实数的完备性
- 格式:doc
- 大小:1.22 MB
- 文档页数:14
第七章实数的完备性1. 教学框架与内容教学目标①掌握实数集完备性的基本定理内容.②掌握实数集完备性的基本定理等价性证明.③利用完备性定理证明有界闭区间上连续函数性质.教学内容①实数完备性基本定理内容及其之间的相互等价性.②有界闭区间上连续函数性质的证明.2. 重点和难点①正确理解基本定理的含义及适用范围.②基本定理等价性证明.③利用完备性定理证明有界闭区间上连续函数性质.3. 研究性学习选题● 完备性基本定理的应用, 以区间套定理和有限覆盖定理为例.小组进行一次交流:叙述实数完备性基本定理的应用.●举例用不同完备性定理证明同一命题, 体会不同完备性定理的奥妙之处. 进行一次研讨:举一例说明不同完备性定理的不同应用.4. 综合性选题, 写读书笔记■整理完备性定理等价性证明.■整理每个完备性定理适用范围.5. 评价方法◎课后作业,计10分.◎研究性学习布置的两个选题合计30分.●完备性基本定理的应用(计15分)●用不同完备性定理证明同一命题(计15分)◎读书笔记计60分.●完备性定理等价性证明总结(计30分)●完备性定理适用范围总结(计30分)§1 实数基本定理的陈述一、确界原理定理1 非空有上(下)界数集必有上(下)确界.二、单调有界原理定理2 单调有界数列必收敛.例 1 确界原理⇒单调有界原理.三、闭区间套定理1、 区间套设{[,]}n n a b 是一闭区间序列,若满足条件1) 对任意n ,有11[,][,]n n n n a b a b ++⊂,即11n n n n a a b b ++≤≤≤,2) lim 0n n n b a →∞-=,即n →∞时,区间长度趋于0, 则称该闭区间序列为一个(递缩)闭区间套,简称为区间套,区间套还可表示为1221n n a a a b b b ≤≤⋅⋅⋅≤⋅⋅⋅≤⋅⋅⋅≤≤.注 1 区间套{[,]}n n a b 涉及两个数列{},{}n n a b ,其中{}n a 递增,{}n b 递减且{}n a 有 上界1b , {}n b 有下界1a ,从而由单调有界原理{},{}n n a b 均收敛,不妨设n a a →,n b b →. 故a b ≤且由0n n a b -→有b a =.2、区间套定理定理3 若{[,]}n n a b 是一个区间套,则存在唯一R ξ∈,使得n N ∀∈,[,]n n a b ξ∈,即区间套必有唯一的公共点.例 2 单调有界定理⇒区间套定理. (注意唯一性)注 2 若区间套{[,]}n n a b ,n n b a -→0,则应有何结论……推论 设ξ为区间套{[,]}n n a b 所确定的点,则对任给0ε>,存在N ,使得n N >时, [,](,)n n a b U ξε⊂.注 3 区间套定理中,区间套均为闭区间,而对开区间套未必成立,如11{(0,)}n n∞=. 例 设{(,)}n n a b 是一个严格开区间套,即1221n n a a a b b b <<⋅⋅⋅<<⋅⋅⋅<⋅⋅⋅<<,且lim 0n n n b a →∞-=,证明: 存在唯一的R ξ∈,使得(,)n n a b ξ∈,n N ∀∈.四、Cauchy 收敛准则1、基本列 (Cauchy 列)若数列{}n a 满足0ε∀>,存在N ∈N ,使得,m n N ≥时m n a a ε-<, 则称{}n a 为基本列或Cauchy 列.注 3 {}n a 为Cauchy 列0,,,,n p n N n N p a a εε+⇔∀>∃∈N >∀∈N -<.例 证明 1) 20.9sin0.90.90.9n n x =+为Cauchy 列 2) 22211112n a n=++⋅⋅⋅+为Cauchy 列. 例 不用Cauchy 准则证明:1) Cauchy 列必为有界列.2) 若Cauchy 列有收敛子列,则其本身必收敛.2、Cauchy 收敛准则定理 4 数列{}n a 收敛⇔{}n a 为Cauchy 列例3 区间套定理⇒Cauchy 收敛准则.1、聚点设S R ⊂为数集,ξ为定点(ξ可能属于S ,可能不属于S ),若ξ的任何 邻域内均含有S 的无穷多个点,则ξ称为S 的一个聚点.例 1) 1{,}E n N n=∈有唯一聚点0. 2) [0,1)的聚点集为[0,1].3) [0,1)中的有理数的聚点集[0,1].4) 有限点集无聚点.2、聚点等价条件ξ为S 的聚点00,(,)S εξε⇔∀>≠∅(ξ的任何邻域内中有S 中异于ξ的点);⇔S 中存在异于ξ的点列{}n a ,n a ξ→;⇔S 中存在互不相同的点列{}n a ,n a ξ→.例 设S 为有上界集,sup S S ∉,则{},sup n n a S a S ∃⊂→.[sup S S ∉,则sup S 为S 的一个聚点]定理5 (Weierstrass定理)实数中任一有界无限点集S至少有一个聚点. 例 4区间套定理⇒聚点定理.推论有界数列必有收敛子列----致密性定理.六、致密性定理定理6有界数列必有收敛子列.例 5致密性定理⇒Cauchy收敛准则.七、(Heine Borel -)有限覆盖定理1、开覆盖设开区间族{(,),}G I a b λλλλ==∈∧(∧为一指标集),设S 为一数集,若对任,x S λ∈∃∈∧,使x I λ∈,则称区间族G 覆盖了S ,或称区间族G 是数集S 的一个覆盖,记作(,)S a b λλλ∈∧⊂.若∧为有(无)限集,则称覆盖为有(无)限覆盖S .若∑为的∧子集,且{(,),}a b λλλ∈∑也覆盖S ,则称{(,),}a b λλλ∈∑为G 的一个子覆盖. 特别地,若∑是有限集, 则称为G 的一个有限子覆盖.例 1) {(,),(0,1)}22x x G x x x =-+∈覆盖了区间(0,1),但其不能覆盖[0,1]? 2) 若f 在(,)a b 上连续,则0ε∀>,对每一个(,)x a b ∈都存在正数 (,)0x x δδε=>,使得当'(,)(,)x x x x U x x x δδδ∈=-+有(')()f x f x ε-<, 从而开区间族{(,x G x x δ=-),(,)}x x a b δ+∈就为(,)a b 上的一个无限开覆盖.一般称(,)x I x x x x δδ∈⋃-+为I 上的一个自然覆盖.2、有限覆盖定理定理7 设G 为闭区间[,]a b 的一个(无限)开覆盖,则可从G 中选中有限子覆盖来覆盖[,]a b .例 6 闭区间套定理⇒有限覆盖定理.§2 完备性定理等价性证明确界原理 ?⇐ Cauchy 收敛准则 ⇐ 致密性定理⇓ ⇑ ⇑单调有界定理 ⇒ 区间套定理 ⇒ 聚点定理⇓ ?⇑有限覆盖定理 ⇒例 7 Cauchy 收敛准则 ⇒ 确界原理.例 8 有限覆盖定理⇒聚点定理.例 9 聚点定理⇒区间套定理.例 10 Cauchy 收敛准则 ⇒ 有界单调定理.实数完备性命题都可以用于确定某个具有某种性质的点.1、 单调有界定理与Cauchy 收敛准则通常用于判断数列的收敛性. (即收敛数列的极限点).2、 确界原理所确定的点,通常是具有或不具有某种性质的分界点.3、 致密性定理是同聚点原理一般将数列过渡到子列(可要求子列具有某种收敛性).4、 区间套定理是把区间上的整体性质收缩为某点性质(局部性质).方法是 假设I 具有某种性质P ,对分I ,得到两个子区间,可要求其一必须仍满足性质P ,如此可得到区间套{}n I 及公共点α,由α的任一邻域必包含某n I ,则得到的任一邻域具有性质P .5、 有限覆盖定理主要在于把局部性质扩展成整体性质。
第七章 实数的完备性§1.关于实数集完备性的基本定理1. 验证数集⎭⎬⎫⎩⎨⎧+-n n 1)1(有且只有两个聚点11-=ε和12=ε。
解: 当n 取奇数12-=k n 时,S 中的互异子列 ) ( , 1 1 2 1 1 ∞ → -→ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ - + - k k ,所以11-=ξ是S 的聚点;当n 取偶数k n 2=时,S 中的互异子列)(,1211∞→→⎭⎬⎫⎩⎨⎧+k k ,所以12=ξ是S 的聚点2.证明:任何有限数集都没有聚点。
证明: 设有限数集S 。
由聚点ξ的定义,在ξ的任何邻域内都含有S 中无穷多个点,而S 只有有限个点,所以S 没有聚点。
3.设{})(,n n b a 是一个严格开区间套,既满足,1221b b b a a a n n <<<<<<< 且0)(lim =-∞→n n n a b .证明:存在唯一的一点ε,使得.,2,1, =<<n b a n n ε证明:证法一:}{n a 严格递增,有上界A a n n =∴∞→lim ,且 3,2,1,=<n A a n(否则,假定存在N ,有时,,则N n A a N >≥A a a a n N n ≥>>+1,因而Aa a N n n >≥+∞→1lim 与A a n n =∞→lim 相矛盾)同理B b n n =∞→lim 存在, 3,2,1,=>n B b n由条件0)(lim =-∞→n n n a b 可知A=B ,令B A ==ε,则 3,2,1,=<<n b a n n ε证法二:作闭区间列]2,2[],[11++++=n n n n n n b b a a y x 其满足: 1°),(],[),(11n n n n n n b a y x b a ⊂⊂++][][,1,1n n n n y x y x ⊂∴++2°0)(lim =-∞→n n n a b0)(lim =-∴∞→n n n x y由区间套定理,存在唯一一点),(],[n n n n b a y x ⊂∈ε使得.,2,1, =<<n b a n n ε4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不成立。
第七章 实数的完备性§1关于实数集完备性的基本定理前面我们学习了:戴德金切割原理、确界原理、单调有界定理、致密性定理、柯西收敛准则,这些命题都是从不同方式反映实数集的一种特性,通常称为实数的完备性或实数的连续性公理。
本节再学习见个实数的完备性公理,即区间套定理、聚点定理、有限覆盖定理。
最后我们要证明这些命题都是等价的。
一、区间套定理]}定义1 设闭区间列具有如下性质: [{n n b a ,(i) []n n b a ,[]11,++⊃n n b a , ,2,1=n ; (ii) 0)(lim =-∞→n n n a b ,则称为闭区间套,或简称区间套。
[{n n b a ,]} 这里性质(¡)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:.1221b b b a a a n n ≤≤≤≤≤≤≤≤ (1) 左端点{}n a 是单调递增的点列,右端点{}n b 是单调递减的点列。
定理1 (区间套定理) 若是一个区间套,则在实数系中存在唯一的一点[{n n b a ,]}ξ,使得ξ∈[]n n b a ,,,即,2,1=n ξ≤n a n b ≤, .,2,1 =n (2) 证 (由柯西收敛准则证明)设是一区间套.下面证明[{n n b a ,]}{}n a 是基本点列。
设,由区间套的条件(i)得m n >()()()()m n m n m m n n m m a a b a b a b a b a -=---≤---再由区间套的条件(ii ),易知{}n a 是基本点列。
按Cauchy 收敛准则,{}n a 有极限,记为ξ。
于是()lim lim ()lim n n n n n n n n b b a a a ξ→∞→∞→∞=-+==由{}n a 单调递增,{}n b 单调递减,易知ξ≤n a n b ≤,.,2,1 =n下面再证明满足(2)的ξ是唯一的。
第七章实数的完备性§1 关于实数完备性的基本定理一、问题提出定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界.确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类二、回顾确界原理的证明我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或(,)A ε=-∞,[,)B ε=+∞无其它可能.1 非空有上界的数集E 必存在上确界.证明 设}{x E =非空,有上界b : E x ∈∀,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界;(2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划.ο1 A 、B 不空.首先B b ∈.其次E x ∈∀,由于x 不是E 的最大数,所以它不是E 的上界,即A x ∈.这说明E 中任一元素都属于下类A ;ο2 A 、B 不漏性由A 、B 定义即可看出;ο3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈∃,使得x a <,而E 内每一元素属于A ,所以b x a <<.ο4 由ο3的证明可见A 无最大数.所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c .E x ∈∀,由ο1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c sup =.推论 非空的有下界的集合必有下确界.事实上,设集合}{x E =有下界b ,则非空集合}|{'E x x E ∈-=有上界b -,利用集合'E 上确界的存在性,即可得出集合E 的下确界存在.定理1解决了非空有上界集合的上确界存在性问题,我们可以利用上确界的存在性,得出我们所研究的某一类量(如弧长)的存在性.若全序集中任一非空有上界的集合必有上确界,我们称该全序集是完备的.定理1刻划了实数集是完备的.例1 证明实数空间满足阿基米德原理.证明 0>>∀a b ,要证存在自然数n 使b na >.假设结论不成立,即b na ≤, ),,Λ21(=n ,则数集}{na E =有上界b ,因此有上确界c ,使c na ≤),,Λ21(=n ,也就有c a n ≤+)1(),,Λ21(=n ,或 a c na -≤ ),,Λ21(=n .这表明a c -是集合E 的上界,与c 是上确界矛盾.所以总存在自然数n ,使b na >. 三、等价命题证明下面来完成(1)~(7)的证明. (一) 用确界定理证明单调有界定理设}{n x 单调上升,即ΛΛ≤≤≤≤≤n x x x x 321,有上界,即M ∃,使得M x n ≤.考虑集合}|{N n x E n ∈=,它非空,有界,定理2推出它有上确界,记为nN n x a ∈=sup .我们验证 nn x a ∞→=lim .0>∀ε,由上确界的性质,N ∃,使得N x a <-ε,当N n >时,由序列单调上升得n N x x a ≤<-ε,再由上确界定义,ε+<≤a a x n ,有 εε+<<-a x a n ,即ε<-a x n ,也就是说 nN n n n x a x ∈∞→==sup lim . 同理可证若}{n x 单调下降,有下界,也存在极限,且nN n n n x x ∈∞→=inf lim .若集合E 无上界,记作+∞=E sup ;若集合E 无下界,记作+∞=E inf ,这样一来,定理2证明了的单调上升(下降)有上界(下界)的序列}{n x ,必有极限)inf (sup n N x n N x x x ∈∈的定理现在有了严格的理论基础了.且对单调上升(下降)序列}{n x ,总有)inf (sup lim n Nx n Nx n n x x x ∈∈+∞→=.(二) 用单调有界定理证明区间套定理由假设(1)知,序列}{n a 单调上升,有上界1b ;序列}{n b 单调下降,有下界1a .因而有1lim c a n n =+∞→,2lim c b n n =+∞→. n n b c c a ≤≤≤21.再由假设(2)知0)(lim 12=-=-+∞→c c a b n n n ,记c c c ==21. 从而有nn n n b c a +∞→+∞→==lim lim .若还有*c 满足n n b c a ≤≤*,令+∞→n ,得c c =*.故c 是一切],[n n b a 的唯一公共点.证毕.这个定理称为区间套定理.关于定理的条件我们作两点说明:(1) 要求],[n n b a 是有界闭区间的这个条件是重要的.若区间是开的,则定理不一定成立.如)1,0(),(n b a n n =.显然有 )1,0()11,0(n n ⊂+, 但 φ=+∞=)1,0(1n n I .如果开区间套是严格包含: n n n n b b a a <<<++11,这时定理的结论还是成立的.(2)若],[],[11n n n n b a b a ⊂++),,Λ21(=n ,但0)(lim ≠-+∞→n n n a b ,此时仍有1lim c a n n =+∞→,2lim c b n n =+∞→,但21c c <,于是对任意的c ,21c c c ≤≤,都有],[1n n n b a c +∞=∈I . 全序集中任一区间长趋于零的区间套有非空交集,则称该全序集是完备的,定理3刻划实数集是完备的(这里完备定义与上段完备定义是等价的).定理3也给出通过逐步缩小搜索范围,找出所求点的一种方法.推论 设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.例2 序列}{n x 由下列各式a x =1,b x =2,221--+=n n n x x x ),,Λ43(=n所确定(见下图).证明极限n n x+∞→lim 存在,并求此极限.1x 3x 5x 4x 2x x证明 当b a =时,a x n =,故ax n n =+∞→lim .当b a ≠时,若取),min(1n n n x x a +=,),m ax (1n n n x x b +=,),,Λ21(=n .则由条件,显然可得一串区间套:],[],[11n n n n b a b a ⊂++ ),,Λ21(=n .由已知条件)(212111--+--=-+=-n n n n n n n x x x x x x x ,于是,)(0||21||21||21||21||112121211+∞→→-=-==-=-=-=------+n a b x x x x x x x x a b n n n n n n n n n n Λ由区间套定理,存在c 满足: n n n n b c a +∞→+∞→==lim lim .注意到],[n n n b a x ∈,所以 c x n n =+∞→lim . 下面来求c .由)(2111-+--=-n n n n x x x x ,令132-=k n ,,,Λ得一串等式: )(211223x x x x --=-; )(212334x x x x --=-;ΛΛΛΛΛΛ)(21211-----=-k k k k x x x x .将它们相加,得 )(21112x x x x k k --=--,令+∞→k ,得)(2112x c x c --=-所以)2(31323121b a x x c +=+=.(三) 用区间套定理证明确界原理证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕]*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.* (五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕]推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点注数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.证}{n a 有界,则存在数11,y x 使得11y a x n ≤≤对n ∀成立.将],[11y x 二等分为]2,[111y x x +、],2[111y y x +,则其中必有一个含有数列}{n a 的无穷多项,记为],[22y x ;再将],[22y x 二等分为]2,[222y x x +、],2[222y y x +,同样其中至少有一个含有数列}{n a 的无穷多项,把它记为],[33y x ,……一直进行这样的步骤,得到一闭区间套]},{[n n y x ,其中每一个],[n n y x 中都含有数列}{n a 的无穷多项,且满足:⑴ ],[11y x ⊃],[22y x ⊃⊃Λ],[n n y x ⊃…⑵111lim()lim02n n n n n y x y x -→∞→∞--==则由闭区间套定理,ξ∃使得 =∞→n n a lim =∞→n n b lim ξ 下证}{n a 中必有一子列收敛于实数ξ先在],[11y x 中选取}{n a 的某一项,记为1n a ,因],[22y x 中含有}{n a 中的无穷多项,可选取位于1n a 后的某一项,记为2n a ,12n n >.继续上述步骤,选取k n a ],[k k y x ∈后,因为],[11++k k y x 中含有无穷多项,可选取位于kn a 后的某一项,记为1k n a +且kk n n >+1,这样我们就得到}{n a 的一个子列}{k n a 满足k n k y a x k ≤≤,Λ,2,1=k由两边夹定理即得 =∞→k n n a lim ξ.证明 设b x a n ≤≤,用中点21ba c +=将[]b a ,一分为二,则两个子区间[]1,c a 和[]b c ,1中至少有一个含有}{n x 中无穷多项,选出来记为[]11,b a ,在其中选一项1n x .用中点2112b a c +=将[]11,b a 一分为二,则两个子区间[]21,c a 和[]12,b c 中至少有一个含有}{n x 中无穷多项,选出来记为[]22,b a ,在其中选一项2n x ,使得Λ,12n n >.最后得一区间套[]k k b a ,,满足[][]k k k k b a b a ,,11⊂++,k k k a b a b 2-=-,[]kk k k n n n b a x k >∈+1,,.由区间套定理,c b a k k k k ==∞→∞→lim lim ,又由于kn k b x a k ≤≤,有c x k n k =∞→lim .*(六) 用聚点定理证明柯西准则必要性: 已知收敛,设.由定义,,当时,有.从而有.充分性: 已知条件: 当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.证 “⇒” }{n a 收敛,则存在极限,设a a n n =∞→lim ,则0>∀ε,N ∃,当N n >时有2/||ε<-a a n ⇒当N m n >,时有ε<-+-≤-||||||a a a a a a n m m n“⇐”先证有界性,取1=ε,则N ∃,N m n >,⇒1||<-m n a a特别地,N n >时 1||1<-+N n a a ⇒1||||1+<+N n a a设}1|||,|,|,||,m ax {|121+=+N N a a a a M Λ,则n ∀,Ma n ≤||再由致密性定理知,}{n a 有收敛子列}{k n a ,设aa k n k =∞→lim0>∀ε,1N ∃,1,N m n >⇒||/2n m a a ε-<K ∃,K k >⇒2/||ε<-a a k n取),m ax (1N K N =,当N n >时有11N n N N +≥+>⇒ εεε=+<-+-≤-++2/2/||||||11a a a a a a N N n n n n故aa n k =∞→lim .Cauchy 列、基本列(满足Cauchy 收敛准则的数列)*(七) 用柯西准则证明单调有界原理 设为一递增且有上界M 的数列.用反证法( 借助柯西准则 )可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“ 当 时,满足”.这是因为它同时保证了对一切,恒有 .倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 例1 用单调有界定理证明区间套定理.即已知:1 )单调有界定理成立;2 )设[]{}nnba,为一区间套.欲证:[],,2,1,,Λ=∈ξ∃nbann且惟一.证证明思想:构造一个单调有界数列,使其极限即为所求的ξ.为此,可就近取数列{}na(或{}n b).由于,1221bbbaaann≤≤≤≤≤≤≤≤ΛΛΛ因此{}na为递增数列,且有上界(例如1b).由单调有界定理,存在ξ=∞→nnalim,且Λ,2,1,=ξ≤nan.又因nnnnaabb+-=)(,而0)(lim=-∞→nnnab,故ξ=ξ+=+-=∞→∞→∞→lim)(limlimnnnnnnnaabb;且因{}nb递减,必使ξ≥nb.这就证得[]Λ,2,1,,=∈ξnbann.最后,用反证法证明如此的ξ惟一.事实上,倘若另有一个[]Λ,2,1,,=∈ξ'nbann,则由)()(∞→→-≤ξ'-ξnabnn,导致与>ξ'-ξ相矛盾.例 2 (10)用区间套定理证明单调有界定理.即已知:1 )区间套定理成立.2 )设{}n x为一递增且有上界M的数列.欲证:{}n x存在极限nnx∞→=ξlim.证证明思想:设法构造一个区间套[]{}nnba,,使其公共点ξ即为{}n x的极限.为此令[][]Mxba,,111=.记2111bac+=,并取[][]{}[]{}⎩⎨⎧=.,,;,,,11111122的上界为不若的上界为若nnxcbcxccaba再记222 2ba c +=, 同理取[][]{}[]{}⎩⎨⎧=.,,;,,,22222233的上界不为若的上界为若n n x c b c x c c a b a如此无限进行下去,得一区间套[]{}n n b a ,.根据区间套定理,[]∞→∞→=ξ==∈ξ∃n n n n n n b a n b a )lim lim (,2,1,,Λ.下面用数列极限定义证明ξ=∞→n n x lim :0>ε∀,一方面,由于)(N ∈k b k 恒为{}n x 的上界,因此ε+ξ<ξ=≤⇒≤∈∀∞→k k n k n b x b x ,k n lim ,N ;另一方面,由ε-ξ>⇒ε<-ξ=ξ-≥∈∃⇔ξ=∞→K k k k k a a a K k ,K a ,lim 时当N ;而由区间套的构造,任何k a 不是{}n x 的上界,故ε-ξ>>∃K N a x ;再由{}n x 为递增数列,当N n >时,必有ε-ξ>≥N n x x .这样,当 N n > 时,就有ε+ξ<<ε-ξn x , 即 ξ=∞→n n x lim .例 3 (9) 用确界定理证明区间套定理.即已知: 1 ) 确界定理成立(非空有上界的数集必有上确界);2 ) 设{}],[n n b a 为一区间套.欲证:存在惟一的点[]Λ,2,1,,=∈ξn b a n n .证 证明思想:给出某一数集S ,有上界,使得S 的上确界即为所求的ξ. 为此,取{}n a S =,其上界存在(例如 1b ).由确界定理,存在 {}n a sup =ξ.首先,由ξ为{}n a 的一个上界,故Λ,2,1,=ξ≤n a n .再由ξ是{}n a 的最小上界,倘有某个ξ<m b ,则m b 不会是{}n a 的上界,即m k b a >∃,这与[]{}nn b a ,为区间套相矛盾(ji b a <).所以任何ξ≥n b .这就证得Λ,2,1,=≤ξ≤n b a n n .关于ξ的惟一性,与例1中的证明相同.注 本例在这里所作的证明比习题解答中的证明更加清楚.在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]四、实数系的完备性实数所组成的基本数列{}nx比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)nn⎧⎫+⎨⎬⎩⎭:1lim(1)nnen→∞+=(无理数).五、压缩映射原理(不动点原理)1、函数f(x)的不动点指什么?设y=f(x)是定义在[a,b]上的一个函数,方程x=f(x)的解称为f(x)的不动点.2、在什么样的条件下不动点一定存在呢?存在时唯一吗?如何求出不动点?压缩映射:如果存在常数k,满足0≤k<1,使得对一切,[,]x y a b∈成立不等式()()||f x f y k x y -≤-,则称f 是[a,b]上的一个压缩映射. 压缩映射必连续.压缩映射原理(不动点原理) 设()x ϕ是[a,b]上压缩映射,且([,])[,]a b a b ϕ⊂,则()x ϕ在[a,b]上存在唯一的不动点.例3 证明Kapler 方程sin x x b ε=+在||1ε<时,存在唯一实数.§7.2 闭区间上连续函数性质的证明教学目标:证明闭区间上的连续函数性质.教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性. 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题. 教学过程:在本节中,将利用关于实数完备性的基本定理来证明第四章2中给出的闭区间上连续函数的基本性质.一、有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107.证法 二 ( 用致密性定理). 反证法.证明 如若不然,)(x f 在],[b a 上无界,∈∀n N ,],[b a x n ∈∃,使得n x f n >|)(|,对于序列}{n x ,它有上下界b x a n ≤≤,致密性定理告诉我们k n x∃使得],[0b a x x k n ∈→,由)(x f 在0x 连续,及kn n x f k >|)(|有+∞==∞→|)(|lim |)(|0k n k x f x f ,矛盾.证法 三 ( 用有限复盖定理 ). 参阅[1]P168—169证明 (应用有限覆盖定理) 由连续函数的局部有界性(th4.2)对每一点[]b a x ,'∈都存在邻域()x x '',δο⋃及正数'x M使()()[]b a x x M x f x x ,,'''⋂⋃∈≤δ 考虑开区间集()(){}b a x x H x ,,'''∈⋃=δ虽然H 是[]b a ,的一个无限开覆盖,由有限开覆盖定理,存在H 的一个有限点集()[]{}k i b a x x H i i i ,,2,1,,Λ=∈⋃=*δ覆盖了[]b a ,,且存在正整数,,,21k M M M Λ使对一切()[]b a x x i i ,,⋂⋃∈δ有()k i M x f i ,,2,1,Λ=≤,令ki iM M ≤≤=1m ax则对[]b a x ,∈∀,x 必属于某()()M M x f x i i i ≤≤⇒δ,Y ,即证f 在[]b a ,上有上界. 二、最值性:命题2 ] , [)(b a C x f ∈, ⇒ )(x f 在] , [b a 上取得最大值和最小值. ( 只证取得最大值 )证 ( 用确界原理 ) 令)}({sup x f M bx a ≤≤=,+∞<M , 如果)(x f 达不到M ,则恒有M x f <)(.考虑函数)(1)(x f M x -=ϕ,则],[)(b a C x ∈ϕ,因而有界,即)0()(>≤μμϕx , 从而MM x f <-≤μ1)(,这与M 是上确界矛盾,因此],[b a x ∈∃,使得M x f =)(.类似地可以证明达到下确界.三、介值性: 证明与其等价的“零点定理 ”.命题3 (零点存在定理或根的存在性定理)设函数)(x f 在闭区间],[b a 上连续即]),([)(b a C x f ∈且)(a f 与)(b f 异号()(a f 0)(<b f ),则在),(b a 内存在一点0x 使得 0)(0=x f .即方程0)(=x f 在),(b a 内至少存在一个实根.证法 一 ( 用区间套定理 ) .设0)(<a f ,0)(>b f .将],[b a 二等分为],[c a 、],[b c ,若0)(=c f 则c x =0即为所求;若0)(≠c f ,当0)(>c f 时取],[c a 否则取],[b c 为],[11b a ,有0)(1<a f ,0)(1>b f .如此继续,如某一次中点i c 有0)(=i c f 终止(i c 即为所求);否则得]},{[n n b a 满足:⑴ΛΛ⊃⊃⊃⊃],[],[],[11n n b a b a b a ;⑵ 02lim)(lim =-=-∞→∞→nn n n n ab a b ;⑶)(,0)(><n n b f a f由闭区间套定理知,∃唯一的],[10n n n b a x ∞=∈I ,且=∞→n n a lim 0lim x b n n =∞→由)(x f 在0x处的连续性及极限的保号性得)()(lim 0≤=∞→x f a f n n 、0lim ()()0n n f b f x →∞=≥0)(0=⇒x f #证二( 用确界原理 ) 不妨假设0)(<a f (从图1看,0x是使得0)(>x f 的x 的下确界),令]},[,0)(|{b a x x f x E ∈>=,要证E x inf 0=(E inf 存在否?).因为Φ≠⇒∈E E b ,],[b a E ⊂E ⇒有界,故E inf 存在.令 Ex inf 0=,下面证0)(0=x f如若不然,)(0≠x f 则)(0>x f (或)(0<x f )(从图形上可清楚看出,此时必存在1x x <使0)(1>x f ).首先ax ≠0,即],(0b a x ∈;f 在0x连续,由连续函数的局部保号性],[),(0b a x U ⊂∃⇒δ使得),(0δx U x ∈∀有0)(>x f ,特别应有0)2(0>-δx f 即 E x ∈-20δ,这与E x inf 0=矛盾,故必有0)(0=x f .证法 二 ( 用确界原理 ) 不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ, 有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ). 取n x >ξ 且n x ) ( ,∞→→n ξ. 由)(x f 在点ξ连续和0)(≤n x f , ⇒ 0)(lim )(≤=∞→n n x f f ξ,⇒ ξE ∉. 于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒ 0)(lim )(≥=∞→n n t f f ξ. 因此只能有0)(=ξf .证法 三 ( 用有限复盖定理 ).介值性定理 设f 在闭区间[]b a ,上连续,且()()()()b f a f b f a f 与为介于若μ≠之间的任何实数()()b f a f <<μ或()()b f a f >>μ,则存在()b a x ,∈ο使()μ=οx f .证明 (应用确界定理) 不妨设()()()()μμ-=<<x f x g b f a f 令 则g 也是[]b a ,上连续函数,()()0,0>>b g a g ,于是定理的结论转为:()()0,,=∈∃οοx g b a x 使这个简化的情形称为根的存在性定理(th4.7的推论)记()[]{}b a x x g x E ,,0∈>=显然E 为非空有界数集[]()E b b a E ∈⊂且,故有确界定理, E 有下确界,记()()0,0inf ><=b g a g E x 因ο有连续函数的局部保号性, 0>∃δ,使在),[δ+a a 内0)(<x g ,在),(δ-b b 内0)(>x g .由此易见a x ≠ο,b x ≠ο,即()b a x ,∈ο.下证()0=οx g .倘若()0≠οx g ,不妨设()0>οx g ,则又由局部保号性,存在()()()b a x ,,⊂ηοY 使在其内)0(>x g ,特别有Ex x g ∈-⇒>⎪⎭⎫ ⎝⎛-202ηηοο=0,但此与E x inf =ο矛盾,则必有0)(0=x g .几何解释 直线c y =与曲线)(x f y =相交.把x 轴平移到c y =,则问题成为零点存在问题.这启发我们想办法作一个辅助函数,把待证问题转化为零点存在问题.辅助函数如何作?① 从几何上,c y y x x -='=',启示我们作c x f x F -=)()(; ② 从结果cx f =)(0着手.利用零点定理证:令c x f x F -=)()(,则]),([)(b a C x F ∈,往下即转化为零点存在问题. # 这种先证特殊、再作辅助函数化一般为特殊,最后证明一般的方法是处理数学问题的常用方法,以后会经常用到.推论 如f 为区间I 上的连续函数,则值域)(I f J =也是一个区间(可以退化为一点). 证 f 为常量函数,则)(I f J =退化为一点.f 非常量函数,则J 当然不是单点集.在J 中任取两点21y y <(只要证J y y ⊂],[21),则在I 中必有两点1x ,2x 使得11)(y x f =,22)(y x f =.于是对21y y y <<∀,必存在x ,x 介于1x 与2x 之间,使y x f =)(,即J y ∈因而J y y ⊂],[21⇒J 是一个区间.二、一致连续性:命题4 ( Cantor 定理 ) ],[)(b a C x f ∈, 则)(x f 在],[b a 上一致连续.证法 一 ( 用有限复盖定理 ) 参阅[1]P171[ 证法一 ]证明 (用有限覆盖定理) 由f 在闭区间[]b a ,上连续性,0>∀ε,对每一点[]b a x ,∈,都存在0>x δ,使当()x x x δ,'Y ∈时,有()()2'ε<-x f x f考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=b a x x H x ,2,δY 显然H 是[]b a ,的一个开覆盖,由有限覆盖定理H ∃的一个有限子集[]02min ,,,2,12,>⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛=*i i i b a k i x H δδδ记覆盖了ΛY对[]δ<-∈∀"'"',,x x b a x x ,x '必属于*H 中某开区间,设⎪⎭⎫ ⎝⎛∈2,'i i x x δY ,即2'ii x x δ<-,此时有iiiii i x x x x x x δδδδδ=+≤+<-+-≤-222''""故有(2)式同时有 ()()()()22"'εε<-<-i i x f x f x f x f 和由此得()()[]上一致连续在b a f x f x f i ,'∴<-ε.证法 二 ( 用致密性定理). 参阅[1]P171—172 [ 证法二 ]证明 如果不然,)(x f 在],[b a 上不一致连续,00>∃ε,0>∀δ,],[,b a x x ∈'''∃,δ<''-'||x x ,而0|)()(|ε≥''-'x f x f .取n 1=δ,],[,b a x x n n∈'''∃,n x x n n 1||<''-',而0|)()(|ε≥''-'n n x f x f ,由致密性定理,存在子序列],[0b a x x k n∈→',而由k n nn x x k k 1||<''-',也有0x x k n→''. 再由)(x f 在0x 连续,在0|)()(|ε≥''-'k k n n x f x f 中令∞→k ,得000|)()(|lim |)()(|0ε≥''-'=-=∞→k k n nk x f x f x f x f ,矛盾.所以)(x f 在],[b a 上一致连续.推广 ),()(b a C x f ∈,()f a +,()f b -∃⇒)(x f 在),(b a 上一致连续. 作业 [1]P172 1,2 3,4, 5*;P176 1,2,4.§7.3 上极限和下极限一、上(下)极限的定义对于数列,我们最关心的是其收敛性;如果不收敛,我们希望它有收敛的子列,这个愿望往往可以实现.例如:{}(1)n -.一般地,数列{}n x ,若{}k n x :k n x a →(k →∞),则称a 是数列{}n x 的一个极限点.如点例{}(1)n -有2个极限点.数列{}n x 的最大(最小)极限点如果存在,则称为该数列的上(下)极限,并记为lim n n x →∞(lim n n x →∞).如lim(1)1n n →∞-=,lim(1)1n n →∞-=-.例1 求数列sin 3n π⎧⎫⎨⎬⎩⎭的上、下极限.例2 [1(1)]n n x n =+-,求上、下极限. 二、上(下)极限的存在性下面定理指出,对任何数列{}n x ,它的上(下)极限必定存在. 定理1 每个数列{}n x 的上极限和下极限必定唯一,且lim n n x →∞=1sup{,,}limsup n n k n k nx x x +→∞≥=L ,lim n n x →∞=1inf{,,}liminf n n k n k nx x x +→∞≥=L .三、上下极限和极限的关系lim n n x →∞≥lim n n x →∞.定理2 {}n x 存在极限则{}n x 的上极限和下极限相等,即lim n n x →∞=lim n n x →∞=lim n n x →∞.四、上(下)极限的运算普通的极限运算公式对上(下)极限不再成立.例如:11lim[(1)(1)]0lim(1)lim(1)2n n n n n n n ++→∞→∞→∞-+-=<-+-=u u u r . 一般地有:lim()lim lim n n n n n n n x y x y →∞→∞→∞+≤+,当{}n x 收敛时,等号成立.实数完备性的等价命题一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2(单调有界定理)任何单调有界数列必定收敛.定理1.3(区间套定理)设为一区间套:.则存在唯一一点定理1.4(有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(一) 用确界定理证明单调有界定理.(二) 用单调有界定理证明区间套定理设区间套.若另有使,则因.推论设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(三) 用区间套定理证明确界原理证明思想构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使.记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.*(五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.*(六) 用聚点定理证明柯西准则柯西准则的必要性容易由数列收敛的定义直接证得.(已知收敛,设.由定义,,当时,有.从而有.)这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.*(七) 用柯西准则证明单调有界原理设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;。
第七章 实数的完备性§1 实数完备性的基本定理1. 验证 数集},2,11)1{(L =+−n n n有且只有两个聚点11−=ξ和12=ξ 解 因{1+}21n 是{(-1)n+n 1}的所有偶数项组成的子列,且,1)211(lim =+∞→nn 故12=ξ是数集},2,11)1{(L =+−n n n的一个聚点.由于}1211{−+−n 是原数集的所有奇数项组成的子列,且,1)1211(lim −=−+−∞→n n 因而11−=ξ也是原数集的聚点.下证该数集再无其它聚点. 时,有则当取001}21,21min{,1εϕϕεϕ>−+=±≠∀n⎪⎪⎩⎪⎪⎨⎧−+−−≥⎪⎪⎩⎪⎪⎨⎧−+−−=−−−为奇数为偶数为奇数,为偶数)(n n n n n n n n n n ,11.1111,1111ϕϕϕϕϕ.1200εε>−≥n故ϕ不是该数集的聚点.这就证明原数集只有两个聚点,即1+与1−. 2.证明:任何有限数集都没有聚点.证 设S 是有限数集,则对任一S R a 因,1,0=∃∈ε是有限数集,故领域),(0εa U 内至多 有S 中的有限个点,故a 不是S 的聚点,由a 的任意性知,S 无聚点.3.设)},{(n n b a 是一严格开区间套,即1221b b b a a a n n <<<<<<<<L L L , 且.0)(lim =−∞→n n n a b 证明存在唯一一点ξ,有L ,2,1,=<<n b a n n ξ证 作闭区间列]},{[n n y x , 其中L ,2,1,2,211=+=+=++n b b y a a x n n n n n n ,由于),(,11N n b y b a x a n n n n n n ∈∀<<<<++ 故有(1) ))(,(],[),(11N n b a y x b a n n n n n n ∈∀⊂⊂++,从而L ,2,1],,[],[11=⊂++n y x y x n n n n(2) )(0N n a b x y n n n n ∈∀−<−<从而由]},{[.0)(lim ,0)(lim n n n n n n n n y x x y a b 所以得=−=−∞→∞→为闭区间套.由区间套定理知,存在一点).,2,1()1().,2,1](,[L L =<<=∈n b a n y x n n n n ξξ有由满足条件),2,1(L =<<n b a n n ξ的点ξ的唯一性的证明与区间套定理的证明相同.4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立。
第四讲 实数的完备性一、内容提要 1.上确界设E 为一实数集,β为一实数,如果 (1)E x ∈∀,有β≤x ;(2)0>∀ε,E x ∈∃0,使得εβ->0x . 则称β为集合E 的上确界,记为E sup =β. 2.下确界设E 为一实数集,α为一实数,如果 (1)E x ∈∀,有α≥x ;(2)0>∀ε,E x ∈∃0,使得εα+<0x .则称α为集合E 的下确界,记为E inf =α. 3.确界存在定理有上界的非空数集必有上确界,有下界的非空数集必有下确界. 4.闭区间套定理若闭区间列]},{[n n b a 具有如下性质: (1)嵌套性:⊂++],[11n n b a ],[n n b a ; (2)紧缩性:()0lim =-∞→n n n a b .则存在唯一的实数ξ,使得n n b a ≤≤ξ( ,2,1=n ). 5.Cauchy 收敛准则 数列{}n x 收敛N m n N >∀N ∈∃>∀⇔,,,0ε,有ε<-m n x x .6.聚点和聚点定理若S 是一实数集,则下列条件之间是两两等价: (1)ξ是S 的聚点;(2)若点ξ的任何ε邻域内都含有S 中异于ξ的点; (3)存在各项互异的收敛数列{}S x n ⊂,使ξ=∞→n n x lim .聚点定理:实轴上任一有界无限点列至少有一个聚点. 7.致密性定理有界数列必有收敛子列. 8.有限覆盖定理设H 是闭区间],[b a 上的(无限)开覆盖,则从H 中可选出有限个开区间来覆盖],[b a .9.实数完备性基本定理的等价性 (1)确界定理;(2)单调有界定理;(3)闭区间套定理;(4)有限覆盖定理;(5)聚点定理;(6)Cauchy 收敛准则,这六个基本定理是相互等价的,其中任何一个都可以作为实数完备性的定义.注1 在描述实数连续性的几个定理中,有限覆盖定理的形式很特殊,它着眼点是闭区间的整体,而其他几个等价定理着眼点是一点的局部,凡是证明的结论涉及闭区间的问题,可考虑使用有限覆盖定理,凡是证明的结论涉及一点的问题,可考虑使用其他的几个等价定理. 注2 有限覆盖定理将无限转化为有限,从而把函数)(x f 在闭区间],[b a 上的局部性拓广到闭区间],[b a 上的整体性. 二、典型例题。
实数完备性:实数集完备性的基本定理共有6个,实数集的确界原理,函数的单调有界定理和数列的柯西收敛定理,将要学习的有:区间套定理,聚点定理和有限覆盖定理。
它们都是等价的:由任何一个定理都可以推出其他5个定理。
完备性是指在数学及其相关领域中,当一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。
完备性也称完全性,可以从多个不同的角度来精确描述这个定义,同时可以引入完备化这个概念。
第七章 实数的完备性§1.关于实数集完备性的基本定理1. 验证数集⎭⎬⎫⎩⎨⎧+-n n 1)1(有且只有两个聚点11-=ε和12=ε。
解: 当n 取奇数12-=k n 时,S 中的互异子列 ) ( , 1 1 2 1 1 ∞ → -→ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ - + - k k ,所以11-=ξ是S 的聚点;当n 取偶数k n 2=时,S 中的互异子列)(,1211∞→→⎭⎬⎫⎩⎨⎧+k k ,所以12=ξ是S 的聚点2.证明:任何有限数集都没有聚点。
证明: 设有限数集S 。
由聚点ξ的定义,在ξ的任何邻域内都含有S 中无穷多个点,而S 只有有限个点,所以S 没有聚点。
3.设{})(,n n b a 是一个严格开区间套,既满足,1221b b b a a a n n <<<<<<< 且0)(lim =-∞→n n n a b .证明:存在唯一的一点ε,使得.,2,1, =<<n b a n n ε证明:证法一:}{n a 严格递增,有上界A a n n =∴∞→lim ,且 3,2,1,=<n A a n(否则,假定存在N ,有时,,则N n A a N >≥A a a a n N n ≥>>+1,因而A a a N n n >≥+∞→1lim 与A a n n =∞→lim 相矛盾)同理B b n n =∞→lim 存在, 3,2,1,=>n B b n由条件0)(lim =-∞→n n n a b 可知A=B ,令B A ==ε,则 3,2,1,=<<n b a n n ε证法二:作闭区间列]2,2[],[11++++=n n n n n n b b a a y x 其满足: 1°),(],[),(11n n n n n n b a y x b a ⊂⊂++][][,1,1n n n n y x y x ⊂∴++2°0)(lim =-∞→n n n a b0)(lim =-∴∞→n n n x y由区间套定理,存在唯一一点),(],[n n n n b a y x ⊂∈ε使得.,2,1, =<<n b a n n ε4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不成立。
解 设n n n a )11(+=,1)11(++=n n n b , ,2,1=n ,则{}n a 是单调递增的有理数列,{}n b 是单调递减的有理数列,且e a b n n n n ==∞→∞→lim lim (无理数)(1)点集{},2,1|=n a n 非空有上界,但在有理数集内无上确界;点集{} ,2,1|=n b n 非空有下界,但在有理数集内无下确界。
(2)数列{}n a 单调递增有上界,但在有理数集内无极限;{}n b 单调递减有下界,但在有理数集内无极限。
(3){},2,1|=n a n 是有界无限点集,但在有理数集内无聚点。
(4)数列{}n a 满足柯西收敛准则条件,但在有理数集内没有极限。
(5){}],[n n b a 是一闭区间套,但在有理数集内不存在一点ξ,使得],[n n b a ∈ξ,,2,1=n 5. 设},2,1|)1,21{(=+=n n n H 。
问(1)H 能否覆盖(0, 1)?(2)能否从H 中选出有限个开区间覆盖 (i) )21,0(,(ii) )1,1001(?解 (1)H 能覆盖(0, 1)。
因为对任何)1,0(∈x ,必有自然数n ,使得n x n 121<<+ (2)不能从H 中选出有限个开区间覆盖)21,0(。
因对H 中任意有限个开区间,设其左端点最小的为210+n ,则当2100+<<n x 时,这有限个开区间就不能覆盖x . 能从H 中选出有限个开区间覆盖)1,1001(。
例如选区间:)1,21(n n +,99,2,1 =n 即可。
6.证明:闭区间],[b a 的全体聚点的集合是],[b a 本身。
证明 设],[b a x ∈,则对任何0>ε,∅≠⋂],[);(b a x U oε,故x 为],[b a 的聚点。
反之,若x 为],[b a 的聚点,则必有],[b a x ∈。
事实上,若],[b a x ∉,则a x <或b x >。
不妨设a x <,取2xa -=ε,那么∅=⋂],[);(b a x U ε,这与x 为],[b a 的聚点矛盾。
7.设{}n x 为单调数列。
证明:若{}n x 存在聚点,则必是唯一的,且为{}n x 的确界。
证明: 设{}n x 为单调增加数列,ξ为{}n x 的聚点。
先证ξ是唯一的。
假设η也是{}n x 的聚点,不妨设ηξ<。
取2ξηε-=,由聚点的定义,在η的邻域);(εηU 内有{}n x 中无穷多个点,设);(εηU x N ∈。
因为{}n x 为单调增加数列,所以当N n >时,N n x x ≥。
于是在ξ的邻域);(εξU 内最多只有{}n x 中有限多个点:121,,,-N x x x . 这与ξ为{}n x 的聚点相矛盾。
故ξ为{}n x 的唯一聚点。
其次证明:ξ为{}n x 的上确界。
先证ξ是{}n x 的一个上界。
假设ξ不是{}n x 的一个上界,于是存在ξ>N x 。
这时取ξε-=N x ,则在ξ的邻域);(εξU 内最多只有{}n x 中有限多个点:121,,,-N x x x ,这与ξ为{}n x 的聚点相矛盾。
然后证明:ξ是{}n x 的最小上界。
0>∀ε,在ξ的邻域);(εξU 内有{}n x 中无限多个点,设);(εξU x N ∈,从而εξ->N x 。
所以}sup{n x =ξ.8.试用有限覆盖定理证明聚点定理。
证明: 设S 为实轴上有界无限点集,则存在0>M ,使],[M M S -⊂. 假若],[M M -中任何点都不是S 的聚点,则],[M M x -∈∀,必存在相应的0>x δ,使得在),(x x U δ内最多只含S 的有限个点。
设}],[|),({M M x x U H x -∈=δ,则H 是],[M M -的一个开覆盖,由有限覆盖定理,H 中存在有限个开区间:),(j x j x U δ,n j ,,2,1 =,覆盖了],[M M -,当然也覆盖了S ,由于在每一个),(j x j x U δ内最多只含S 的有限个点,故S 为有限点集,这与S 为无限点集矛盾。
所以],[M M -中必有S 的聚点。
9.试用聚点定理证明柯西收敛准则。
证明:对于数列{n a }成立,则:,,0N ∃>∀ε当m,n>N 时|m n a a -|<ε, 现要用聚点定理来证明{n a }收敛 由|m n a a -|<ε得εε+<<-n m n a a a ,因顶n 当m>N 时,m a 全落在εε+-n n a a 与 之间,即{m a }有界据聚点定理,可以在{n a }中选出收敛子列}{nk a设lim nk x a A →∞=可以选取充分大的K ,使得||nk a A ε-<又同时使得k n N >,则当n N >时,得||n nk a a ε-< 从而有||||||2n n nk nk a A a a a A ε-≤-+-< , 即lim n x a A →∞=,也就是{}n a 收敛.§2.闭区间上连续函数性质的证明1.设f(x)为R 上连续的周期函数。
证明:f(x)在R 上有最大值与最小值。
证明:设一个周期函数为T ,则有)()(x T f x f +=(K 为任何整数)。
根据连续函数在闭区间上存在最大,最小值定理可知)(x f 在],)1[(],2,[],,[x kT x T k x T x T T x x ++-+++以及 ],)1([],2,[],,[kT x T k x T x T x T x x ------都有相同的最大、最小值。
因为这无穷多个区间的并构成的区间(-∞,+∞)故)(x f 在(-∞,+∞)有相同的最大、最小值。
2.设I 为有限区间。
证明:若f 在I 上一致连续,则f 在I 上有界。
举例说明此结论当I 为无限区间时不一定成立。
证明:(i)若I 为有限闭区间,则()f x 在I 上一致连续且必连续 根据闭区间上连续函数性质,可知()f x 在I 上有界(ii )若I 为有限开区间(),a b ,则由()f x 在(),a b 内一致连续可知,0,0εδ∀>∃>,当(),,x x a b '''∈,且x x δ'''-<时,有()()f x f x ε'''-<对端点a 当,x x '''满足0,022x a x a δδ'''<-<<-<时,就有x x x a x a δ''''''-≤-+-<于是()()f x f x ε'''-<由柯西收敛准则()0f a +存在且为有限值,同理可证()0b -存在且为有限值令()()()()00f a F x f x f b +⎧⎪=⎨⎪-⎩ 0x a x b x b =<<=则()F x 在[],a b 上连续,因而有界()F x 在(),a b 内也有界,而当a x b <<时()()f x F x =即得()f x 在(),a b 内有界(iii )若I 为半开区间,证法与(ii )相仿.3.证明:f(x)=sinx/x 在(0,+∞)上一致连续。
证明 因为1sin lim 0=+→x xx ,所以0>∀ε,01>∃δ,当10δ<<x 时,有2|1sin |ε<-x x . ①又因为0sin lim =+∞→x x x ,所以0>∃N ,当N x >时,有2|sin |ε<x x . ②令21δ=a ,21δ+=N b ,显然x xsin 在],[b a 连续,于是在],[b a 一致连续,从而02>∃δ,当],[,b a x x ∈'''且2||δ<''-'x x 时,有ε<''''-''|sin sin |x x x x . ③现在取},2min{21δδδ=,当),0(,∞+∈'''x x 且δ<''-'||x x 时,则必有以下三种情形之一发生:),0(,1δ∈'''x x 或者],[,b a x x ∈'''或者),(,∞+∈'''N x x若),0(,1δ∈'''x x ,由①式,有εεε=+<-''''+-''≤''''-''22|1sin ||1sin ||sin sin |x x x x x x x x若),(,∞+∈'''N x x ,由②式,有εεε=+<''''+''≤''''-''22|sin ||sin ||sin sin |x x x x x x x x若],[,b a x x ∈''',由③式,有ε<''''-''|sin sin |x x x x .所以x x x f sin )(=在),0(∞+上一致连续。