要是能确定()f x '符号的点)处的函数值符号,从而确定()f x 的极值点的存在性和唯一性.【详解】(1)()f x 的定义域为()0,∞+.由()f x a ≤,得ln x a x ≥在()0,x ∈+∞恒成立,转化为max ln ()x a x ≥令ln ()x g x x =,则21ln ()x g x x -'=,∴ln ()x g x x=在()0,e 单调递增,在(),e +∞单调递减,∴()g x 的最大值为1(e)g e=,∴1a e ≥.∴a 的取值范围是1[,)e+∞.(2)设()()g x f x '=,则()ln 12g x x ax =+-,1()2g x a x'=-,0x >.①当a<0时,()0g x '>恒成立,()g x 在()0,∞+单调递增,又()1120g a =->,212121()21122(1)0a a a g e a ae a e ---=-+-=-<所以()g x 存在唯一零点()10,1x ∈.当()10,x x ∈时,()()0f x g x '=<,当()1,1x x ∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x x =.②当0a =时,()ln 1g x x =+,()g x 在()0,∞+单调递增,1()0g e =,所以()g x 在()0,∞+有唯一零点1e.当1(0,)∈x e时,()()0f x g x '=<,当1(,1)x e∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x e =.③当0a >时,令()0g x '>,得1(0,)2x a ∈;令()0g x '<,得1(,)2x a ∈+∞,∴()g x 在1(0,)2a 单调递增,在1(,)2a+∞单调递减,所以()g x 的最大值为1()ln(2)2g a a =-④当102a <<时,1()0g e<,()1120g a =->,1()02g a >,21212()212(1)10l 1n g a a aa a =-+-<--+-=-<(或用11111()20a a g eae a --=-<)由函数零点存在定理知:()g x 在区间()0,1,()1,+∞分别有一个零点2x ,3x 当()20,x x ∈时,()()0f x g x '=<;当()23,x x x ∈时,()()0f x g x '=>;所以()f x 存在唯一的极小值点02x x =,极大值点3x .⑤当12a ≥时,102g a ⎛⎫≤ ⎪⎝⎭,()()0f x g x '=≤所以()f x 在()0,∞+单调递减,无极值点.由①②④可知,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭,当()00,x x ∈时,()0f x '<;所以()f x 在()00,x 单调递减,()0,1x 单调递增.所以()0(1)0f x f <=.由()000ln 120f x x ax '=+-=,得00ln 21x ax =-.所以20000ln ()f x x ax ax =-+2000(21)x ax ax a=--+200ax a x =+-2000()(21)1f x a ax a x --=--+[]00(1)(1)1x a x =-+-,因为0(0,1)x ∈,1,2a ⎛⎫∈-∞ ⎪⎝⎭,所以010x -<,()01112102a x +-<⨯-=所以()0(21)0f x a -->,即()021f x a >-;所以()0210a f x -<<.【点睛】本题通过导数研究函数的零点、极值点的情况,一般是先研究导函数的零点、单调性,从而确定原函数的极值点存在性和个数.同时考查学生运用函数思想、转化思想解决问题的能力和逻辑推理、数学运算等数学素养.。
郴州市2023-2024学年高二下学期期末教学质量监测数学(试题卷)注意事项:1.试卷分试题卷和答题卡.试卷共6页,有四大题,19小题,满分150分.考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准者证条形码粘贴在答题卡的指定位置,3.考生作答时,选择题和非选择题均须作在答题卡上,在试题卷上作答无效考生在答题卡上按答题卡中注意事项的要求答题.4.考试结束后,将试题卷和答题卡一并交回.一、单项选择题(本大题共8小题,每小题5分,共40分,在所给的四个选项中,只有一个最佳答案,多选或不选得0分)1.设x ∈R ,则“3x >”是“2x >”的( )A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件2.已知i 为虚数单位,若复数12,z z 在复平面内对应的点分别为()()2,1,1,2-,则复数12z z ⋅=( )A.5iB.5i -C.45i +D.45i-+1sin170=( )A.-4B.4C.-2D.24.已知P 为椭圆2222:1(0)x y C a b a b+=>>上一动点,12F F 、分别为其左右焦点,直线1PF 与C 的另一交点为2,A APF 的周长为16.若1PF 的最大值为6,则该椭圆的离心率为( )A.14 B.13 C.12 D.235.若n 为一组数8,2,4,9,3,10的第六十百分位数,则二项式1nx ⎫+⎪⎭的展开式的常数项是( )A.28B.56C.36D.406.三位老师和4名同学站一排毕业留影,要求老师们站在一起,则不同的站法有:( )A.360种B.540种C.720种D.900种7.已知函数()2(0,0)f x x bx c b c =-+>>的两个零点分别为12,x x ,若12,,2x x -三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式0x bx c-≤-的解集为( )A.(](),45,∞∞-⋃+B.[]4,5C.()[),45,∞∞-⋃+D.(]4,58.设函数()f x 在R 上存在导数(),f x x '∀∈R ,有()()2f x f x x -+=,在()0,∞+上()f x x '<,若()()932262f m f m m --≥-,则实数m 的取值范围是( )A.1,4∞⎡⎫+⎪⎢⎣⎭B.1,2∞⎡⎫+⎪⎢⎣⎭C.[)1,∞+D.3,4∞⎡⎫+⎪⎢⎣⎭二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.如图,正方体1111ABCD A B C D -的边长为2,M 为11A D 的中点,动点P 在正方形ABCD 内(包含边界)运动,且MP =.下列结论正确的是( )A.动点P 的轨迹长度为π;B.异面直线MP 与1BB 所成角的正切值为2;C.MP AB ⋅的最大值为2;D.三棱锥P MAD -的外接球表面积为25π4.10.已知定义域在R 上的函数()f x 满足:()1f x +是奇函数,且()()11f x f x -+=--,当[]()21,1,1x f x x ∈-=-,则下列结论正确的是( )A.()f x 的周期4T =B.5324f ⎛⎫=⎪⎝⎭C.()f x 在[]5,4--上单调递增D.()2f x +是偶函数11.锐角ABC 中,角,,A B C 的对边为,,a b c .且满足4,2a b c ==+.下列结论正确的是()A.点A的轨迹的离心率e =3c <<C.ABC 的外接圆周长()4π,5πl ∈D.ABC 的面积()3,6ABC S ∈ 三、填空题(本题共3小题,每小题5分,共15分.)12.若直线:220l kx y k -+-=与曲线:C y =k 的取值范围是__________.13.已知数列{}n a 满足:()()111,11n n a na n a n n +=-+=+.若()1n nnb n a =+,则数列{}n b 的前n 项和n S =__________.14.暑假将临,大学生小明同学准备利用假期探访名胜古迹.已知某座山高䇯入人云,整体呈圆锥形,其半山腰(母线的中点)有一座古寺,与上山入口在同一条母线上,入口和古寺通过一条盘山步道相连,且当时为了节省资金,该条盘山步道是按“到达古寺的路程最短”修建的.如图,已知该座山的底面半径()2km R =,高)km h =,则盘山步道的长度为__________,其中上山(到山顶的直线距离减小)和下山(到山顶的直线距离增大)路段的长度之比为__________.(第一空2分,第二空3分)四、解答题(本大题共5小题,共77分)15.(本题满分13分)在锐角ABC 中,内角,,A B C 所对的边分别为,a b ,c ,且满足()sin cos sin 1cos c A B b C A =+.(1)证明:2A B =;(2)求ca的取值范围.16.(本题满分15分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面,2,ABCD PA AD E ==为线段PD 的中点,F 为线段PC (不含端点)上的动点.(1)证明:平面AEF ⊥平面PCD ;(2)是否存在点F ,使二面角P AF E --的大小为45 ?若存在,求出PFPC的值,若不存在,请说明理由.17.(本题满分15分)已知函数()2cos e ,xf x ax x a =+-∈R .(1)若()f x 在()0,∞+上单调递减,求实数a 的取值范围;(2)当0a =时,求证()1f x <在ππ,22x ⎛⎫∈- ⎪⎝⎭上恒成立.18.(本题满分17分)已知()2,A a 是抛物线2:2C y px =上一点,F 是抛物线的焦点,已知4AF =,(1)求抛物线的方程及a 的值;(2)当A 在第一象限时,O 为坐标原点,B 是抛物线上一点,且AOB 的面积为1,求点B 的坐标;(3)满足第(2)问的条件下的点中,设平行于OA 的两个点分别记为12,B B ,问抛物线的准线上是否存在一点P 使得,12PB PB ⊥.19.(本题满分17分)材料一:在伯努利试验中,记每次试验中事件A 发生的概率为p ,试验进行到事件A 第一次发生时停止,此时所进行的试验次数为ξ,其分布列为()()1(1)1,2,3,k P k p p k ξ-==-⋅=⋯,我们称ξ服从几何分布,记为()GE p ξ~.材料二:求无穷数列的所有项的和,如求2311111112222k k S ∞-==++++=∑ ,没有办法把所有项真的加完,可以先求数列前n 项和11112122nn k nk S -=⎛⎫==- ⎪⎝⎭∑,再求n ∞→时n S 的极限:1lim lim 2122n nn n S S →∞→∞⎛⎫==-= ⎪⎝⎭根据以上材料,我们重复抛掷一颗均匀的骰子,直到第一次出现“6点”时停止.设停止时抛掷骰子的次数为随机变量X.(1)证明:1()1k P X k∞===∑;(2)求随机变量X的数学期望()E X;(3)求随机变量X的方差()D X.郴州市2023-2024学年高二下学期期末教学质量监测数学参考答案和评分细则一、单项选择题(本大题共8小题,每小题5分,共40分,在所给的四个选项中,只有一个最佳答案,多选或不选得0分)1-5BABCA6-8CDD二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.ACD 10.BC11.CD三、填空题(本题共3小题,每小题5分,共15分)12.10,2⎛⎤ ⎥⎝⎦13.1nn +14.5:2四、解答题(本大题共5小题,共77分)15.(本题满分13分)(1)由()sin cos sin 1cos c A B b C A =+,结合正弦定理得()sin sin cos sin sin 1cos ,sin 0C A B C B A C =+≠ 可得sin cos cos sin sin A B A B B -=,所以()sin sin A B B -=,所以A B B -=或()πA B B -+=(舍去),所以2A B=(2)在锐角ABC 中,02022032B A B C B ππππ⎧<<⎪⎪⎪<<<⎨⎪⎪<=-<⎪⎩,即ππ64B <<,cos B <<sin sin3sin2cos cos2sin 12cos sin sin2sin22cos c C B B B B B B a A B B B+====-.令1cos ,2,2B t y t t t ==-∈,因为122y t t =-在上单调递增,所以y y>=<=,所以ca∈.16.(1)证明: 底面ABCD为正方形,CD AD∴⊥.PA⊥平面,ABCD PA CD∴⊥.PA AD A⋂=CD∴⊥平面PAD.又AE⊂平面,PAD CD AE∴⊥.,PA PD E=为PD的中点,AE PD∴⊥.,CD PD D AE⋂=∴⊥平面PCD.AE⊂平面,AEF∴平面AEF⊥平面PCD.(2)以AB AD AP、、分别为x轴、y轴、z轴建立空间直角坐标系,()()0,0,0,2,0,0A B,()()()()2,2,0,0,2,0,0,0,2,0,1,1C D P E设(01)PF PCλλ=<<,()()2,2,22,0,1,1AF AP PF AP PC AEλλλλ=+=+=-=,设平面AEF的法向量()111,,m x y z=,则(),12,,m AEmm AFλλλ⎧⋅=⎪=--⎨⋅=⎪⎩()()2,2,0,0,0,2AC AP==,设平面APF的法向量()222,,n x y z=,则,n ACn AP⎧⋅=⎪⎨⋅=⎪⎩解得()1,1,0n=-由题意得:cos45m nm n⋅===,即13λ-=,解得23λ=.从而23PFPC=.17.(1)解:函数(),2cos e xf x ax x=+-,则()2sin e xf x a x=--',对任意的()()0,,0x f x∞∈+'≤恒成立,所以()2e sinxa x g x≤+=,故()e cos1cos0xg x x x x=+≥++>',所以()min 2()01a g x g ≤==,故实数a 的取值范围为1,2∞⎛⎤- ⎥⎝⎦;(2)证明:由题意知,要证在ππ,22x ⎛⎫∈-⎪⎝⎭,上,cos e 1x x -<,令()cos e xh x x =-,则()sin e xh x x =--',显然在ππ,22x ⎛⎫∈-⎪⎝⎭上()h x '单调减,()π0,002h h ⎛⎫->< ⎪⎝⎭'',所以存在0π,02x ⎛⎫∈-⎪⎝⎭,则()000sin e 0x h x x '=--=,所以当0π,2x x ⎛⎫∈-⎪⎝⎭时,()0h x '>,则()h x 单调递增,当0π,2x x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,则()h x 单调递减,所以()0max 00000π()cos ecos sin 04x h x h x x x x x ⎛⎫==-=+=+< ⎪⎝⎭,故()1f x <在ππ,22x ⎛⎫∈-⎪⎝⎭,上恒成立.18.解:(1)由题意242pAF =+=,解得4p =,因此抛物线的方程为2:8C y x =点()2,A a 在抛物线上可得216a =,故4a =±(2)设点B 的坐标为()11,,x y OA 边上的高为h ,我们知道AOB 的面积是:112S h =⨯=1h h =⇒==直线OA 的方程是2y x =,利用B 到直线OA 的距离公式可得:化简得:1121x y -=由于点B 在抛物线上,代入条件可得:22111121184y y y y ⋅-=⇒-=可以得到211440y y --=或211440y y -+=,解这个方程可以得到12y ===±12y =代入拋物线方程可以得到:1x ==或1x ==112x =综上所述,点B的坐标有三个可能的值:12312,2,,22B B B ⎛⎫+- ⎪⎝⎭(3)不存在,理由如下:由(2)知122,2B B +-则12,B B 的中点3,22M ⎛⎫⎪⎝⎭12B B ===M 到准线2x =-的距离等于37222+=因为73.52=>所以,以M 为圆心122B B 为半径的圆与准线相离,故不存在点P 满足题设条件.19.(1)证明:可知()()1151,1,2,3,666k X GE P X k k -⎛⎫⎛⎫~⋅==⋅=⋯ ⎪ ⎪⎝⎭⎝⎭012515151515115615666666666616nn nn S ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⋅+⋅+⋅+⋯+⋅=⨯=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-则15()lim lim 1 1.6n n n n k P X k S ∞→∞→∞=⎛⎫⎛⎫===-= ⎪ ⎪ ⎪⎝⎭⎝⎭∑.(2)设1()nn k T k P X k ==⋅=∑0121152535566666666n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12151525155666666666n nn n n T --⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋯+⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减,0121115151515566666666666n nn n T -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋯+⨯-⨯ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭01215555555616666666n n n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯+-⨯=--⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭则随机变量X 的数学期望55()lim lim 61666n nn n n E X T n →∞→∞⎛⎫⎛⎫⎛⎫⎛⎫==--⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(3)1221151()(6)()lim (6)66k nn k k D X k P X k k -∞→∞==⎛⎫=-⋅==-⋅⋅⎪⎝⎭∑∑()2211111236()()(12)()36()k k k k k k P X k k P X k k P X k P X k ∞∞∞∞=====-+⋅===+-=+⋅=∑∑∑∑2211()12636()36;k k k P X k k P X k ∞∞====-⨯+==-∑∑【也可利用()()()22D XE XE X =-】而012122222151515151()123466666666n k k P X k n -∞=⎛⎫⎛⎫⎛⎫⎛⎫==+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑ 121222215515151()12(1)6666666n k k P X k n -∞=⎛⎫⎛⎫⎛⎫⨯==+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ 两式相减:012121151515151()135(21)666666666n k k P X k n -∞=⎛⎫⎛⎫⎛⎫⎛⎫==++++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑ 112()()2()111k k k P X k P X k E X ∞∞===⋅=-==-=∑∑从而:21()66k kP X k ∞===∑.那么21()()3630k D X k P X k ∞===-=∑.。
芜湖市安师大附中2018-2019学年度第二学期期中考查高二数学(理)试题一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 为虚数单位,则复数2534i+的虚部为( ) A .254B .4C . 4-D .4i -2.下列求导运算正确的是( )A .2()x x '=B .(sin )cos x x '=-C .()x xe e --'= D .1(ln 5)x x'=3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+x 2,则f ′(1)=( )A .-1B .-2C .1D .24.在用数学归纳法证明:“22n n >对从0n 开始的所有正整数都成立”时,第一步验证的0n 等于( )A .1B .3C .5D .75.如图所示的几何体是由一个正三棱锥P -ABC 与正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的 染色方案共有( )A .24种B .18种C .16种D .12种6.函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图象大致为( )A B C D7.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样 的数称为“正方形数”.如图,可以发现,任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,下列等式中,符合这一规律的表达式是( )①13=3+10;②25=9+16;③36=15+21;④49=18+31;⑤64=28+36.A .①④B .②⑤C .③⑤D .②③8.向平面区域Ω={(x ,y )|-π4≤x ≤π4,0≤y ≤1}内随机投掷一点,该点落在曲线y =cos2x 下方 的概率是( )A .π4B .12C .π2-1D .2π9.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解 集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1,或x >1}D .{x |x <-1,或0<x <1} 10.已知函数2()32sin cos 23cos (0)f x x x x ωωωω=+->在区间(),2ππ内没有极值 点,则ω的取值范围为( ) A .511,1224⎛⎤ ⎥⎝⎦ B .10,2⎛⎫⎪⎝⎭ C .55110,,241224⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ D .51110,,12242⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭11.某地举办科技博览会,有3个场馆,现将24个志愿者名额分配给这3个场馆,要求每个 场馆至少有一个名额且各场馆名额互不相同的分配方法共有( )种A .222B .253C .276D .284 12.三棱锥P ABC -中,底面ABC 满足BA BC =,2ABC π∠=,点P 在底面ABC 的射影为AC 的中点,且该三棱锥的体积为196,当其外接球的表面积最小时,P 到底面ABC 的距离为( )A .3B .319 C .3192 D .3193二、填空题:本大题共4小题,每小题4分,共16分。
南通市2023-2024学年高二下学期期中质量监测数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知向量,,若,则( )A. B. C. 4D. 22. 记函数的导函数为.若,则( )A. B. 0C. 1D. 23. 某产品的广告费用(单位:万元)与销售额(单位:万元)之间有如下关系:2456830405060已知与的线性回归方程为,则等于( )A. 68B. 69C. 70D. 714. 已知函数,则的图象大致为( )A. B.(1,,2)a m = (2,4,)b n =- //a bm n +=4-6-()f x ()f x '()sin f x x x =+()0f '=1-x y x yay x 715y x =+a ()ln f x x x =-()f xC. D.5. 在的展开式中,含项的系数为( )A 16B. -16C. 8D. -86. 甲、乙两人投篮命中率分别为和,并且他们投篮互不影响.现每人分别投篮2次,则甲与乙进球数相同的概率为( )A.B.C. D.7. 今年春节,《热辣滚汤》、《飞驰人生2》、《熊出没之逆转时空》、《第二十条》引爆了电影市场,小帅和他的同学一行四人决定去看电影.若小帅要看《飞驰人生2》,其他同学任选一部,则恰有两人看同一部影片的概率为( )A.B.C.D.8. 已知函数,若对任意正数,,都有恒成立,则实数a 的取值范围( )A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 有3名学生和2名教师排成一排,则下列说法正确的是( )A. 共有120种不同的排法B. 当2名教师相邻时,共有24种不同的排法C. 当2名教师不相邻时,共有72种不同的排法D. 当2名教师不排在两端时,共有48种不同的排法.4(1)(2)x x -+3x 121373611361336173696491619324564()21ln 2f x a x x =+1x ()212x x x ≠()()12121f x f x x x ->-10,4⎛⎤ ⎝⎦10,4⎛⎫⎪⎝⎭1,4⎡⎫+∞⎪⎢⎣⎭1,4⎛⎫+∞⎪⎝⎭10. 已知,则( )A. 展开式各项的二项式系数的和为B. 展开式各项的系数的和为C.D. 11. 如图所示的空间几何体是由高度相等的半个圆柱和直三棱柱组合而成,,,是上的动点.则( )A. 平面平面B. 为的中点时,C. 存在点,使得直线与的距离为D. 存在点,使得直线与平面所成的角为三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量,且,则__________.13. 已知事件相互独立.若,则__________.14. 若函数有绝对值不大于1的零点,则实数的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数.(1)求曲线在处的切线方程;(2)求在上的最值.1002100012100(12)x a a x a x a x -=++++ 10021-024********a a a a a a a a ++++>++++ 123100231000a a a a ++++< ABF DCE -AB AF ⊥4AB AD AF ===G »CDADG ⊥BCGG »CD//BF DG G EFAG G CF BCG 60()22,X N σ:(1)0.7P X >=(23)P X <<=,A B ()()0.6,0.3P A P B A ==()P AB =()334f x x x a =-+a ()()1e xf x x =-()y f x =()()1,1f ()f x []1,2-16. 如图,在直四棱柱中,底面是梯形,,且是的中点.(1)求点到平面的距离;(2)求二面角正弦值.17. “五一”假期期间是旅游的旺季,某旅游景区为了解不同年龄游客对景区的总体满意度,随机抽取了“五一”当天进入景区的青、老年游客各120名进行调查,得到下表:满意不满意青年8040老年10020(1)依据小概率值的独立性检验,能否认为“是否满意”与“游客年龄”有关联;(2)若用频率估计概率,从“五一”当天进入景区的所有游客中任取3人,记其中对景区不满意的人数为,求的分布列与数学期望.附:,其中.0.100.050.0100.0050.0012.7063.8416.6357.87910.82818.已知函数.(1)讨论单调性;的的1111ABCD A B C D -ABCD //AB ,DC DA DC ⊥111,2AD DD CD AB E ====AB C 1BC D 1B C D E --0.005α=X X ()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++()20P x χ≥0x 21()(1)ln ,R 2f x ax a x x a =+--∈()f x(2)当时,证明:;(3)若函数有两个极值点,求的取值范围.19. 现有外表相同,编号依次为的袋子,里面均装有个除颜色外其他无区别的小球,第个袋中有个红球,个白球.随机选择其中一个袋子,并从中依次不放回取出三个球.(1)当时,①假设已知选中恰为2号袋子,求第三次取出的是白球的概率;②求在第三次取出的是白球的条件下,恰好选的是3号袋子的概率;(2)记第三次取到白球的概率为,证明:.的0a >3()22f x a≥-2()()F x ax x f x =--11222,()3x x x x <<12()()F x F x -()1,2,3,,3n n ≥ n ()1,2,3,,k k n = k n k -4n =p 2p 1<南通市2023-2024学年高二下学期期中质量监测数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】C二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】AC【11题答案】【答案】AB三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】##【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1);(2),.【16题答案】【答案】(1(2).【17题答案】【答案】(1)能认有关 (2)分布列略,【18题答案】【答案】(1)答案略; (2)证明略; (3).【19题答案】【答案】(1)①;② (2)证明略为0.2150.1232511,44⎡⎤-⎢⎥⎣⎦e e 0x y --=2max ()(2)e f x f ==min ()(0)1f x f ==-13()34E X =3(0,ln 2)4-1216。
运城市2023-2024学年第二学期期末调研测试高二数学试题2024 7本试题满分150分,考试时间120分钟。
答案一律写在答题卡上。
注意事项:1 答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2 答题时使用0 5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4 保持卡面清洁,不折叠,不破损。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集U=R,集合A={x│y=2槡-x},B={y│y=2x,x∈A},则A∩B=A.(-∞,2]B.[2,+∞)C.(0,2]D.[2,4]2.函数f(x)=│x│(x-1)的单调递减区间是A.(-∞,0)B.(0,12)C.(12,1)D.(1,+∞)3.函数y=sinxex+e-x(x∈[-2,2])的图象大致为4.已知p:3x+2>1,q:-2≤x<1,则p是q的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.已知函数f(x)=(13)x,x>11x,0<x<{1,则f(f(log槡32))=A.14B.4C.12D.26.若(x+mx)(x-1x)5的展开式中常数项是20,则m=A.-2B.-3C.2D.37.根据气象灾害风险提示,5月12日~14日某市进入持续性暴雨模式,城乡积涝和地质灾害风险极高,全市范围内降雨天气易涝点新增至36处.已知有包括甲乙在内的5个排水施工队前往3个指定易涝路口强排水(且每个易涝路口至少安排一个排水施工队),其中甲、乙施工队不在同一个易涝路口,则不同的安排方法有A.86B.100C.114D.1368.已知函数f(x)=│lnx│,x>0-x2-4x+1,x≤{0若关于x的方程[f(x)]2-2af(x)+a2-1=0有k(k∈N)个不等的实根x1,x2,…xk,且x1<x2<…<xk,则下列结论正确的是A.当a=0时,k=4B.当k=2时,a的取值范围为a<1C.当k=8时,x1+x4+x6x7=-3D.当k=7时,a的取值范围为(1,2)二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知全集U={x│x<10,x∈N},A U,B U,A∩(瓓UB)={1,9},A∩B={3},(瓓UA)∩(瓓UB)={4,6,7},则下列选项正确的为A.2∈BB.A的不同子集的个数为8C.{1} AD.6 瓓U(A∪B)10.已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为^y=2x-0.4,且x=2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为^y=3x+b^.在余下的8个样本数据和新的经验回归方程中A.相关变量x,y具有正相关关系B.新的经验回归方程为^y=3x-3C.随着自变量x值增加,因变量y值增加速度变小D.样本(4,8 9)的残差为0.111.已知f(x)是定义在实数集R上的偶函数,当x≥0时,f(x)=2x4x+1.则下列结论正确的是A.对于x∈R,f(x)=2x4x+1B.f(x)在(0,+∞)上为减函数C.f(x)的值域为(-∞,12]D.f(0.30.4)>f(-0.40.3)>f(log237)三、填空题:本题共3小题,每小题5分,共15分.12.已知函数f(x)=x3-sinx(ax-1)(3x+2)为奇函数,则实数a的值为.13.一个袋子中有n(n∈N)个红球和5个白球,每次从袋子中随机摸出2个球.若“摸出的两个球颜色不相同”发生的概率记为p(n),则p(n)的最大值为.14.已知函数f(x),g(x)的定义域均为R,f(x)为奇函数,g(x+1)为偶函数,f(-1)=2,g(x+2)-f(x)=1,则∑61i=1g(i)=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x│x2-5x-6<0},集合B={x│[x-(1-a)][x-(1+a)]>0},其中a>0.(1)若a=2,求A∩(瓓RB);(2)设命题p:x∈A,命题q:x∈B,若p是瓙q的必要而不充分条件,求实数a的取值范围.16.已知函数f(x)=log2(4x+a·2x+16),其中a∈R.(1)若a=-10,求函数f(x)的定义域;(2)当x∈[1,+∞)时,f(x)>x恒成立,求实数a的取值范围.17.某疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了1800名该疾病的患者进行调查,发现女性患者人数是男性患者人数的12,男性患A型疾病的人数为男性患者人数的23,女性患A型疾病的人数是女性患者人数的34.(1)根据所给信息完成下列2×2列联表:性别疾病类型A型B型合计男女合计(2)基于(1)中完成的2×2列联表,依据小概率值α=0.001的 2独立性检验,分析所患疾病的类型与性别是否有关?(3)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为9元.该团队研发的疫苗每次接种后产生抗体的概率为23,如果第一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期,记该试验中1人用于接种疫苗的费用为ξ,求E(ξ).附: 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+dα0.1000.0500.0100.0050.001α2.7063.8416.6357.87910.82818.基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,某试点高校校考过程中笔试通过后才能进入面试环节.2022年报考该试点高校的学生的笔试成绩X近似服从正态分布N(μ,σ2).其中,μ近似为样本平均数,σ2近似为样本方差s2.已知μ的近似值为76.5,s的近似值为5.5,以样本估计总体.(1)假设有84.135%的学生的笔试成绩高于该校预期的平均成绩,求该校预期的平均成绩大约是多少?(2)若笔试成绩高于76.5分进入面试,若从报考该试点高校的学生中随机抽取10人,设其中进入面试学生数为ξ,求随机变量ξ的期望.(3)现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为13、13、12、12.设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.参考数据:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)≈0.6827;P(μ-2σ<X≤μ+2σ)≈0.9545;P(μ-3σ<X≤μ+3σ)≈0.9973.19.定义一种新的运算“ ”: x,y∈R,都有x y=lg(10x+10y).(1)对于任意实数a,b,c,试判断(a b)-c与(a-c) (b-c)的大小关系;(2)若关于x的不等式(x-1)2>[(a2x2) (a2x2)]-lg2的解集中的整数恰有2个,求实数a的取值范围;(3)已知函数f(x)=lg(x+4-2x+槡3),g(x)=(1 x) (-x),若对任意的x1∈R,总存在x2∈[-32,+∞),使得g(x1)=lg│3m-2│+f(x2),求实数m的取值范围.命题人:康杰中学 张阳朋运城中学 吕莹高二数学期末答案一、1-8 C B BA B DCC 二、9.ABC 10.AB 11.ABD 三、12.3213.59 14.63四 、15.(1)15.2{|650}{|16}A x x x x x =+->=-<<, …………1分 ){{|[(1)][(1]0}|1x x a B x x a x a =---+<>=-或1}x a >+. ………… 2分若2a =,则{|1B x x =<-或3}x >,{}31|≤≤-=x x B C R , ………… 4分{}31|)(≤<-=∴x x B C A R ………… 6分(2)若的必要而不充分条件是q p ⌝,{}a x a x B C A B C U U +≤≤-=⊆∴11 , ………… 8分∴01116a a a >⎧⎪->-⎨⎪+<⎩,解得02a <<. ………… 12分 a ∴的取值范围是(0,2). ………… 13分16.(1)当10a =-时,()()2log 410216xxf x =-⨯+,由4102160x x -⨯+>得()()22028xx-->, ………… 2分故22x <或28x >,得1x <或3x >, ………… 4分 故函数()()2log 410216xxf x =-⨯+的定义域为()(),13,-∞⋃+∞,………… 6分(2)解一:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分22116122 9所以当[)+∞∈,1x 时,()f x x >恒成立,即为()()2116g t t a t =+-⋅+在[)+∞∈,2t 上最小值大于0, ………… 10分函数()()2116g t t a t =+-⋅+的对称轴为12at -=, 当221<-a即3->a 时,函数()g t 在[)+∞,2上单调递增, 此时0218)2(>+=a g ,得9->a ,a <-∴3 ………… 12分 当221≥-a,即3-≤a 时,函数()g t 在对称轴取得最小值, 此时()21112211602g a a a a ⎪⎛⎫=⎝---⎛⎫⎛⎫ ⎪⎝⎭+-+ ⎭>⎪⎭⎝,得79a -<<,37-≤<-∴a ………… 14分 故a 的取值范围为()7,-+∞ ………… 15分 解二:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分设2x t =,因[)+∞∈,1x ,故22≥=x t , ………… 9分 所以当[)+∞∈,1x 时,()f x x >恒成立,即)(21)16(162≥++-=-+->t tt t t t a ………… 11分 令1)16()(++-=t t t g 则”成立时“当且仅当==-≤++-=4,71)16()(t tt t g ………… 14分故a 的取值范围为()7,-+∞ ………… 15分 17. (1)设男性患者人数为m ,则女性患者人数为12m ,由118002m m +=12001200600 2 21200800336004504322⨯列联表如下:疾病类型性别A 型B 型 合计男 800 400 1200 女 450 150 600 合计12505501800………… 5分(2)零假设0H :所患疾病的类型与性别无关, ………… 6分 根据列联表中的数据,经计算得到()2218008001504504001441200600125055011χ⨯⨯-⨯==⨯⨯⨯,…… 8分 由于20.00114413.09110.82811χχ=≈>=, ………… 9分 依据小概率值0.001α=的2χ独立性检验,可以认为所患疾病的类型与性别有关.… 10分 (3)接种疫苗的费用ξ可能的取值为27,54, ………… 11分223322220(27)C ()(1()33327P ξ==-+=, ………… 12分207(54)12727P ξ==-=, ………… 13分则ξ的分布列为ξ27 54P2027 727期望为()2072754342727E ξ=⨯+⨯= .………… 15分 18.解:(1)由()()0.50.841352P X P X μσμσμσ-<≤+>-=+=,………2分76.5 5.576.5 5.571 4(2)由76.5μ=得,()176.52P ξ>=, 即从所有参加笔试的学生中随机抽取1名学生,该生笔试成绩76.5以上的概率为12…5分 所以随机变量ξ服从二项分布110,2X B ⎛⎫~ ⎪⎝⎭, ………6分 所以()11052E ξ=⨯=. ………8分 (3)X 的可能取值为0,1,2,3,4. ………9分()220022111011329P X C C ⎛⎫⎛⎫==⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ………10分 ()22100122221111111111113323223P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯-⨯⨯-+⨯-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…11分()22201122221111112111323322P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+⨯⨯-⨯⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭220222111313236C C ⎛⎫⎛⎫+⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, ………12分 6121311312112131)3(2221212222=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫⎝⎛⨯==C C C C X p , ……13分()22222211143236P X C C ⎛⎫⎛⎫==⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭, ………14分 X 0 1 2 3 4()P X19 13 1336 16 136………15分 ∴()11131150123493366363E X =⨯+⨯+⨯+⨯+⨯=. ………17分 19. (1) ,x y ∀∈R ,()lg 1010xyx y ⊕=+∴()()lg 1010a b a b c c ⊕-=+-, ………2分10101010101010 45(2)()()()()222222222222lg 1010lg 210lg 2a x a xa xa x a x a x⊕=+=⨯=+∴原不等式可化为:()2221x a x ->,即()221210a x x --+>, ………6分满足题意,必有210a -<,即1a <-或1a >① ………7分令()()22121h x axx =--+,由于()010h =>,()21h a =-,结合①可得:()10h <, ………8分∴()h x 的一个零点在区间()0,1,另一个零点在区间[)1,2--, ………9分从而⎩⎨⎧>-≤-0)1(0)2(h h ,即⎩⎨⎧>+-⨯--⨯-≤+-⨯--⨯-01)1(2)1(101)2(2)2(12222)()(a a ② ………10分 由①②可得:223232<≤-≤<-a a 或 ………11分 (3)()(lg 4f x x =+,()()lg 101010xxg x -=++ ………12分设4t x =+3,2x ⎡⎫∈-+∞⎪⎢⎣⎭r =,[)0,r ∈+∞,则()2132x r =-, ∴()()2221151*********t r r r r r =-+-=-+=-+≥, ………14分∴()lg 2f x ≥,()1()lg 32g x m f x =-+的值域为)lg 32lg 2,A m ⎡=-++∞⎣ ………15分1010101012x x -++≥=,∴()lg12g x ≥()g x 的值域为[)lg12,B =+∞ ………16分根据题意可知:B A ⊆,∴lg 32lg 2lg12m -+≤解之得:4833m -≤≤且23m ≠ ………17分为。
洛阳市2017—2018学年第二学期期中考试
高二数学试卷(理)
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页,第Ⅱ卷3至 4页,共150分,考试时间120分钟。
第I 卷(选择题,共60分)
注意事项:
1.答卷前,考生务必将自己的姓名、考号填写在答题卡上。
2.考试结束,将答题卡交回。
一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数
i 25+的共轭复数是A. 2-i B. 2 + i C.-2-i
D.-2 +i 2.设n 是自然数,n n f 1
(3121)
1
)(,经计算可得32)2(f ,)4(f >2, )8(f >25, )16(f >3, )32(f >27
.观察上述结果,可得出一般的结论为
A. )2(n f >
212n B. 22)(2n n f C. 22)2(n f n D. )2(n f >22n 3.曲线x x y
ln 在点1x 处的切线方程为A. 1x y B.1
x y C. x y D. 12x y 4.
dx x)cos 1(22A. B.2 . C.+2 D.-2
5.设有下面四个命题
1p :若复数z 满足R z
1
,则R z 2p :若复数z 满足R z 2,则R
z 3p :若复数21,z z 满足R z z 2
1,则21z z 4p :若复数R z 2,则R z。
临沂第十九中学第二次调研考试(数学理)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.已知函数21y x =+的图象上一点(1,2)及邻近一点()12x,y +∆+∆,则y x ∆∆等于( ) A.2 B.2x C.22()x +∆ D.2x +∆2.设1(),f x x =则()()lim x a f x f a x a→--等于( ) 221211. . . .A B C D a a a a -- 3.曲线221y x =-+在点()0,1处的切线的斜率是( )A.4-B.0C.4D.不存在4.如果曲线()y f x =在点00(,())x f x 处的切线方程为230x y +-=,那么( )A.0()0f x '>B.0()0f x '<C.0()0f x '=D.不存在5.下列函数在点0x =处没有切线的是( )A.23cos y x x =+B.sin y x x =C.1cos y x =D.12y x x =+ 6.函数222y x ln x =-的的单调递增区间是 ( )A.1(0,)2 B.(0,4C.1(,)2+∞D.1(,0)2-和1(0,)2 7.若函数()y f x =是定义在R 上的可导函数,则0()0f x '=是0x 为函数()y f x =的极值点的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.下列各式中值为1的是 ( )A.10xdx ⎰ B.()101x dx +⎰ C.101dx ⎰ D.1012dx ⎰ 9.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象是( )10.曲线()b y f x ax x ==-在点(2,(2))f 处的切线方程为74120x y --=,则,a b 的值分别为 ( )A.13a b =⎧⎨=⎩B.13a b =-⎧⎨=⎩C.13a b =⎧⎨=-⎩D.13a b =-⎧⎨=-⎩ 11.设函数()y f x =在(,)a b 上的导函数为'()f x ,'()f x 在(,)a b 上的导函数为''()f x ,若在(,)a b 上,''()0f x <恒成立,则称函数函数()f x 在(,)a b 上为“凸函数”.已知当2m ≤时,3211()62f x x mx x =-+在(1,2)-上是“凸函数”.则()f x 在(1,2)-上 ( ) A.既有极大值,也有极小值 B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值12.如图,曲线()y f x =上任一点P 的切线PQ 交x 轴于Q ,过P 作PT 垂直于x 轴于T ,若PTQ ∆的面积为12,则y 与'y 的关系满足 ( ) A.'y y = B.'y y =- C.2'y y = D.2'y y =第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.)13.函数x e x x f )3()(-=的单调递增区间是_____________14.曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 . 15.已知函数b ax x ax x f +-+=63)(23在x =2处取得极值9,则2a b +=16.已知函数32()(,)f x x ax bx a b =++∈R 的图象如图所示,它与直线0y =在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为274,则a三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17.(12分)求由曲线2,,y x y x ==及2y x =围成的平面图形面积.18.(12分)已知函数32()(1)48(2)f x ax a x a x b =+-+-+的图象关于原点成中心对称.(1)求,a b 的值;(2)求()f x 的单调区间及极值.19.(12分)某厂生产产品x 件的总成本32()120075c x x =+(万元),已知产品单价P(万元)与产品件数x 满足:2k P x=,生产100件这样的产品单价为50万元. (1)设产量为x 件时,总利润为()L x (万元),求()L x 的解析式;(2)产量x 定为多少件时总利润()L x (万元)最大?并求最大值(精确到1万元).20.(12分)设函数329()62f x x x x a =-+-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;(2)若方程()0f x =有且仅有一个实根,求a 的取值范围.21.(12分)已知函数1()ln(1),01x f x ax x x-=++≥+,其中0a > (1)若()f x 在x =1处取得极值,求a 的值;(2)求()f x 的单调区间;(3)若()f x 的最小值为1,求a 的取值范围。
22.(14分)已知函数f(x)=a ln x+x2(a为实常数).a=-,求证:函数f(x)在(1,+∞)上是增函数;(1)若2a≥-时,求函数f(x)在[1,e]上的最小值及相应的x值;(2)当2(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.临沂第十九中学第二次调研考试(数学理)答案 1.D ()()()2112112x f x f y x x x x⎡⎤+∆+-+∆-∆⎣⎦===+∆∆∆∆ 2.A 21()f x x '=-,2()()1lim ()x a f x f a f a x a a →-'==--. 3.B ∵4,y x '=-∴00x k y ='==.4.B 由切线230x y +-=的斜率1,2k =-即01()02f x '=-< 5.D ∵12y x x=+在0x =处不可导. 6.C 由140,y x x '=->得12x >. 7.B 如320,3,0x y x y x y =''===,但0x =不是函数的极值点. 8.C 11001 =101dx x =-=⎰.9.A ∵2()f x x bx c =++对称轴为0,2b ->∴0b <,()2f x x b '=+的图象是斜率为正,在y 轴上的截距为负,也即直线过第一、三、四象限. 10.A 方程74120x y --=可化为734y x =-.当2x =时,12y =. 又2()b f x a x '=+,于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,,解得13.a b =⎧⎨=⎩, 11.C 因21'()12f x x mx =-+,''()0f x x m =-<对于(1,2)x ∈-恒成立. ∴max ()2m x >=,又当2m =时也成立,有2m ≥.而2m ≤,∴2m =. 于是21'()212f x x x =-+,由'()0f x =得2x =-2x =舍去), ()f x在(1,2-上递增,在(2-上递减,只有C 正确 12.D 1122PTQ S y QT ∆=⨯⨯=,∴1QT y=,1(,0)Q x y -,根据导数的几何意义,'1()PQ y k y x x y -==--∴2'y y =.13.(2,)+∞ ()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-,令()0f x '>,解得2x > 14.43 曲线xy 1=和2x y =在它们的交点坐标是(1,1),两条切线方程分别是y =-x +2和y =2x -1,它们与x 轴所围成的三角形的面积是43. 15.-24 ∵a x ax x f 663)(2-+=',由已知⎩⎨⎧=+-+=-+⇒⎩⎨⎧=='9121280612129)2(0)2(b a a a a f f , 解得2a =-,11b =-,∴224a b +=-16.-3 由图知方程()0f x =有两个相等的实根120x x ==,于是0b =,∴2()()f x x x a =+,有43432027[0()]()044312a a x ax a x ax dx --=-+=-+=⎰,∴3a =±. 又00a a ->⇒<,得3a =-.17.解:由2y x y x⎧=⎨=⎩,得(1,1)A ,又由22y x y x ⎧=⎨=⎩,得(2,4)B 所求平面图形面积为:1212220101(2)(2)(2)S x x dx x x dx xdx x x dx =-+-=+-⎰⎰⎰⎰ 1222301117236x x x ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭. 18.解:(1)∵函数f (x )的图象关于原点成中心对称,则f (x )是奇函数,∴()()f x f x -=-得32(1)48(2)ax a x a x b -+---+=32(1)48(2)ax a x a x b ------,于是22(1)20a x b -+=恒成立,∴100a b -=⎧⎨=⎩,解得1,0a b ==; (2)由(1)得3()48f x x x =-,∴2()3483(4)(4),f x x x x '=-=+-令()0f x '=,得124,4x x =-=,令()0f x '<,得44x -<<,令()0f x '>,得4x <-或4x >.∴()f x 的递减区间为[4,4]-,递增区间为(,4)-∞-和(4,)+∞,∴()(4)128f x f =-=极大,()(4)128f x f ==-极小.19.解:(1)由题意有250,100k =解得42510,k =⨯∴P ==∴总利润32()120075x L x x =--=321200(0)75x x -+>; (2)由(1)得22()25L x x '=-+,令22()025L x x '=⇒=,令t =得455250212525525t t t =⇒=⨯=,∴5t =,于是225x t ==, 则25x =,所以当产量定为25时,总利润最大.这时(25)416.725001200883L ≈-+-≈.答:产量x 定为25件时总利润()L x 最大,约为883万元.20.解:(1) '2()3963(1)(2)f x x x x x =-+=--,因为(,)x ∈-∞+∞,'()f x m ≥, 即 239(6)0x x m -+-≥恒成立,所以 8112(6)0m ∆=--≤, 得34m ≤-,即m 的最大值为34- (2) 因为当1x <时,'()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >;所以 当1x =时,()f x 取极大值 5(1)2f a =-; 当2x =时,()f x 取极小值 (2)2f a =-;故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52a >. 21.解:(1)22222'(),1(1)(1)(1)a ax a f x ax x ax x +-=-=++++ ∵()f x 在x=1处取得极值,∴2'(1)0,120,f a a =+-=即解得 1.a = (2)222'(),(1)(1)ax a f x ax x +-=++∵0,0,x a ≥> ∴10.ax +> ①当2a ≥时,在区间(0,)'()0,f x +∞>上,∴()f x 的单调增区间为(0,).+∞②当02a <<时,由'()0'()0f x x f x x >><<解得由解得∴()f x +∞的单调减区间为(0). (3)当2a ≥时,由(2)①知,()(0)1;f x f =的最小值为当02a <<时,由(2)②知,()f x 在x =处取得最小值(0)1,f f <= 综上可知,若()f x 得最小值为1,则a 的取值范围是[2,).+∞22.解:(1)当2-=a 时,x x x f ln 2)(2-=,当),1(+∞∈x ,0)1(2)(2>-='x x x f , 故函数)(x f 在),1(+∞上是增函数; (2))0(2)(2>+='x xa x x f ,当],1[e x ∈,]2,2[222e a a a x ++∈+, 当2-≥a 时,)(x f '在],1[e 上非负(仅当2-=a ,x=时,0)(='x f ),故函数)(x f 在],1[e 上是增函数,此时=min )]([x f 1)1(=f .∴当2-≥a 时,)(x f 的最小值为1,相应的x 值为1.(3)不等式x a x f )2()(+≤,可化为x x x x a 2)ln (2-≥-.∵],1[e x ∈, ∴x x ≤≤1ln 且等号不能同时取,所以x x <ln ,即0ln >-x x , 因而xx x x a ln 22--≥(],1[e x ∈), 令x x x x x g ln 2)(2--=(],1[e x ∈),又2)ln ()ln 22)(1()(x x x x x x g --+-=', 当],1[e x ∈时,1ln ,01≤≥-x x ,0ln 22>-+x x ,从而'()0g x ≥(仅当x=1时取等号),所以)(x g 在],1[e 上为增函数,故)(x g 的最小值为1)1(-=g ,所以a 的取值范围是),1[+∞-.。