2016届山东省菏泽市高三(上)期末数学试卷(理科)(b卷)(解析版)
- 格式:doc
- 大小:556.00 KB
- 文档页数:19
山东省菏泽市2016届高三数学上学期期末考试试题(B)理高三数学答案(理科)一、选择题:1.B 2.B 3.D 4.D 5.A 6.A 7.A 8.C 9.D10.A【解析】因为,所以,即,解得。
若存在两项,有,即,,即,所以,即。
所以,当且仅当即取等号,此时,所以时取最小值,所以最小值为,选A.二、填空题:m> 12.3 13.①③④ 14.2 1511.1三、解答题:16.解:所以最小正周期为………………………………4分(2)………………………………6分由得到所以,所以………………………8分所以,,由于,所以………………………………10分解得取等号,所以△ABC的面积的最大值为………………………………12分17.【解析】:(Ⅰ)垂直.证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.因为E为BC的中点,所以AE⊥AD.因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.而PA⊂平面PAD.AD⊂平面PAD且PA∩AD=A,所以AE⊥平面PAD.又PD⊂平面PAD,所以AE⊥PD.——…………………….4分(Ⅱ)由(Ⅰ)知AE ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系,又E ,F 分别为BC ,PC 的中点,∴A (0,0,0),B-1,0),C1,0),D (0,2,0),P (0,0,2),E0,0),1,12F ⎫⎪⎪⎝⎭,……………………6分所以()313,0,0,,,12AE AF ⎛⎫== ⎪⎪⎝⎭.设平面AEF 的一法向量为()111,,z m x y=,则00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,因此111101022x y z =++=⎪⎩, 取11z =-,则()0,2,1m =-. (8)分 因为BD ⊥AC ,BD ⊥ PA ,PA ∩AC=A ,所以BD ⊥平面AFC ,故BD 为平面AFC 的一法向量,又()BD =,…………………………10分所以cos ,||||5m BD m BD m BD ⋅<>===⋅因为二面角E-AF-C.………………………12分18.【解析】:由题知, (4)分(2)两式相减得,…………………………8分 为单增数列,①当为正奇数时,对一切正奇数成立,②当为正偶数时,对一切正偶数成立,综合①,②知,……………………………12分19.【解析】:(1)当200<<t 时,设b at p +=,由图像可知过点)6,20(),2,0(代入得⎩⎨⎧+==b a b 2062解得⎪⎩⎪⎨⎧==512a b ,即251+=t p同理可得当3020≤≤t 时8101+-=t p , 综上可得⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+=30208101200251t t t t p ………………………………4分(2)由题意设m kt q +=,过点)20,10(),26,4(可得2642010k mk m=+⎧⎨=+⎩解得⎩⎨⎧=-=301m k 即30+-=t q ………………………………….8分(3)由题意可得⎪⎪⎩⎪⎪⎨⎧≤≤+-+-<<+-+=⋅=3020)30)(8101(200)30)(251(t t t t t t q p y=⎪⎪⎩⎪⎪⎨⎧≤≤+-<<++-3020240111012006045122t t t t t t ……………………………10分当200<<t 时,10=t 时,80max =y 万元 当3020≤≤t 时,20=t 时,60max =y 万元,综上可得第10日的交易额最大为80万元 …………………………12分 20. 解析:(Ⅰ)直线2y x =+的斜率为1.函数()f x 的定义域为(0,)+∞,因为22()af x x x'=-+,所以22(1)111a f '=-+=-,所以1a =. 所以2()ln 2f x x x =+-.22()x f x x-'=. 由()0f x '>解得2x >;由()0f x '<解得02x <<.所以()f x 的单调增区间是(2,)+∞,单调减区间是(0,2). ……………………………3分(Ⅱ)2222()a ax f x x x x-'=-+=, 由()0f x '>解得2x a >;由()0f x '<解得20x a<<. 所以()f x 在区间2(, )a+∞上单调递增,在区间2(0, )a 上单调递减.所以当2x a =时,函数()f x 取得最小值,min 2()y f a=.因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a>-即可.则22ln 22(1)2a a a a+->-.由2ln a a a >解得20a e <<. 所以a 的取值范围是2(0, )e. ………………………………………8 分(Ⅲ)依题得2()ln 2g x x x b x =++--,则222()x x g x x +-'=. 由()0g x '>解得1x >;由()0g x '<解得01x <<.所以函数()g x 在区间(0, 1)为减函数,在区间(1, )+∞为增函数.……………………10分又因为函数()g x 在区间1[, ]e e -上有两个零点,所以1()0,()0, (1)0. g e g e g -⎧⎪⎨⎪<⎩≥≥ 解得211b e e <+-≤. 所以b 的取值范围是2(1, 1]e e+-. ………………………13分21. 解析:(1)由已知可得 ,所求椭圆方程为. ……………………3分(2)设点()11,y x P ,PM 的中点坐标为()y x Q ,, 则1482121=+y x由201x x +=,221y y +=得22,211-==y y x x 代入上式 得()11222=-+y x …………6分(3)若直线AB 的斜率存在,设AB 方程为y kx m =+,依题意2±≠m .)222,8b a ===22184x y +=设),(11y x A ,),(22y x B ,由 ⎪⎩⎪⎨⎧+==+,,14822m kx y y x得()222124280k x kmx m +++-=.则2121222428,1212km m x x x x k k -+=-=++.………………………9分 由已知1212228y y x x --+=,所以1212228kx m kx m x x +-+-+=,即()1212228x xk m x x ++-=.所以42mk k m -=+,整理得 122m k =-.故直线AB 的方程为122y kx k =+-,即ky =(21+x )2-.所以直线AB 过定点(2,21--). ……………………………12分若直线AB 的斜率不存在,设AB 方程为0x x =,设00(,)A x y ,00(,)B x y -,由已知0000228y y x x ---+=,得012x =-.此时AB 方程为12x =-,显然过点(2,21--).综上,直线AB 过定点(2,21--).………………………………………14分。
山东省菏泽市高三上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共15分)1. (1分) (2016高一上·酒泉期中) A={x|3<x≤7},B={x|4<x≤10},则A∪B=________2. (1分) (2016高二下·连云港期中) 复数4+3i的虚部为________.3. (1分)将一批工件的尺寸在(40~100mm之间)分成六段,即[40,50),[50,60),…,[90,100),得到如图的频率分布直方图,则图中实数a的值为________4. (1分)阅读如图所示的程序,该程序输出的结果是________5. (1分)已知f(x)=sin(ω>0),f()=f(),且f(x)在区间(,)上有最小值,无最大值,则ω=________6. (1分) (2015高三上·苏州期末) 连续2次抛掷﹣枚骰子(六个面上分别标有数字1,2,3,4,5,6).则事件“两次向上的数字之和等于7”发生的概率为________ .7. (1分) (2017高二下·汪清期末) 若双曲线的离心率e=2,则m=________.8. (1分)(2017·山东) 由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为________.9. (1分) (2016高二上·黄浦期中) 已知等比数列{an}满足a1= ,a3a5=4(a4﹣1),则a2=________.10. (1分)(2017·重庆模拟) 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x).当x∈[0,2]时,f(x)=2x﹣x2 .当x∈[2,4]时,则f(x)=________.11. (1分)(2017·来宾模拟) 设向量 =(cosα,﹣)的模为,则cos2α=________12. (2分)(2016·北京理) 设函数①若a=0,则f(x)的最大值为________;②若f(x)无最大值,则实数a的取值范围是________。
2015—2016学年山东省大教育联盟高三(上)期末数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若z(1+i)=(1﹣i)2(i为虚数单位),则z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.已知集合,则A∩B=()A.{x|x≤3} B.{x|﹣2≤x≤3}C.{x|1<x≤3}D.{x|﹣2≤x<1}3.已知函数y=f(|x|)在[﹣1,1]上的图象如图甲所示,则y=f(x)在[﹣1,1]上的图象可能是图乙中的()A.①②B.①③C.②③D.②④4.命题p:函数f(x)=a x(a>0且a≠1)在R上为增函数;命题q:垂直于同一平面的两个平面互相平行;则下列命题正确的是()A.p∨q B.p∨(¬q) C.(¬p)∧q D.(¬p)∧(¬q)5.已知(x+a)2(x﹣1)3的展开式中x4的系数为1,则()A.1﹣cos1 B.1﹣cos2 C.cos2﹣1 D.cos1﹣16.在△ABC中,,则∠ABC=()A.B.C.D.7.三棱锥的三视图中俯视图是等腰直角三角形,三棱锥的外接球的体积记为V1,俯视图绕斜边所在直线旋转一周形成的几何体的体积记为V2,则=()A. B. C.12 D.8.若直线l被圆C:x2+y2=2所截的弦长不小于2,下列方程表示的曲线中与直线l一定有公共点的是()A.y=x2 B.(x﹣1)2+y2=1 C.x2﹣y2=1 D.9.阅读如图的程序框图,运行相应的程序,若,则输出的S的值为()A.0 B.671。
5 C.671 D.67210.已知m>0,n>0(m≠n),椭圆和双曲线的离心率分别为e1,e2,若将m,n的值都增加k(k>0),则e1,e2的大小的变化情况是()A.e1减小,e2可能减小或增大 B.e1增大,e2减小C.e1与e2同时减小或增大D.e1减小,e2增大二、填空题(本大题共5小题,每小题5分,共25分)11.某市期末统考数学成绩ξ挖服从正态分布N,若P(ξ<120=0.8),则P的值为.12.在△ABC中,,若x=A是函数f(x)=sinx+cosx的一个极值点,则△ABC的面积为.13.已知a>0,a≠1,函数在R上是单调函数,且f(a)=5a﹣2,则实数a=.14.已知x,y满足若z=x+y的最大值为,则常数m=.15.设f(x)与g(x)是定义在区间M上的两个函数,若∃x0∈M,使得|f(x0)﹣g(x0)|≤1,则称f(x)与g(x)是M上的“亲近函数",M称为“亲近区间";若∀x∈M,都有|f (x)﹣g(x)|>1,则称f(x)与g(x)是M上的“疏远函数”,M称为“疏远区间”.给出下列命题:①是(﹣∞,+∞)上的“亲近函数”;②f(x)=x2﹣3x+4与g(x)=2x﹣3的一个“疏远区间"可以是[2,3];③“"是“与g(x)=x2+a+e2(e是自然对数的底数)是[1,+∞)上的‘疏远函数’"的充分条件.其中所有真命题的序号为.三、解答题(本大题共6小题,共75分)16.已知函数=f(x)的图象与直线y=1的两个相邻交点的距离为π.(I)求ω的值;(Ⅱ)函数f(x)的图象先向左平移个单位,再将所有点的横坐标扩大到原来的二倍,得到g(x)的图象,试求函数y=g(x)(x∈[0,π])的最大值,最小值.17.如图所示,正方形BCDE所在的平面与平面ABC互相垂直,其中∠ABC=120°,AB=BC=2,F,G分别为CE,AB的中点.(Ⅰ)求证:FG∥平面ADE;(Ⅱ)求二面角B﹣AC﹣E的余弦值.18.已知各项均为正数的数列{a n}的前n项和为S n,且满足.(Ⅰ)求{a n}的通项公式;(Ⅱ)设(其中n,k∈N*),,求数列{b n}的前n项和T n(n≥3).19.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.若口井勘探初期数据资料见如表:井号I 1 2 3 4 5 6坐标(x,y)(km)(2,30) (4,40) (5,60) (6,50)(8,70)(1,y)钻探深度(km) 2 4 5 6 8 10出油量(L)40 70 110 90 160 205 (Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6。
2018-2019学年山东省菏泽市高三(上)期末数学试卷(理科)(B卷)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)设集合A={x∈N|﹣2<x<2}的真子集的个数是()A.8B.7C.4D.32.(5分)sin15°+cos165°的值为()A.B.C.D.3.(5分)已知,,且,则向量与向量的夹角为()A.B.C.D.或4.(5分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是()A.6B.7C.8D.95.(5分)已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A.0<a<b B.a<b<0C.o<b<a D.a=b6.(5分)一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于()A.B.C.2D.47.(5分)已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是()A.2B.2C.4D.28.(5分)为了得到函数y=sin2x的图象,可以将函数的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位9.(5分)设双曲线﹣=1(a>0,b>0)的右焦点与对称轴垂直的直线与渐近线交于A,B两点,若△OAB的面积为,则双曲线的离心率为()A.B.C.D.10.(5分)已知等差数列{a n}的公差d≠0,S n为其前n项和,若a2,a3,a6成等比数列,且a4=﹣5,则的最小值是()A.B.C.D.11.(5分)如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥C′﹣MENF的体积V=h(x)为常函数;以上命题中假命题的序号为()A.①④B.②C.③D.③④12.(5分)非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,由两个和一个排列而成,若所有可能值中的最小值为4,则λ=()A.1B.3C.D.二、填空题(每题5分,共20分,将答案填在答题卡上)13.(5分)曲线y=2ln(x+2)在点(﹣1,0)处的切线方程为.14.(5分)在三棱锥A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC、△ACD、△ABD的面积分别为、、,则三棱锥A﹣BCD的外接球的体积为.15.(5分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,若b2=a(a+c),则的取值范围是.16.(5分)中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是.三、解答题:本大题共6小题,共70分.解答应写岀文字说明,证明过程或演算步骤.17.(10分)解关于的不等式:ax2+(1﹣a)x﹣1>0(a<0).18.(12分)设函数f(x)=A sin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.(1)求A,ω,φ的值;(2)设θ为锐角,且f(θ)=﹣,求f(θ﹣)的值.19.(12分)已知数列{a n}的首项为a1=1,且.(Ⅰ)证明:数列{a n+2}是等比数列,并求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n+2)﹣log23,求数列的前n项和T a.20.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点点N在线段AD上.(1)点N为线段AD的中点时,求证:直线PA∥面BMN;(2)若直线MN与平面PBC所成角的正弦值为,求二面角C﹣BM﹣N所成角θ的余弦值.21.(12分)已知以椭圆C:=1(a>b>0)的两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,直线x+y+1=0与以椭圆C的右焦点为圆心,椭圆的长半轴长为半径的圆相切.(1)求椭圆C的方程;(2)矩形ABCD的两顶点C、D在直线y=x+2上,A、B在椭圆C上,若矩形ABCD的周长为,求直线AB的方程.22.(12分)已知函数f(x)=lnx+﹣1,a∈R.(1)当a>0时,若函数f(x)在区间[1,3]上的最小值为,求a的值;(2)讨论函数g(x)=f′(x)﹣零点的个数.2018-2019学年山东省菏泽市高三(上)期末数学试卷(理科)(B卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)设集合A={x∈N|﹣2<x<2}的真子集的个数是()A.8B.7C.4D.3【分析】先求出集合A={0,1},由此能求出集合A的真子集的个数.【解答】解:∵集合A={x∈N|﹣2<x<2}={0,1},∴集合A的真子集的个数是:22﹣1=3.故选:D.【点评】本题考查集合的真子集的个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.2.(5分)sin15°+cos165°的值为()A.B.C.D.【分析】利用诱导公式,把要求的式子化为sin15°﹣cos15°=sin(45°﹣30°)﹣cos(45°﹣30°),再利用两角差的正弦、余弦公式,进一步展开运算求得结果.【解答】解:sin15°+cos165°=sin15°﹣cos15°=sin(45°﹣30°)﹣cos(45°﹣30°)=sin45°cos30°﹣cos45°sin30°﹣cos45°cos30°﹣sin45°sin30°=﹣﹣﹣=,故选:B.【点评】本题主要考查两角和差的正弦、余弦公式的应用,以及诱导公式的应用,属于中档题.3.(5分)已知,,且,则向量与向量的夹角为()A.B.C.D.或【分析】根据便可得出,结合条件进行数量积的运算即可求出的值,进而得出向量的夹角.【解答】解:;∴=0;∴;又;∴的夹角为.故选:C.【点评】考查向量垂直的充要条件,向量数量积的运算及计算公式,向量夹角的范围.4.(5分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是()A.6B.7C.8D.9【分析】求出抛物线的准线方程,利用抛物线的定义转化求解即可.【解答】解:抛物线y2=4x的准线方程为:x=﹣1,抛物线y2=4x上的点M到焦点的距离为10,可得x M=9,则M到y轴的距离是:9.故选:D.【点评】本题考查抛物线的简单性质的应用,考查计算能力.5.(5分)已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A.0<a<b B.a<b<0C.o<b<a D.a=b【分析】分别画出y=2017x,y=2018x,根据实数a,b满足等式2017a=2018b,即可得出.【解答】解:分别画出y=2017x,y=2018x,实数a,b满足等式2017a=2018b,可得:a>b>0,a<b<0,a=b=1.而0<a<b成立.故选:A.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.6.(5分)一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等A.B.C.2D.4【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为b:b=R=2,长轴为:2a,则2a cos60°=2R=4,∴a=4∵a2=b2+c2,∴c==2,∴椭圆的焦距为4;故选:D.【点评】本题考查椭圆焦距的求法,注意椭圆的几何量关系的正确应用,考查计算能力.7.(5分)已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是()A.2B.2C.4D.2【分析】利用对数的运算法则和基本不等式的性质即可得出.【解答】解:∵lg2x+lg8y=lg2,∴lg(2x•8y)=lg2,∴2x+3y=2,∴x+3y=1.∵x>0,y>0,∴==2+=4,当且仅当x=3y=时取等号.故选:C.【点评】熟练掌握对数的运算法则和基本不等式的性质是解题的关键.8.(5分)为了得到函数y=sin2x的图象,可以将函数的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用逆推方法求出函数y=sin2x的图象,变换为函数的图象的方法,即可得到正确选项.【解答】解:函数y=sin2x的图象,变换为函数=的图象,只需向右平移个单位,所以为了得到函数y=sin2x的图象,可以将函数的图象,向左平移个单位.【点评】本题是基础题,考查三角函数图象的平移变换,注意图象变换的逆应用.注意自变量的系数与方向.9.(5分)设双曲线﹣=1(a>0,b>0)的右焦点与对称轴垂直的直线与渐近线交于A,B两点,若△OAB的面积为,则双曲线的离心率为()A.B.C.D.【分析】令x=c,则代入y=±x可得y=±,根据△OAB的面积为,求出双曲线的离心率即可.【解答】解:F为右焦点,设其坐标为(c,0),令x=c,则代入y=±x可得y=±,∵△OAB的面积为,∴=,∴=,∴e=故选:D.【点评】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.10.(5分)已知等差数列{a n}的公差d≠0,S n为其前n项和,若a2,a3,a6成等比数列,且a4=﹣5,则的最小值是()A.B.C.D.【分析】据题意,由等差数列的通项公式可得(a1+2d)2=(a1+d)(a1+5d),解可得a1、d的值,进而讨论可得a1、d的值,即可得=,令≥且≥,求出n即可求出最小值.【解答】解:∵等差数列{a n}的公差d≠0,a2,a3,a6成等比数列,且a4=﹣5,∴(a1+2d)2=(a1+d)(a1+5d),a4=a1+3d=﹣5解得d=﹣2,a1=1,当d=﹣2时,S n=n+=﹣n2+2n,则=,令≥且≥,解可得2+≤n≤3+,即n=4时,取得最小值,且=﹣;故选:A.【点评】本题考查等差数列的第n项与前n项和的积的最小值的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.11.(5分)如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥C′﹣MENF的体积V=h(x)为常函数;以上命题中假命题的序号为()A.①④B.②C.③D.③④【分析】①利用面面垂直的判定定理去证明EF⊥平面BDD'B'.②四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可.③判断周长的变化情况.④求出四棱锥的体积,进行判断.【解答】解:①连结BD,B'D',则由正方体的性质可知,EF⊥平面BDD'B',所以平面MENF⊥平面BDD'B',所以①正确.②连结MN,因为EF⊥平面BDD'B',所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C'E,C'M,C'N,则四棱锥则分割为两个小三棱锥,它们以C'EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C'EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V =h(x)为常函数,所以④正确.所以四个命题中③假命题.所以选C.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.12.(5分)非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,由两个和一个排列而成,若所有可能值中的最小值为4,则λ=()A.1B.3C.D.【分析】列出向量组的所有排列,计算所有可能的值,根据最小值列出不等式组解出.【解答】解:•=||×λ||×cos=2,2=λ22向量组,,共有3种情况,即(,,),(,,),(,,)向量组,,共有3种情况,即(,,),(,,),(,,)∴•+•+•所有可能值中的最小值为42,∴或,解得λ=,故选:C.【点评】本题考查了平面向量数量积的性质及其运算,属中档题.二、填空题(每题5分,共20分,将答案填在答题卡上)13.(5分)曲线y=2ln(x+2)在点(﹣1,0)处的切线方程为2x﹣y+2=0.【分析】求得函数y的导数,可得切线的斜率,由点斜式方程可得所求切线方程.【解答】解:y=2ln(x+2)的导数为y′=,可得切线的斜率为k=2,即有曲线在(﹣1,0)处的切线方程为y=2(x+1),即2x﹣y+2=0.故答案为:2x﹣y+2=0.【点评】本题考查导数的运用:求切线方程,考查直线方程的运用,属于基础题.14.(5分)在三棱锥A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC、△ACD、△ABD的面积分别为、、,则三棱锥A﹣BCD的外接球的体积为8π.【分析】利用三棱锥侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,从而求出对角线长,即可求解外接球的体积.【解答】解:三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,设长方体的三边为a,b,c,则由题意得:ab=4,ac=4,bc=4,解得:a=2,b=2,c=2,所以球的直径为:=2所以球的半径为,所以三棱锥A﹣BCD的外接球的体积为=8π故答案为:8π.【点评】本题考查几何体的外接球的体积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.15.(5分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,若b2=a(a+c),则的取值范围是(,).【分析】由b2=a(a+c)利用余弦定理,可得c﹣a=2a cos B,正弦定理边化角,在消去C,可得sin(B﹣A)=sin A,利用三角形ABC是锐角三角形,结合三角函数的有界限,可得的取值范围.【解答】解:由b2=a(a+c)余弦定理,可得c﹣a=2a cos B正弦定理边化角,得sin C﹣sin A=2sin A cos B∵A+B+C=π∴sin(B+a)﹣sin A=2sin A cos B∴sin(B﹣A)=sin A∵ABC是锐角三角形,∴B﹣A=A,即B=2A.∵,,那么:则=sin A∈(,)故答案为:(,)【点评】本题考查三角形的正余弦定理和内角和定理的运用,考查运算能力,属于基础题.16.(5分)中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是①③④.【分析】根据优美函数”,定义依次判断各命题即可得出答案;【解答】解:①对于任意一个圆O,其过圆心的对称轴由无数条,所以其“优美函数”有无数个;②函数f(x)=ln(x2)的定义域为R,值域为(0,∞)不可以是某个圆的“优美函数”;③函数y=1+sin x,根据y=sin x的图象可知可以将圆分成优美函数,图象可以延伸,所以可以同时是无数个圆的“优美函数”;④函数y=2x+1只要过圆心,即可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形,不对,有些中心对称图形不一定是“优美函数”,比如“双曲线”;故答案为:①③④.【点评】本题考查的知识点是函数图象的对称性,正确理解新定义是解答的关键.三、解答题:本大题共6小题,共70分.解答应写岀文字说明,证明过程或演算步骤.17.(10分)解关于的不等式:ax2+(1﹣a)x﹣1>0(a<0).【分析】把二次项的系数变为大于0,进而分类讨论可求出不等式的解集.【解答】解:ax2+(1﹣a)x﹣1>0可得(ax+1)(x﹣1)>0,即(x+)(x﹣1)<0,当﹣<1时,即a<﹣1时,不等式的解为﹣<x<1,当﹣>1时,即﹣1<a<0,不等式的解为1<x<﹣,当﹣=1时,即a=﹣1时,不等式的解集为空集,故当a<﹣1时,不等式的解集为(﹣,1),当﹣1<a<﹣1时,不等式的解为(1,﹣),当a=﹣1时,不等式的解集为空集.【点评】对a正确分类讨论和熟练掌握一元二次不等式的解法是解题的关键.18.(12分)设函数f(x)=A sin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.(1)求A,ω,φ的值;(2)设θ为锐角,且f(θ)=﹣,求f(θ﹣)的值.【分析】(1)由图象可得A,最小正周期T,利用周期公式可求ω,由,得,k∈Z,结合范围0<φ<π,可求φ的值(2)由已知可求,由,结合,可得范围,利用同角三角函数基本关系式可求cos(2θ+)的值,利用两角差的正弦函数公式即可计算得解.【解答】(本题满分为14分)解:(1)由图象,得,…(2分)∵最小正周期,∴,…(4分)∴,由,得,k∈Z,∴,k∈Z,∵0<φ<π,∴.…(7分)(2)由,得,∵,∴,又∵,∴,∴,…(10分)∴==.…(14分)【点评】本题主要考查了y=A sin(ωx+φ)的部分图象确定其解析式,周期公式,同角三角函数基本关系式,两角差的正弦函数公式的综合应用,考查了计算能力和转化思想,属于中档题.19.(12分)已知数列{a n}的首项为a1=1,且.(Ⅰ)证明:数列{a n+2}是等比数列,并求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n+2)﹣log23,求数列的前n项和T a.【分析】(Ⅰ)a n+1=2(a n+1),变形为:a n+1+2=2(a n+2),利用等比数列的通项公式即可得出.(Ⅱ)由(Ⅰ)知,,.利用错位相减法即可得出.【解答】(Ⅰ)证明:∵a n+1=2(a n+1),∴a n+1+2=2(a n+2),则数列{a n+2}是以3为首项,以2为公比的等比数列,∴,即.(Ⅱ)解:由(Ⅰ)知,,∴.∴,,∴,则.【点评】本题考查了等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.20.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点点N在线段AD上.(1)点N为线段AD的中点时,求证:直线PA∥面BMN;(2)若直线MN与平面PBC所成角的正弦值为,求二面角C﹣BM﹣N所成角θ的余弦值.【分析】(1)连结点AC,BN,交于点E,连结ME,推导出四边形ABCN为正方形,由此能证明直线PA∥平面BMN.(2)分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由此能求出平面PBC与平面BMN所成角θ的余弦值.【解答】证明:(1)连结点AC,BN,交于点E,连结ME,∵点N为线段AD的中点,AD=4,∴AN=2,∵∠ABC=∠BAD=90°,AB=BC=2,∴四边形ABCN为正方形,∴E为AC的中点,∴ME∥PA,∵PA⊄平面BMN,∴直线PA∥平面BMN.解:(Ⅱ)∵PA⊥平面ABCD,且AB,AD⊂平面ABCD,∴PA⊥AB,PA⊥AD,∵∠BAD=90°,∴PA,AB,AD两两互相垂直,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,则由AD=AP=4,AB=BC=2,得:B(2,0,0),C(2,2,0),P(0,0,4),∵M为PC的中点,∴M(1,1,2),设AN=λ,则N(0,λ,0),(0≤λ≤4),则=(﹣1,λ﹣1,﹣2),=(0,2,0),=(2,0,﹣4),设平面PBC的法向量为=(x,y,z),⇒∵直线MN与平面PBC所成角的正弦值为,|cos<>|==.解得λ=1,则N(0,1,0),=(﹣2,1,0),=(﹣1,1,2),设平面BMN的法向量=(x,y,z),=﹣x+y+2z=0,=﹣2x+y=0,令x=2,得=(2,4,﹣1),cos=∴平面PBC与平面BMN所成角θ的余弦值为.【点评】本题考查线面平行的证明,考查面面所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.(12分)已知以椭圆C:=1(a>b>0)的两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,直线x+y+1=0与以椭圆C的右焦点为圆心,椭圆的长半轴长为半径的圆相切.(1)求椭圆C的方程;(2)矩形ABCD的两顶点C、D在直线y=x+2上,A、B在椭圆C上,若矩形ABCD的周长为,求直线AB的方程.【分析】(1)由两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,得出b=c,于是得出,然后利用圆心到直线的距离等于圆的半径列出等式,并代入关系式可得出a、b、c的值,即可得出椭圆C的方程;(2)根据矩形对边互相平行,设直线AB的方程为y=x+m,并设点A(x1,y1)、B(x2,y2),将直线AB的方程与椭圆C的方程联立,由△>0得出m的取值范围,列出韦达定理,利用弦长公式得出|AB|的表达式,利用两平行直线的距离公式得出直线AB和CD的距离,即为|BC|,再由|AB|+|BC|=列出有关m的方程,即可求出m的值,于是可得出直线AB的方程.【解答】解:(1)由题意知,以椭圆C的右焦点为圆心,椭圆长半轴长为半径的圆的方程为(x﹣c)2+y2=a2,圆心到直线x+y+1=0的距离,①∵以椭圆C的两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,所以,b=c,,代入①式得b=c=1,.因此,所求椭圆的方程为;(2)设直线AB的方程为y=x+m,代入椭圆C的方程,整理得3x2+4mx+2m2﹣2=0,由△>0,得,设点A(x1,y1)、B(x2,y2),则,.,易知,则由知,所以,由已知可得,即,整理得41m2+30m﹣71=0,解得m=1或,所以,直线AB的方程为y=x+1或.【点评】本题考查直线与椭圆的综合,考查椭圆的几何性质,考查了弦长公式与距离公式,考查计算能力,属于中等题.22.(12分)已知函数f(x)=lnx+﹣1,a∈R.(1)当a>0时,若函数f(x)在区间[1,3]上的最小值为,求a的值;(2)讨论函数g(x)=f′(x)﹣零点的个数.【分析】(1)首先求解导函数,然后分类讨论求解实数a的值即可;(2)首先求解导函数,然后进行二次求导,结合二阶导函数的解析式讨论函数的零点个数即可.【解答】解:(1),当0<a≤1时,f’(x)>0在(1,3)上恒成立,这时f(x)在[1,3]上为增函数,∴f(x)min=f(1)=a﹣1,令得(舍去),当1<a<3时,由f’(x)=0得,x=a∈(1,3),若x∈(1,a),有f’(x)<0,f(x)在[1,a]上为减函数,若x∈(a,3)有f’(x)>0,f(x)在[a,3]上为增函数,f’(x)min=f(a)=lna,令,得.当a≥3时,f’(x)<0在(1,3)上恒成立,这时f(x)在[1,3]上为减函数,∴,令得a=4﹣3ln3<2(舍去).综上知,.(2)∵函数,令g(x)=0,得.设,当x∈(0,1)时,φ'(x)>0,此时φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ’(x)<0,此时φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是(x)的最大值点,φ(x)的最大值为.又φ(0)=0,结合φ(x)的图象可知:①当时,函数g(x)无零点;②当时,函数g(x)有且仅有一个零点;③当时,函数g(x)有两个零点;④a≤0时,函数g(x)有且只有一个零点;综上所述,当时,函数g(x)无零点;当或a≤0时,函数g(x)有且仅有一个零点;当时,函数g(x)有两个零点.【点评】点睛:本题主要考查导数研究函数的单调性,导数研究函数的零点个数,分类讨论的数学思想等知识,属于中等题.。
菏泽市2015届高三上学期期末考试高三数学试卷(理)本试卷分第Ⅰ卷和第Ⅱ卷两部分. 试卷总分为150分. 考试时间120分钟. 第Ⅰ卷(选择题 共50分) 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目、试卷类型用2B 铅笔涂写在答题卡上。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.复数1i z i +=(i 是虚数单位)在复平面内对应的点在( ) A. 第一象限 B .第二象限 C .第三象限 D .第四象限2.设2()lg()1f x a x =+-是奇函数,则使()0f x <的x 的取值范围是( ).A .(1,0)-B .(0,1)C .(,0)-∞D .(,0)(1,)-∞+∞U3.一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为( )cm2.A .50B .60C .70D .804.已知,R a b ∈,下列命题正确的是( )A .若a b >, 则11a b >B .若a b >,则11a b < C .若a b>,则22a b >D .若a b>,则22a b >5.设m,n 为空间两条不同的直线,,αβ为空间两个不同的平面,给出下列命题: ①若//,//m m αβ,则//αβ; ②若//,//m m n α则//n α;③若,//m m αβ⊥,则αβ⊥; ④若,//m ααβ⊥,则m β⊥. 其中的正确命题序号是( ) A .③④ B .②④ C .①② D . ①③ 6.等差数列{an}的前n 项和为Sn,且S2=10,S6=36,则过点P(n,an)和Q (n+2,an+2)(n ∈N*)的直线的斜率是( )A .14B .12C .2D .47.函数()sin(2)3cos(2)f x x x θθ=+++(2πθ<)的图像关于点(,0)6π对称,则()f x 的增区间( )A .5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .7,,1212k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦D .5,,1212k k k Zππππ⎡⎤-++∈⎢⎥⎣⎦8. 某班有50名学生,一次数学考试的成绩ξ服从正态分布2(105,10)N ,已知(95105)0.32P ξ≤≤=,估计该班学生数学成绩在115分以上的人数为( )A .10B .9C .8D .79.过抛物线C :22x y =的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段||AF =( ) A .1B .2C .3D .4俯视图8558855 (第3题图)10. 已知定义在实数集R 上的函数()f x 满足(1)f =3,且()f x 的导数()f x '在R 上恒有()2f x '<()x R ∈,则不等式()21f x x <+的解集为( )A .(1,)+∞B .(,1)-∞-C .(1,1)-D .(,1)-∞-∪(1,)+∞第Ⅱ卷(非选择题 共100分) 二、填空题:(本大题有5小题,每小题5分,共25分.把答案填在答题卷的相应位置.) 11.阅读右侧程序框图,输出的结果i 的值为 。
山东省菏泽市高三上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高二下·临泽期末) 已知非空集合,全集,集合 ,集合则()A .B .C .D .2. (2分) (2016高二下·新乡期末) 复数z= 的共轭复数是()A . 1﹣iB . ﹣1+iC . 2+iD . 2﹣i3. (2分)(2017·长宁模拟) 给出下列命题:①存在实数α使.②直线是函数y=sinx图象的一条对称轴.③y=cos(cosx)(x∈R)的值域是[cos1,1].④若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A . ①②B . ②③C . ③④D . ①④4. (2分)已知向量= (-3 ,2 ) ,=(x,-4) ,若,则x=()A . 4B . 5C . 6D . 75. (2分)(2017·枣庄模拟) 如图是某班甲、乙两位同学在5次阶段性检测中的数学成绩(百分制)的茎叶图,甲、乙两位同学得分的中位数分别为x1 , x2 ,得分的方差分别为y1 , y2 ,则下列结论正确的是()A . x1<x2 , y1<y2B . x1<x2 , y1>y2C . x1>x2 , y1>y2D . x1>x2 , y1<y26. (2分)如果数列是等差数列,则()A .B .C .D .7. (2分)(2017·焦作模拟) 函数f(x)=|x|+ (其中a∈R)的图象不可能是()A .B .C .D .8. (2分)对同一目标进行两次射击,第一、二次射击命中目标的概率分别为0.5和0.7,则两次射击中至少有一次命中目标的概率是()A . 0.35B . 0.42C . 0.85D . 0.159. (2分)(2017·内江模拟) 已知实数x,y满足,记z=ax﹣y(其中a>0)的最小值为f (a),若f(a)≥﹣,则实数a的最小值为()A . 3B . 4C . 5D . 610. (2分)某几何体的三视图,如图所示,则该几何体的体积为()A . 8-B . 8-C . 8-D . 8-11. (2分) (2016高二上·会宁期中) 已知数列{an}是公比为q的等比数列,且a1 , a3 , a2成等差数列,则公比q的值为()A . ﹣2B .C .D . 112. (2分)设f(x)=ex(sinx﹣cosx),其中0≤x≤2011π,则 f(x)的极大值点个数是()A . 25B . 1005C . 26D . 28二、填空题 (共4题;共4分)13. (1分)(2016·福建模拟) 已知平面向量、满足| |=2,| |=1,与的夹角为120°,且(+λ )⊥(2 ﹣),则实数λ的值为________.14. (1分)(2017·成都模拟) 二项式(x+y)5的展开式中,含x2y3的项的系数是a,若m,n满足,则u=m﹣2n的取值范围是________.15. (1分) (2018高一下·鹤岗期末) 已知球面上有四点满足两两垂直,,则该球的表面积是________.16. (1分)(2017·新课标Ⅲ卷文) △ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b= ,c=3,则A=________.三、解答题 (共7题;共55分)17. (10分)(2017·太原模拟) 已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2bcosB,b≠c.(1)证明:A=2B;(2)若a2+c2=b2+2acsinC,求A.18. (10分) (2016高一下·台州期末) 已知{an}是等比数列,{bn}是等差数列,且a1=b1=1,a1+a2=b4 ,b1+b2=a2 .(1)求{an}与{bn}的通项公式;(2)记数列{an+bn}的前n项和为Tn,求Tn.19. (5分)如图,ABCD是平行四边形,EA⊥平面ABCD,PD∥EA,BD=PD=2EA=4,AD=3,AB=5.F,G,H分别为PB,EB,PC的中点.(1)求证:DB⊥GH;(2)求平面FGH与平面EBC所成锐二面角的余弦值.20. (5分)(2017·合肥模拟) 某市举行的英文拼字大赛中,要求每人参赛队选取2名选手比赛,有两种比赛方案,方案一:现场拼词,正确得2分,不正确不得分;方案二:听录音拼词,正确得3分,不正确不得分,比赛项目设个人赛:每位选手可自行选择方案,拼词一次,累计得分高者胜.团体赛:2名选手只能选择同一方案,每人拼词一次,两人得分累计得分高者胜.现有来自某参赛队的甲、乙两名选手,他们在“现场拼词”正确的概率均为,在“听录音拼词”正确的概率为p0(0<p0<1).(Ⅰ)在个人赛上,甲选择了方案一,乙选择了方案二,结果发现他们的累计得分不超过3分的概率为,求p0 .(Ⅱ)在团体赛上,甲、乙两人选择何种方案,累计得分的数学期望较大?21. (15分) (2015高三上·连云期末) 已知函数f(x)=ex[ x3﹣2x2+(a+4)x﹣2a﹣4],其中a∈R,e 为自然对数的底数.(1)若函数f(x)的图象在x=0处的切线与直线x+y=0垂直,求a的值;(2)关于x的不等式f(x)<﹣ ex在(﹣∞,2)上恒成立,求a的取值范围;(3)讨论函数f(x)极值点的个数.22. (5分) (2018高三上·重庆期末) 在直角坐标系中,直线的方程为,曲线的参数方程为(为参数),点,分别在直线和曲线上运动,的最小值为。
山东省菏泽市高三上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高二上·泉港期中) 设命题p:﹣1<log x<0,q:2x>1,则p是q成立的是()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件2. (2分) (2019高二下·吉林期末) 已知复数为纯虚数,则()A . 0B . 3C . 0或3D . 43. (2分) (2016高二上·临沂期中) 若0<a<1,0<b<1,则a+b,2 ,a2+b2 , 2ab中最大一个是()A . a+bB . 2C . a2+b2D . 2ab4. (2分) (2016高一上·德州期中) 已知a=20.3 ,,c=2log52,则a,b,c的大小关系为()A . c<b<aB . c<a<bC . b<a<cD . b<c<a5. (2分) (2017高三下·凯里开学考) 执行如图所示的程序框图,输出s的值为()A . ﹣B .C . ﹣D .6. (2分)已知函数的图象在点处的切线的斜率为3,数列的前n项和为,则的值为()A .B .C .D .7. (2分) (2018高一下·抚顺期末) 已知方程,则的最大值是()A . 14-B . 14+C . 9D . 148. (2分) (2020高二下·汕头月考) 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是()A .B .C .D .9. (2分)(2018·百色模拟) 已知某三棱柱的三视图如图所示,那么该几何体的表面积为()A . 2B .C .D .10. (2分) (2015高三上·青岛期末) 平面向量与的夹角为, =(2,0),| |=1,则| ﹣2 |=()A .B . 0C .D . 211. (2分)已知双曲线(a>0,b>0)的焦点F1(﹣c,0)、F2(c,0)(c>0),过F2的直线l 交双曲线于A,D两点,交渐近线于B,C两点.设+=,+=,则下列各式成立的是()A . ||>||B . ||<||C . |﹣|=0D . |﹣|>012. (2分) (2015高二下·上饶期中) 设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2 ,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为()A . (﹣∞,﹣2012)B . (﹣2012,0)C . (﹣∞,﹣2016)D . (﹣2016,0)二、填空题 (共4题;共4分)13. (1分)(2017·荆州模拟) 已知函数的两个零点分别为m、n(m<n),则=________.14. (1分)(2020·九江模拟) 的展开式中的系数为________.(用数字作答)15. (1分) (2017高二下·濮阳期末) 椭圆Γ: =1(a>b>0)的左右焦点分别为F1 , F2 ,焦距为2c,若直线y= 与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1 ,则该椭圆的离心率等于________.16. (1分)设命题p:函数的值域为R;命题q:不等式3x﹣9x<a对一切正实数x均成立,如果命题p和q不全为真命题,则实数a的取值范围是________三、解答题 (共5题;共40分)17. (5分)(2019·濮阳模拟) 在数列和等比数列中,,,.Ⅰ 求数列及的通项公式;Ⅱ 若,求数列的前n项和.18. (10分) (2019高二下·湖南期中) 某中学是走读中学,为了让学生有效利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便学生在自习室自主学习,同时每天派老师轮流值班.在本学期第二次月考后,高二某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下列联表:非优良优良总计未设立自习室251540设立自习室103040总计354580下面的临界值表供参考:0.1500.1000.0500.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828(参考公式:,其中)(1)能否在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效?(2)从该班第一次月考的数学优良成绩中和第二次月考的数学非优良成绩中,按分层抽样随机抽取5个成绩,再从这5个成绩中随机抽取2个,求这2个成绩来自同一次月考的概率.19. (10分) (2018高一下·伊春期末) 如图,在四棱锥SABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD交于点O,E为侧棱SC上的一点.(1)若E为SC的中点,求证:SA∥平面BDE;(2)求证:平面BDE⊥平面SAC 。
2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.【2016山东(理)】若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【答案】B【解析】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.【2016山东(理)】设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)【答案】C【解析】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).【2016山东(理)】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140【答案】D【解析】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,【2016山东(理)】若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【答案】C【解析】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.【2016山东(理)】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【答案】C【解析】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,【2016山东(理)】已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,【2016山东(理)】函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π【答案】B【解析】解:数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos(x+)=2sin (2x+),∴T=π,【2016山东(理)】已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣【答案】B【解析】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,【2016山东(理)】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2【答案】D【解析】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.【2016山东(理)】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3【答案】A【解析】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;二、填空题:本大题共5小题,每小题5分,共25分.11.【2016山东(理)】执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.【答案】3【解析】解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a<b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a<b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a<b,故输出的i值为:3,【2016山东(理)】若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.【答案】﹣2【解析】解:(ax2+)5的展开式的通项公式T r+1=(ax2)5﹣r=a5﹣r,令10﹣=5,解得r=2.∵(ax2+)5的展开式中x5的系数是﹣80∴a3=﹣80,得a=﹣2.【2016山东(理)】已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.【答案】2【解析】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.【2016山东(理)】在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.【答案】【解析】解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.【2016山东(理)】已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.【答案】(3,+∞)【解析】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.16.【2016山东(理)】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【解析】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.【2016山东(理)】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.【解析】证明:(Ⅰ)取FC中点Q,连结GQ、QH,∵G、H为EC、FB的中点,∴GQ,QH∥,又∵EF BO,∴GQ BO,∴平面GQH∥平面ABC,∵GH⊂面GQH,∴GH∥平面ABC.解:(Ⅱ)∵AB=BC,∴BO⊥AC,又∵OO′⊥面ABC,∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),=(﹣2,﹣,﹣3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,﹣1,﹣),∴cos<,>==﹣.∵二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值为.【2016山东(理)】已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【解析】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n﹣1=b n﹣1+b n,∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.【2016山东(理)】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【解析】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==X 0 1 2 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==【2016山东(理)】已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【解析】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数φ(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.【2016山东(理)】平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.【解析】解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),即有b=,a2﹣c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y′=x,即有切线的斜率为x0,则切线的方程为y﹣y0=x0(x﹣x0),可化为y=x0x﹣y0,代入椭圆方程,可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,﹣),直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.即有点M在定直线y=﹣上;(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),则S1=|FG|•|x0|=x0•(+y0)=x0(1+x02);S2=|PM|•|x0﹣|=(y0+)•=x0•,则=,令1+2x02=t(t≥1),则====2+﹣=﹣(﹣)2+,则当t=2,即x0=时,取得最大值,此时点P的坐标为(,).2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.【2016山东(理)】若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.【2016山东(理)】设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)3.【2016山东(理)】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1404.【2016山东(理)】若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.125.【2016山东(理)】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π6.【2016山东(理)】已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.【2016山东(理)】函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π8.【2016山东(理)】已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.【2016山东(理)】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.210.【2016山东(理)】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3二、填空题:本大题共5小题,每小题5分,共25分.11.【2016山东(理)】执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.12.【2016山东(理)】若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.13.【2016山东(理)】已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.14.【2016山东(理)】在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.15.【2016山东(理)】已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题,:本大题共6小题,共75分.16.【2016山东(理)】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.17.【2016山东(理)】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.18.【2016山东(理)】已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.19.【2016山东(理)】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.20.【2016山东(理)】已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.21.【2016山东(理)】平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.。
山东省菏泽市2015届高三理科数学上学期统考试题(B)(扫描版)高三第一学期期中考试数学(理)试题答案一、选择题1.D2.A3.D4.B5.A6.A7.A8.C9.C 10.A二、填空题11.4π12.[2,4] 13.83π 14.(- ∞,-3) ∪(6, ﹢∞) 15. ①②④三、解答题16.(共12分)解:(1) f(x)=a ·b =2sin 2x+2sinxcosx =2×22cos 1x -+sin2x=2sin(2x-4π)+1 由-2π+2k π≤2x-4π≤2π+2k π,k z ∈,得 -8π+k π≤x ≤83π+k π,k z ∈∴f(x)的单调递增区间为[-8π+k π,83π+k π]( k z ∈) -----6分(2)由题意得,g(x)=2sin[2(x+6π)-4π]+1=2sin(2x+12π)+1由12π≤x ≤127π得,4π≤2x+12π≤45π ∴0≤g(x) ≤2+1 ----12分∴g(x)的最大值为2+1,最小值为0∴-a ≥3或4-a <-1, ∴a ≤-3或a >5∴a 的取值范围是(-∞,-3] ∪(5,+ ∞). ……12分 18.(共12分)解:(1)∵∴即:cosAsinB-2sinBcosC=2sinCcosB-cosBsinA ∴sin (A+B )=2sin (B+C )即sinC=2sinA ∴ACsin sin =2 -----6分 (2)由(1)得,a c =AC sin sin =2 ∴c=2a 又∵b=2 ∴b 2=c 2+a 2-2ac ·cosB 即22=4a 2+a 2-2a ×2a ×41, 解得a=1(负值舍去),∴c=2, 又∵cosB=41,∴sinB=415,故S △ABC =21acsinB=21×1×2×415=415 -------12分19、(共12分)20、(共13分)解:(1)∵h(x)= x㏑x,(x >0) ∴h ’(x)=由h ,(x)>0且x >0,得0<x <e , 由h ,(x)<0且x >0,x >e∴函数h (x )的单调增区间是(0,e],单调减区间是[e ,+∞) ∴当x=e 时,h(x)max =e1------6分 (2)∵xf (x )≥-2x 2+ax-12对一切x ∈(0,+∞)恒成立即xlnx-x 2≥-2x 2+ax-12对一切x ∈(0,+∞)恒成立 亦即a≤lnx+x+x12对一切x ∈(0,+∞)恒成立设ϕ(x)=lnx+x+x12,ϕ’(x) ==∴在ϕ(x)在(0,3]上递减,在[3,+∞)上递增 ∴ϕ(x)min =ϕ(3)=7+ln3,∴a ≤7+ln3 --------13分 21、(共14分)解:(1)f ’(x)=x-ax 2= -ax(x-a1) 1-lnx 2x 2+x-12x 2(x-3)(x+4)x 2∴当f ’(x)=0时,x=0或x=a1又∵a>0 ∴当x ∈(-∞,0)时,f ’(x)<0;当x ∈(0,a1)时,f ’(x)>0; 当x ∈(a1,+∞)时,f ’(x)<0 ∴f(x)的极小值为f(0)=0;f(x)的极大值为f(a 1)=261a ---5分 (2) ∵a=e ∴g(x)=21x 2-31ex 3+e x (x-1) g ’(x)=x(e x-ex+1) ①记h(x)=e x-ex+1 则h ’(x)=e x-e当x ∈(-∞,1)时,h ’(x)<0,h(x)是减函数当x ∈(1,+ ∞)时,h ’(x)>0,h(x)是增函数 ∴h(x) ≥h(1)=1>0 则在(0,+ ∞)上,g ’(x)>0;在(-∞,0)上,g ’(x)<0-第3页(共4页)-∴函数g(x)的单调递增区间是(0,+ ∞),单调递减区间是(-∞,0).—10分 ②证明:x>0时,g ’(x)=x(e x-ex+1) ≥1+㏑x ,即e x-ex+1≥x㏑x1+ 由①得,h(x)=e x-ex+1≥1,记ϕ(x)=1+㏑x-x(x>0),则ϕ’(x)=xx-1 在区间(0,1)上,ϕ’(x)>0,ϕ(x)是增函数; 在区间(1,+ ∞)上,ϕ’(x)<0,ϕ(x)是减函数∴ϕ(x) ≤ϕ(1)=0,即1+㏑x-x ≤0,x㏑x1+≤1 ∴e x-ex+1≥1≥x㏑x 1+,即g ,(x) ≥1+㏑x 恒成立 ----14分。
2015-2016学年山东省菏泽市高三(上)期末数学试卷(理科)(B卷)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x2﹣1≤0},N={x|<2x+1<4,x∈Z},则M∩N=()A.{﹣1,0} B.{1} C.{﹣1,0,1} D.∅【考点】交集及其运算;指、对数不等式的解法.【专题】集合.【分析】求出集合MN,然后求解交集即可.【解答】解:集合M={x|x2﹣1≤0}={x|﹣1≤x≤1},N={x|<2x+1<4,x∈Z}={x|﹣2<x<1,x∈Z}={﹣1,0},则M∩N={﹣1,0}故选:A【点评】本题考查集合的交集的求法,指数不等式的解法,注意元素的属性是解题的易错点.2.函数f(x)=的定义域为()A.(﹣1,1]B.(﹣1,0)∪(0,1]C.(﹣1,1)D.(﹣1,0)∪(0,1)【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由根式内部的代数式大于等于0,对数式的真数大于0,分式的分母不为0联立不等式组求解.【解答】解:要使原函数有意义,则,解得:﹣1<x≤1,且x≠0.∴函数f(x)=的定义域为(﹣1,0)∪(0,1].故选:B.【点评】本题考查函数的定义域及其求法,考查了不等式组的解法,是基础题.3.函数f(x)=Asin(ωx+φ)(A>0,|φ|<)其中的图象如图所示,为了得到g(x)=cos(2x﹣)的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;图表型;转化思想;数形结合法;三角函数的图像与性质.【分析】根据图象求出φ的值,再由“左加右减”法则判断出函数图象平移的方向和单位长度.【解答】解:∵由函数图象可得:A的值为1,周期T=4×(﹣)=π,∴ω===2,又函数的图象的第二个点是(,0),∴2×+φ=π,于是φ=,则f(x)=sin(2x+)=sin[2(x+)],∵g(x)=cos(2x﹣)=sin2x,∴为了得到g(x)=cos(2x﹣)的图象,只需将f(x)的图象向右平移个单位即可.故选:D.【点评】本题主要考查了三角函数的函数图象,根据函数图象求解析式,函数y=Asin(ωx+φ)的图象变换规律的应用,注意应用正弦函数图象的关键点进行求解,考查了读图能力和图象变换法则,属于中档题.4.不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7]B.[﹣4,6]C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)【考点】绝对值不等式的解法.【专题】集合.【分析】解法一:利用特值法我们可以用排除法解答本题,分别取x=0,x=﹣4根据满足条件的答案可能正确,不满足条件的答案一定错误,易得到答案.解法二:我们利用零点分段法,我们分类讨论三种情况下不等式的解,最后将三种情况下x 的取值范围并起来,即可得到答案.【解答】解:法一:当x=0时,|x﹣5|+|x+3|=8≥10不成立可排除A,B当x=﹣4时,|x﹣5|+|x+3|=10≥10成立可排除C故选D法二:当x<﹣3时不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)﹣(x+3)≥10解得:x≤﹣4当﹣3≤x≤5时不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)+(x+3)=8≥10恒不成立当x>5时不等式|x﹣5|+|x+3|≥10可化为:(x﹣5)+(x+3)≥10解得:x≥6故不等式|x﹣5|+|x+3|≥10解集为:(﹣∞,﹣4]∪[6,+∞)故选D【点评】本题考查的知识点是绝对值不等式的解法,其中利用零点分段法进行分类讨论,将绝对值不等式转化为整式不等式是解答本题的关键.5.若向量||=2sin15°与||=4sin75°,与的夹角为30°,则•等于()A.B.C.2D.【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】直接由已知结合向量数量积的运算求得答案.【解答】解:∵||=2sin15°,||=4sin75°,且与的夹角为30°,则•==2sin15°×4sin75°×cos30°=4×sin30°×cos30°=2sin60°=2×=.故选:A.【点评】本题考查平面向量的数量积运算,考查二倍角公式的应用,是基础的计算题.6.函数的图象大致是()A.B.C.D.【考点】余弦函数的图象.【专题】数形结合.【分析】由函数的解析式可以看出,函数的零点呈周期性出现,且法自变量趋向于正无穷大时,函数值在x轴上下震荡,幅度越来越小,而当自变量趋向于负无穷大时,函数值在x 轴上下震荡,幅度越来越大,由此特征对四个选项进行判断,即可得出正确选项.【解答】解:∵函数∴函数的零点呈周期性出现,且法自变量趋向于正无穷大时,函数值在x轴上下震荡,幅度越来越小,而当自变量趋向于负无穷大时,函数值在x轴上下震荡,幅度越来越大,A选项符合题意;B选项振幅变化规律与函数的性质相悖,不正确;C选项是一个偶函数的图象,而已知的函数不是一个偶函数故不正确;D选项最高点离开原点的距离的变化趋势不符合题意,故不对.综上,A选项符合题意故选A【点评】本题考查余弦函数的图象,解题的关键是根据余弦函数的周期性得出其零点周期性出现,再就是根据分母随着自变量的变化推测出函数图象震荡幅度的变化,由这些规律对照四个选项选出正确答案.7.若实数x,y满足不等式组且x+y的最大值为9,则实数m=()A.﹣2 B.﹣1 C.1 D.2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先根据约束条件画出可行域,设z=x+y,再利用z的几何意义求最值,只需求出直线x+y=9过可行域内的点A时,从而得到m值即可.【解答】解:先根据约束条件画出可行域,设z=x+y,将最大值转化为y轴上的截距,当直线z=x+y经过直线x+y=9与直线2x﹣y﹣3=0的交点A(4,5)时,z最大,将m等价为斜率的倒数,数形结合,将点A的坐标代入x﹣my+1=0得m=1,故选C.【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.8.一空间几何体的三视图如图所示,该几何体的体积为,则正视图中x的值为()A.5 B.4 C.3 D.2【考点】由三视图求面积、体积.【专题】计算题.【分析】几何体是一个组合体,上面是一个四棱锥,四棱锥的底面是对角线长度为4的正方形,四棱锥的侧棱长是3,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是x,写出组合体体积的表示式,解方程即可.【解答】解:由三视图知,几何体是一个组合体,上面是一个四棱锥,四棱锥的底面是对角线长度为4的正方形,四棱锥的侧棱长是3,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是x,根据组合体的体积的值,得到12=×∴12,∴x=3,故选C.【点评】本题考查由三视图几何体的体积求边长,考查由三视图还原直观图,这是一个简单的组合体,这种几何体的体积是两个几何体的体积之和.9.已知在圆x2+y2﹣4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.6C.D.2【考点】直线与圆的位置关系.【专题】计算题;直线与圆.【分析】圆x2+y2﹣4x+2y=0即(x﹣2)2+(y+1)2=5,圆心M(2,﹣1),半径r=,最长弦AC为圆的直径.BD为最短弦,AC与BD相垂直,求出BD,由此能求出四边形ABCD 的面积.【解答】解:圆x2+y2﹣4x+2y=0即(x﹣2)2+(y+1)2=5,圆心M(2,﹣1),半径r=,最长弦AC为圆的直径为2,∵BD为最短弦∴AC与BD相垂直,ME=d=,∴BD=2BE=2=2,=S△ABD+S△BDC=BD×EA+×BD×EC∵S四边形ABCD=×BD×(EA+EC)=×BD×AC==2.故选:D【点评】本题考查四边形的面积的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.10.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n使得=4a1,则+的最小值为()A. B. C.D.不存在【考点】基本不等式在最值问题中的应用;数列与不等式的综合.【专题】不等式.【分析】{a n}为等比数列,可设首项为a1,公比为q,从而由a7=a6+2a5可以得出公比q=2,而由可以得出m+n=6,从而得到,从而便得到,这样可以看出,根据基本不等式即可得出的最小值.【解答】解:设数列{a n}的首项为a1,公比为q,则由a7=a6+2a5得:;∴q2﹣q﹣2=0;∵a n>0;∴解得q=2;∴由得:;∴2m+n﹣2=24;∴m+n﹣2=4,m+n=6;∴;∴=,,即n=2m时取“=”;∴的最小值为.故选:A.【点评】考查等比数列的通项公式,基本不等式用于求最小值,应用a+b求最小值时,需满足ab为定值.二、填空题:本大题共5小题,每小题5分,共25分.11.若命题“∃x∈R,x2+2mx+m≤0”是假命题,则实数m的取值范围是(0,1).【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】本题先利用原命题是假命题,则命题的否定是真命题,得到一个恒成立问题,再利用函数图象的特征得到一元二次方程根的判别式小于或等于0,解不等式,得到本题结论.【解答】解:∵命题“∃x∈R,使得x2+2mx+m≤0”,∴命题“∃x∈R,使得x2+2mx+m≤0”的否定是“∀x∈R,使得x2+2mx+m>0”.∵命题“∃x∈R,使得x2+2mx+m≤0”是假命题,∴命题“∀x∈R,使得x2+2mx+m>0”是真命题.∴方程x2+2mx+m=0的判别式:△=4m2﹣4m<0.∴0<m<1.故答案为:(0,1).【点评】本题考查了命题的否定、二次函数的图象,本题难度不大,属于基础题.12.由直线x=0,x=,y=0与曲线y=2sinx所围成的图形的面积等于3.【考点】定积分.【专题】数形结合;数形结合法;导数的综合应用.【分析】由题意可得S=,计算可得.【解答】解:由题意和定积分的意义可得所求面积S==﹣2cosx=﹣2(cos﹣cos0)=﹣2(﹣﹣1)=3故答案为:3【点评】本题考查定积分的求解,属基础题.13.如图,正方形BCDE的边长为a,已知AB=BC,将△ABE沿边BE折起,折起后A 点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE③V B体积是a3;﹣ACE④平面ABC⊥平面ADC.其中正确的有①③④.(填写你认为正确的序号)【考点】棱柱、棱锥、棱台的体积.【专题】数形结合;分析法;空间位置关系与距离.【分析】作出直观图,逐项进行分析判断.【解答】解:作出折叠后的几何体直观图如图所示:∵AB=a,BE=a,∴AE=.∴AD=.∴AC=.在△ABC中,cos∠ABC===.∴sin∠ABC==.∴tan∠ABC==.∵BC∥DE,∴∠ABC是异面直线AB,DE所成的角,故①正确.连结BD,CE,则CE⊥BD,又AD⊥平面BCDE,CE⊂平面BCDE,∴CE⊥AD,又BD∩AD=D,BD⊂平面ABD,AD⊂平面ABD,∴CE⊥平面ABD,又AB⊂平面ABD,∴CE⊥AB.故②错误.三棱锥B﹣ACE的体积V===,故③正确.∵AD⊥平面BCDE,BC⊂平面BCDE,∴BC⊥AD,又BC⊥CD,∴BC⊥平面ACD,∵BC⊂平面ABC,∴平面ABC⊥平面ACD.故答案为①③④.【点评】本题考查了空间角的计算,线面垂直,面面垂直的判定与性质,属于中档题.14.设函数,函数y=f[f(x)]﹣1的零点个数为2.【考点】函数的零点;根的存在性及根的个数判断.【分析】根据函数,根据指数函数和对数函数的性质,我们可以分类讨论,化简函数函数y=f[f(x)]﹣1的解析式,进而构造方程求出函数的零点,得到答案.【解答】解:∵函数,当x≤0时y=f[f(x)]﹣1=f(2x)﹣1=﹣1=x﹣1令y=f[f(x)]﹣1=0,x=1(舍去)当0<x≤1时y=f[f(x)]﹣1=f(log2x)﹣1=﹣1=x﹣1令y=f[f(x)]﹣1=0,x=1当x>1时y=f[f(x)]﹣1=f(log2x)﹣1=log2(log2x)﹣1令y=f[f(x)]﹣1=0,log2(log2x)=1则log2x=2,x=4故函数y=f[f(x)]﹣1的零点个数为2个故答案为:2【点评】本题考查的知识点是函数的零点,根的存在性及根的个数判断,其中根据指数函数和对数函数的图象和性质,化简函数的解析式是解答的关键.15.如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】设|AF1|=x,|AF2|=y,利用椭圆的定义,四边形AF1BF2为矩形,可求出x,y的值,进而可得双曲线的几何量,即可求出双曲线的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴,即x2+y2=(2c)2=12,②由①②得,解得x=2﹣,y=2+,设双曲线C2的实轴长为2a′,焦距为2c′,则2a′=|AF2|﹣|AF1|=y﹣x=2,2c′=2,∴C2的离心率是e==.故答案为:.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.16.函数.(1)求函数f(x)的最小正周期;(2)在△ABC中,a,b,c分别为内角A,B,C的对边,且,求△ABC的面积的最大值.【考点】余弦定理;两角和与差的正弦函数;三角函数的周期性及其求法.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x﹣)+,利用周期公式即可求得最小正周期.(2)由三角形面积公式可得,由,结合范围A∈(0,π),可得,由余弦定理可得:b2+c2=4+bc,利用基本不等式可得bc≤4,即可求得△ABC的面积的最大值.【解答】解:(1)∵,∴最小正周期T==π.(2),由=sin(2A﹣)+,可得:sin(2A﹣)=1,由A∈(0,π),2A﹣∈(﹣,),即可得:2A﹣=,得到,所以由余弦定理可得:cosA=,解得:c2+b2﹣4=bc,所以,b2+c2=4+bc,由于b2+c2≥2bc,所以4+bc≥2bc解得bc≤4,b=c=2取等号,所以△ABC的面积的最大值为.【点评】本题主要考查了三角函数恒等变换的应用,周期公式,三角形面积公式,余弦定理,基本不等式及正弦函数的图象和性质的应用,考查了计算能力和转化思想,属于中档题.17.如图,已知四棱锥P﹣ABCD,底面ABCD为边长为2对的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)判定AE与PD是否垂直,并说明理由;(2)若PA=2,求二面角E﹣AF﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的性质.【专题】计算题;函数思想;转化思想;空间位置关系与距离;空间角.【分析】(1)判断垂直.证明AE⊥BC.PA⊥AE.推出AE⊥平面PAD,然后证明AE⊥PD.(2)由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,求出相关点的坐标,求出平面AEF的一个法向量,平面AFC的一个法向量.通过向量的数量积求解二面角的余弦值.【解答】解:(1)垂直.证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.而PA⊂平面PAD,AD⊂平面PAD且PA∩AD=A,所以AE⊥平面PAD,又PD⊂平面PAD,所以AE⊥PD.(2)由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E,F分别为BC,PC的中点,∴A(0,0,0),,,D(0,2,0),P(0,0,2),,,所以,.设平面AEF的一个法向量为,则,因此,取z1=﹣1,则.因为BD⊥AC,BD⊥PA,PA∩AC=A,所以BD⊥平面AFC,故为平面AFC的一个法向量.又,所以.因为二面角E﹣AF﹣C为锐角,所以所求二面角的余弦值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.18.已知数列{a n}中,a1=1,a n+1=,(n∈N*)(1)求数列{a n}的通项公式a n,(2)若数列{b n}满足b n=(3n﹣1)a n,数列{b n}的前n项和为T n,若不等式(﹣1)nλ<T n对一切n∈N*恒成立,求λ的取值范围.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(1)由已知条件推导出,从而得到=()•3n﹣1=.由此能求出结果.(2)由=,利用裂项求和法求出,从而得到{T n}为单调递增数列,由此利用分类讨论思想能求出λ的取值范围.【解答】解:(1)∵数列{a n}中,a1=1,a n+1=,(n∈N*)∴=,∴,∴=()•3n﹣1=.∴a n=.(2)∵,b n=(3n﹣1)a n,∴=,∴,①,②①﹣②,得=﹣=2﹣,∴.,∵T n+1﹣T n=(4﹣)﹣(4﹣)=,∴{T n}为单调递增数列,∵不等式(﹣1)nλ<T n对一切n∈N*恒成立,∴①当n为正奇数时,﹣λ<T n对一切正奇数成立,∴(T n)min=T1=1,∴﹣λ<1,∴λ>﹣1;②当n为正偶数时,λ<T n对一切正偶数成立,∵(T n)min=T2=2,∴λ<2.综上知﹣1<λ<2.【点评】本题考查数列的通项公式的求法,考查实数的取值范围的求法,解题时要认真审题,注意裂项求和法和分类讨论思想的合理运用.19.某上市公司股票在30天内每股的交易价格p(元)与时间t(天)组成有序数对(t,p),点(t,p)落在下图中的两条线段上.该股票在30天内(包括30天)的交易量q(万元)tp(元)与时间t(天)所满足的函数关系式;(2)若t与q满足一次函数关系,根据表中数据确定日交易量q(万股)与时间t(天)的函数关系式;(3)在(2)的结论下,用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几日交易额最大,最大值为多少?【考点】函数解析式的求解及常用方法;分段函数的应用.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】(1)可看出0<t<20时,p和t满足一次函数关系,从而设p=at+b,由图象看出过点(0,2),(20,6),带入解析式便可求出a,b,而同理可以求出20≤t≤30时的p,t函数关系式,从而得出;(2)根据t与q满足一次函数关系式,从而可设q=kt+m,由表中数据知该函数图象过点(4,26),(10,20),从而可以求出k,m,从而得出q=﹣t+30;(3)根据题意即可得出y=,这样即可求出每段上y 的最大值,比较即可求出这30天中第几日交易额最大,以及最大值为多少.【解答】解:(1)当0<t<20时,设p=at+b,由图象可知过点(0,2),(20,6),代入得:,解得;即;同理可得当20≤t≤30时;综上可得;(2)由题意设q=kt+m,过点(4,26),(10,20),可得:,解得;∴q=﹣t+30;(3)由题意可得=;∴当0<t<20时,t=10时,y max=80万元;当20≤t≤30时,t=20时,y max=60万元;综上可得第10日的交易额最大为80万元.【点评】考查待定系数求函数解析式的方法,以及一次函数的一般形式,图象上的点的坐标和函数解析式的关系,以及配方法求二次函数的最值,分段函数最值的求法.20.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【专题】计算题;压轴题.【分析】(Ⅰ)求出函数的定义域,在定义域内,求出导数大于0的区间,即为函数的增区间,求出导数小于0的区间即为函数的减区间.(Ⅱ)根据函数的单调区间求出函数的最小值,要使f(x)>2(a﹣1)恒成立,需使函数的最小值大于2(a﹣1),从而求得a的取值范围.(Ⅲ)利用导数的符号求出单调区间,再根据函数g(x)在区间[e﹣1,e]上有两个零点,得到,解出实数b的取值范围.【解答】解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞),因为,所以,,所以,a=1.所以,,.由f'(x)>0解得x>2;由f'(x)<0,解得0<x<2.所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2).(Ⅱ),由f'(x)>0解得;由f'(x)<0解得.所以,f(x)在区间上单调递增,在区间上单调递减.所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,所以,即可.则.由解得.所以,a的取值范围是.(Ⅲ)依题得,则.由g'(x)>0解得x>1;由g'(x)<0解得0<x<1.所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数g(x)在区间[e﹣1,e]上有两个零点,所以,解得.所以,b的取值范围是.【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值.21.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.(1)求椭圆C的方程;(2)设点P是椭圆C上一动点,求线段PM的中点Q的轨迹方程;(3)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,探究:直线AB是否过定点,并说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(1)由已知点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形,可求几何量,从而可求椭圆方程;(2)确定点P、PM的中点坐标之间的关系,利用点P是椭圆C上一动点,即可求得线段PM的中点Q的轨迹方程;(3)若直线AB的斜率存在,设AB方程代入椭圆方程,利用韦达定理及k1+k2=8,可得直线AB的方程,从而可得直线AB过定点;若直线AB的斜率不存在,设AB方程为x=x0,求出直线AB的方程,即可得到结论.【解答】解:(1)由已知可得b=2,,…∴所求椭圆方程为.…(2)设点P(x1,y1),PM的中点坐标为Q(x,y),则…由,得x1=2x,y1=2y﹣2代入上式得…(3)若直线AB的斜率存在,设AB方程为y=kx+m,依题意m≠±2.设A(x3,y3),B(x2,y2),则将直线方程代入椭圆方程可得(1+2k2)x2+4kmx+2m2﹣8=0.…则,.∵k1+k2=8,∴+=8,∴2k+(m﹣2)×=8.…∴k﹣=4,整理得m=.故直线AB的方程为y=kx+,即y=k(x+)﹣2.所以直线AB过定点(,﹣2).…若直线AB的斜率不存在,设AB方程为x=x0,设A(x0,y0),B(x0,﹣y0),由已知+=8,得x0=﹣.此时AB方程为x=﹣,显然过点(,﹣2).综上,直线AB过定点(,﹣2).…【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查直线方程,正确运用韦达定理是关键.2016年4月2日。