21.2.3 因式分解法
- 格式:pptx
- 大小:561.98 KB
- 文档页数:26
21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x(x-2)+x-2=0; (2)5x2-2x-14=x2-2x+34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2,x2=-1; (2)原方程整理为4x2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x1=-12,x2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.例2 用适当的方法解下列方程:(1)3x2+x-1=0; x-3)2=12;(3)(3x-2)2=4(3-x)2; (4)(x-1)(x+2)=-2.分析:根据方程的结构特征,灵活选择恰当的方法来求解.【教学说明】以上两例均应先让学生自主完成,最后共同评析,达到深化理解本节知识的目的.教学时,可选派学生代表上黑板完成.对于学生的解法只要合理就应给予肯定,若有更简捷解法时再予以说明.思考请你谈谈解一元二次方程的几种方法的特点,与同伴交流.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D.x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.。
21.2.3 解一元二次方程—因式分解法教案2022-2023学年人教版九年级数学上册一、教学目标1.理解一元二次方程的定义和性质。
2.学会运用因式分解法解一元二次方程。
3.掌握解一元二次方程时的思路和步骤。
二、教学重点1.理解一元二次方程的定义和性质。
2.运用因式分解法解一元二次方程。
三、教学难点1.运用因式分解法解一元二次方程。
2.掌握解一元二次方程时的思路和步骤。
四、教学准备1.教学课件或黑板、粉笔等工具。
2.学生课本和练习册。
3.提前准备好一元二次方程的例题和练习题。
1. 导入教师可以通过提问或讲解的方式,复习一元二次方程的定义和性质。
例如:“什么是一元二次方程?它的一般形式是什么样的?一元二次方程有哪些特点?”等等。
2. 引入因式分解法引入因式分解法,告诉学生我们可以通过将一元二次方程进行因式分解的方式求解。
引导学生思考并回顾因式分解的基本原理和步骤。
3. 讲解因式分解法的步骤•步骤一:将一元二次方程写成一对括号乘积的形式,即找到方程的两个因式。
•步骤二:令每个括号内的式子分别等于零,并解方程组。
•步骤三:列出解的集合。
4. 案例演示选择一个简单的一元二次方程案例,演示解题的过程。
引导学生按照步骤一步一步地解题,并帮助学生理解每一步的目的和原理。
5. 学生练习将几个类似的一元二次方程写在黑板上或课件上,要求学生自己进行因式分解,然后解出方程。
解完后,学生可以相互核对答案并讨论解题方法。
6. 拓展练习布置一些拓展练习题,要求学生在课后自主完成。
鼓励学生多加练习,巩固和运用所学的知识和技能。
通过本堂课的学习,学生应该掌握了一元二次方程的因式分解法和解题步骤。
教师可以对本节课的教学进行总结,并对学生的表现给予肯定和鼓励。
同时,可以提醒学生在课后复习和巩固所学知识。
七、课后作业1.完成课堂上的练习题。
2.完成教师布置的拓展练习题。
3.预习下一节课的内容。
以上教案通过因式分解法来解一元二次方程,帮助学生理解和掌握该方法的原理和步骤。
21.2.3因式分解法知识要点:1.把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个一元一次方程的解,这种解方程的方法叫做因式分解法.2.因式分解法的详细步骤:①移项,将所有的项都移到左边,右边化为0;②把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式、完全平方公式以及十字相乘法等;③令每一个因式分别为零,得到一元一次方程;④解一元一次方程,即可得到原方程的解1.方程x (x +2)=﹣x (x +2)的根是( )A .x 1=0,x 2=2B .x 1=0,x 2=﹣2C .x =0D .x =2 【答案】B2.若实数x ,y 满足()()2222x y 3x y -30+++=,则22x y +的值为( )A .3或-3B .3C .-3D .1 【答案】B3.方程)1)(14()1)(13(--=-+x x x x 的解是( ) A .121,0x x ==B .121,2x x =-=C .121,2x x ==D .无解【答案】C 4.方程20x x -=的根是( )A .1x =B .120x x ==C .121x x ==D .10x =,21x =【答案】D 5.已知2x =-是关于x 的一元二次方程22502x x a --=的一个根,则a 的值为( ) A .3± B .3- C .3D .1或1- 【答案】A6.若关于 x 的方程 250x x k -+= 的一个根是0,则另一个根是()A .1B .-1C .5D .12【答案】C7.一元二次方程 (1)x x x -= 的解是( )A .1或-1B .2C .0或2D .0【答案】C8.2(3)5(3)x x x --- 因式分解结果为( )A .221115x x -+B .(5)(23)x x --C .(25)(3)x x +-D .(25)(3)x x --【答案】D9.将4个数 a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成,定义 a bad bc c d =-,上述记号就叫做2阶行列式.若11611x x x x +-=-+,则x 的值为( ).A .BC .2±D .2【答案】A10.三角形一边长为 10,另两边长是方程 214480x x -+= 的两实根,则这是一个( ). A .直角三角形B .锐角三角形C .钝角三角形D .任意三角形【答案】A11.若(x 2+y 2)2-5(x 2+y 2)-6=0,则x 2+y 2=_____________.【答案】612.一小球以15 m/s 的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系h =15t -5t 2,则小球经过____s 达到10 m 高.【答案】1或213.已知2215500(0)x xy y xy -+=≠,则x y 的值是_____________. 【答案】5或1014.对于实数a ,b ,我们定义一种运算“※”为:a ※b=a 2-ab ,例如:1※3=12-1×3.若x ※4=0,则_____【答案】x=0或4.15.解方程:(1)(2)4x x -+=【答案】x 1=2,x 2=-3.16.若2222()(2)80x y x y ++--=,求22xy +的值.【答案】417.用因式分解法解下列方程:(1)23(5)2(5)x x -=-;(补全解题过程) 解:原方程可变形为23(5)2(5)0x x ---=,分解因式,得______________________________.∴50x -=,或1330x -=.∴15=x ,2133x =. (2)24410x x -+=.【答案】(1)(5)(133)0x x --=;(2)1212x x ==。
21.2.3 因式分解法一、教学目标1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.二、教学重难点重点用因式分解法解一元二次方程.难点针对不同形式的一元二次方程选择适当的解法.重难点解读1.用因式分解法解一元二次方程的关键:①要将方程的右边化为0;②熟练掌握多项式因式分解的方法;③切忌方程两边同时除以含有未知数的整式.2.用因式分解法解一元二次方程的一般步骤:①1将方程的右边化为0;②2将方程的左边分解为两个一次因式的乘积;③3令这两个一次因式分别为0,得到两个一元一次方程;④4解这两个一元一次方程,它们的解就是原方程的解.3.选择一元二次方程解法的一般顺序:直接开平方法→因式分解法→公式法,一般没有特别说明不用配方法.三、教学过程活动1 旧知回顾1.解下列方程:(1)2x2+2x-1=0(用配方法);(2)3x2+6x+2=0(用公式法).2.将一个多项式进行因式分解,通常有哪几种方法?(1)提取公因式法:am+bm+cm=m(___________);(2)公式法:a2-b2=__________;a2±2ab+b2=__________.活动2 探究新知1.教材第12页问题2.提出问题:(1)你能根据上述规律求出物体经过多少s落回地面吗?(2)设物体经过x s落回地面,请说说你列出的方程.(3)你能用配方法或公式法解这个方程吗?仔细观察方程的特征,除配方法或公式法,你还能找到其他更简单的解法吗?2.解方程:(1)4x2-x=0;(2)7x-3x2=0.提出问题:(1)这两个方程中有没有常数项?等式左边的各项有没有共同因式?这两个方程中都没有常数项,左边都可以怎样?(2)这两个方程都可以写成怎样的形式?(3)如何用因式分解法解一元二次方程?活动3 知识归纳提出问题:(1)教材第12~13页“问题 2”所列方程10x-0.49x2=0是怎样求解的?运用了什么方法?(2)如何利用“由ab=0,得a=0或b=0”使二次方程降为一次方程?(3)由ab=1得a=1或b=1是否成立?说明理由.(4)什么叫做因式分解法?1.先因式分解,使方程化为两个一次式的乘积等于0 的形式,再使这两个一次式分别等于 0 ,从而实现降次 .这种解一元二次方程的方法叫做因式分解法.提出问题:(1)解一元二次方程都有哪些方法?(2)探究新知第2题中的两个方程可以用配方法或公式法来求解吗?如果可以,请比较它们与因式分解法的优缺点.(3)用因式分解法解一元二次方程需注意哪些细节问题?2.配方法要先配方,再降次,通过配方法可以推出求根公式,公式法直接利用求根公式解方程;因式分解法要先将方程一边化为两个一次因式相乘,另一边为 0 ,再分别使各一次因式等于 0 .配方法、公式法适用于所有一元二次方程,因式分解法在解某些一元二次方程时比较简便.总之,解一元二次方程的基本思路是:将二次方程化为一次方程,即降次 .活动4 典例赏析及练习例1 教材第14页例3.例2 若a,b,c为△ABC的三边长,且a,b,c满足a2-ac-ab+bc=0,试判断△ABC的形状. 【答案】解:由a2-ac-ab+bc=0得(a-b)(a-c)=0.∴a=b或a=c.∵三角形的三边长只能为正数,∴当a=b或a=c时,△ABC是等腰三角形;当a=b=c时,△ABC是等边三角形.综上所述,△ABC是等腰三角形或等边三角形.练习:1.二次三项式x2+20x+96分解因式的结果为(x+12)(x+8);如果令x2+20x+96=0,那么它的两个根是 x1=-12,x2=-8 .2.方程x(x+2)=-x(x+2)的根是( B )A.x1=0,x2=2B.x1=0,x2=-2C.x=0D.x=23.教材第14页练习第1题.4.教材第14页练习第2题.活动5 课堂小结1.这节课主要学习了用因式分解法解一元二次方程的概念及其解法,解法的基本思路是将一元二次方程转化为一元一次方程而达到目的,我们主要利用了因式分解“降次”.在今天的学习中,要逐步深入、领会、掌握“转化”这一数学思想方法.2.因式分解法解一元二次方程的一般步骤是什么?3.归纳解一元二次方程不同方法的优缺点.四、作业布置与教学反思。