新人教版中学九年级数学上册 25.2 用列举法求概率学案2(无答案)
- 格式:doc
- 大小:93.50 KB
- 文档页数:2
【学习目标】掌握用画树状图法求事件的概率.通过对“应用一般的列举法求概率”的探究,体会获得事件发生的概率的方法,培养分析、判断的能力。
通过分析探究事件的概率,培养学生良好的动脑习惯,提高用数学的意识,激发学习兴趣【学习重点】用列举法求事件的概率【学习难点】选择恰当的方法分析事件的概率学习过程:【课前预习】认真自学课本内容,完成下列问题⑴.用列举法求简单随机事件的概率同时掷两枚完全相同的硬币所产生的可能结果共有 4 结果,它们分别是(正,反),(正,正),(反,正),(反,反),其中两枚全部正面朝上的可能结果只有1种,我们把两枚硬币全部正面朝上记为事件A,则P(A)= 14,其中两枚全部反面朝上记为事件B,则P(B)= 14,其中一枚正面朝上和一枚反面朝上的可能结果有2种,我们把一枚正面朝上和一枚反面朝上记为事件C,则P(C)= 12。
(2)利用概率解决简单问题的步骤①利用列举法,列举出事件所有等可能结果n②利用相关知识对事件A会发生的结果m作出判断③利用公式P(A)= mn,求出相应的概率⑶.当一次实验涉及两个因素或分两步进行时,为了不重不漏掉所有可能的结果,可采用树状图法。
【自学尝试】例1. 九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,那么选派到的代表是A的概率是14;(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.【分析】(1)由九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选派一男一女两位同学参赛的情况,再利用概率公式即可求得答案.解:(1)∵九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛,∴如果选派一位学生代表参赛,那么选派到的代表是A的概率是:14;(2)画树状图得:∵共有12种等可能的结果,恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:82123.例2. 把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.【分析】(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,然后利用树状图展示所有可能的结果数;(2)找出2张图片恰好组成一张完整风景图的结果数,然后根据概率公式求解.解:(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,画树状图为:(2)共有12种等可能的结果数,其中2张图片恰好组成一张完整风景图的结果数为4,所以2张图片恰好组成一张完整风景图的概率=41 123=.总结:当一次试验要涉及3个或更多的因素时,列表法就不方便了,为不重不漏地列出所有可能的结果,通常采用树形图分析.【学习巩固】1. 有一箱子装有3张分别标示4、5、6的号码牌,已知小南以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数为5的倍数的概率为()A.16B.14C.13D.12解:画树状图为:共有6种等可能的结果数,其中组成的二位数为5的倍数的结果数为2,所以组成的二位数为5的倍数的概率=21 63 =.故选C.2. 如图的两个圆盘中均有5个数字,同时旋转两个圆盘,指针落在某一个数上的机会均等,那么两个指针同时落在奇数上的概率是()A.425B.625C.1025D.1925解:画树状图得:∵共有25种等可能的结果,两个指针同时落在奇数上的有4种情况,∴两个指针同时落在奇数上的概率是:425.故选A.3. 有三张正面分别写有数字﹣1,1,2的卡片,它们的材质、大小和背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽取一张,以其正面的数学作为b的值,则满足a2+b2=5的概率为()A.16B.13C.12D.23解:根据题意,画出树状图如下:一共有6种情况,满足a2+b2=5的有:a=1,b=2;a=﹣1,b=2;a=2,b=1;a=2,b=﹣1;共4个,所以,P=42 63 =.故选D.4. 在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是.解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:105168=.5. 一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是()A.56B.518C.14D.19解:当n=2时,将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷2次,画树状图为:共有36种等可能的结果数,其中2次抛掷所出现的点数之和大于22的结果数为30,所以能过第二关的概率=305 366=.故选A.6. 在“阳光体育”活动时间,甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中丙同学的概率;(2)用画树状图或列表的方法,求恰好选中甲、乙两位同学进行比赛的概率.解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是:13;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:21 126=.7. 某城市体育中考项目分为必测项目和选测项目,必测项目为:跳绳、立定跳远;选测项目为50米、实心球、踢毽子三项中任选一项.(1)每位考生将有3种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.解:(1)∵必测项目为:跳绳、立定跳远;选测项目为50米、实心球、踢毽子三项中任选一项,∴每位考生将有3种选择方案;(2)画树状图得:∵共有9种等可能的结果,小颖和小华将选择同种方案的有3种情况,∴小颖和小华将选择同种方案的概率为:31.938. 体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.解:(1)如图:∴P(足球踢到小华处)=14(2)应从小明开始踢如图:若从小明开始踢,P(踢到小明处)=21 84同理,若从小强开始踢,P(踢到小明处)=3 8若从小华开始踢,P(踢到小明处)=3 8。
25.2 用列举法求概率教学内容1.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= .2.利用上面的知识解决实际问题.教学目标(1)理解P(A)= (在一次试验中有n种可能的结果,其中A包含m种)的意义.(2)应用P(A)解决一些实际问题.复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法──列举法求概率的简便方法,然后应用这种方法解决一些实际问题.重难点、关键1.重点:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= ,•以及运用它解决实际问题.2.难点与关键:通过实验理解P(A)= 并应用它解决一些具体题目.教学过程一、复习引入(老师口问,学生口答)1.什么叫概率?2.P(A)的取值范围是什么?3.在大量重复试验中,什么值会稳定在一个常数上?我们又把这个常数叫做什么? 4.A=必然事件,B是不可能发生的事件,C是随机事件,•请你画出数轴把这三个量表示出来.老师点评:1.(口述)一般地,在大量重复试验中,如果事件A发生的频率会稳定在某一个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.2.(板书)0≤P(A)≤1.3.(口述)频率、概率.4.(板书)如图所示.二、探索新知不管求什么事件的概率,我们都可以做大量的试验,求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,•是否有比较简单的方法,这种mnmnmnmnmn方法就是我们今天要介绍的方法──列举法.把学生分为10组,按要求做试验并回答问题.1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根,抽出的号码有多少种?其抽到1的概率为多少?2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1•的概率是多少?老师点评:1.可能结果有1,2,3,4,5等5种;由于纸签的形状、大小相同,又是随机抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是,∴其概率=. 2.有1,2,3,4,5,6等6种可能.由于骰子的构造相同质地均匀,又是随机掷出的,•所以我们可以断言:每个结果的可能性相等,都是,∴所求概率是.以上两个试验有两个共同的特点:新课标第一网1.一次试验中,可能出现的结果有限多个;2.一次试验中,各种结果发生的可能性相等.对于具有上述特点的试验,•我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.因此,一般地,如果在一次试验中,有n 种可能的结果,•并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)= . 例1.小李手里有红桃1、2、3、4、5、6,从中任取一张牌,观察其牌上的数字,•求下列事件的概率.(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字为大于3且小于6.分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,•所以可用P(A)=来求解.解:(1)任取一张牌子,其出现数字可能为1、2、3、4、5,共6种,这些数字出现的可能性相同.(1)P(点数为3)=; (2)P(点数为奇数)==; (3)牌上的数字为大于3且小于6的有4,5两种.∴P(点数大于3且小于6)==. 例2.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,1515m nmn1636122613其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:转一次转盘,它的可能结果有4种──有限个,并且各种结果发生的可能性相等.因此,它可以应用“P(A)=”问题,即“列举法”求概率. 解:(1)P(指针指向绿色)=; (2)P(指针指向红色或黄色)=; (3)P(指针不指向红色)=. 三、巩固练习教材P154 练习1, P154 复习巩固1四、应用拓展例3.王老师、张老师退休在家,闲暇之余,经常下象棋消遣,已知一副象棋先都是正面朝下,王老师从中随意翻开一粒棋,是红色的概率是多大?是“帅”的概率又是多大? 分析:棋总共是32个是有限个并且每次翻开一粒棋翻到哪一粒都是等可能的,所以可用“列举法”求概率.解:∵红色和黑色棋子各占一半;∴P(红色)=, ∵“帅”有红帅和黑帅2粒,∴P(“帅”)=. 五、归纳小结 (学生总结,老师点评)本节课应掌握:1.用“列举法”求概率的两个条件;2.用“列举法”求概率的方法:P(A)=(其中n 结果总数,m 是事件A 的结果数). 六、布置作业1.教材P154 复习巩固2、3, P155 综合运用4 拓广探索7.2.选用课时作业设计.第一课时作业设计m n14341212213216 m n一、选择题.1.抛掷一枚质地均匀的正方体骰子,结果出现点数是“3”的概率约为( ).A .33.3%B .17%C .16.6%D .20%2.下列事件中,出现的概率不是的是( ). A .在1,2,3,4,5,6,7,8,9,10这十个数中,任取一个数,其值不小于5B .抛一枚均匀的硬币,正面朝上C .抛一枚骰子,奇数点朝上D .袋中4个球,其中2红1黄1蓝,从中任取一个是红色的球二、填空题.1.从5到9这5个自然数中任取一个,是3的倍数的概率是________.2.任意抛掷一枚质地均匀硬币,会出现_______种结果,•这几种结果出现的概率是________.三、综合提高题.1.有一个均匀的小正方体,6个面上分别标有1,2,3,4,5,6,任意掷出这个小正方体.(1)奇数朝上的机会是多少?(2)如果这个小正方体不是均匀的,是否有这个结果?说说你的理由.2.在分别写出1至20张小卡片,随机出一张卡片,试求以下事件的概率.(1)该卡片上的数字是2的倍数,也是5的倍数;(2)该卡片上的数字是4的倍数,但不是3的倍数;(3)该卡片上的数不是完全平方数;(4)该卡片上的数字除去1和自身外,还有3个约数.答案:一、1.B 2.A二、1. 2. 三、1.(1) (2)无,它不符合列举法的两个条件中(2)条件一次试验中,•各种结果发生的可能性相等2.(1)122512121141(2)(3)(4)105520。
25.2 用列举法求概率(第二课时)教学目标:1.理解“包含两步,并且每一步的结果为有限多个情形”的意义。
2.会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果。
3.体验数学方法的多样性灵活性,提高解题能力。
教学重点:正确理解和区分一次试验中包含两步的试验。
教学难点:当可能出现的结果很多时,简洁地用列表法求出所有可能结果。
一、比较,区别出示两个问题:1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?要求学生讨论上述两个问题的区别,区别在于这两个问题的每次试验(摸球)中的元素不一样。
二、问题解决1.例1 教科书第150页例4。
要求学生思考掷两枚硬币产生的所有可能结果。
学生可能会认为结果只有:两个都为正面,一个正面一个反面和两个都是反面这样3种情形,要讲清这种想法的错误原因。
列出了所有可能结果后,问题容易解决。
或采用列表的方法,如:让学生初步感悟列表法的优越性。
2.问题:“同时掷两枚硬币”,与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?同时掷两枚硬币与先后两次掷一枚硬币有时候是有区别的。
比如在先后投掷的时候,就会有这样的问题:先出现正面后出现反面的概率是多少?这与先后顺序有关。
同时投掷两枚硬币时就不会出现这样的问题。
3.课内练习:书本P151的练习。
三、小结1.本节课的例题,每次试验有什么特点?2.用列表法求出所有可能的结果时,要注意表格的设计,做到使各种可能结果既不重复也不遗漏。
四、布置作业:教学反思:___________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________。
人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计一. 教材分析人教版九年级数学上册第25.2.2节《用列举法求概率(2)》主要讲述了如何运用列举法求解概率问题。
这部分内容是学生在学习了概率的基本概念、列举法求概率的基础上,进一步深化对概率计算方法的理解和运用。
通过本节课的学习,学生将能够掌握列举法求概率的技巧,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和列举法求概率已有初步的认识。
但在运用列举法解决实际问题时,部分学生可能会存在列举不全面、思路不清晰等问题。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们建立正确的解题思路,提高他们运用概率知识解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神,提高他们运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神风貌。
四. 教学重难点1.重点:列举法求概率的方法及运用。
2.难点:如何引导学生运用列举法解决实际问题,避免列举不全面、思路不清晰等问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。
3.启发式教学:教师引导学生思考,让学生在探索中掌握知识。
4.反馈与评价:及时给予学生反馈,鼓励他们积极思考,不断提高。
六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。
2.练习题:准备一些相关练习题,用于巩固所学知识。
3.教学素材:收集一些生活中的实例,用于引导学生在实际情境中运用概率知识。
七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。
教学目标:知识目标:学习用树形图法和列表法计算两步或三步试验的随机事件发生的概率。
能力目标:经历计算理论概率的过程,在活动中培养学生的合作交流意识,提高学生对所研究问题的反思和拓广的能力。
情感目标:鼓励学生思维多样性,发展学生的创新意识。
教学重点:学习用树形图法和列表法计算两步或三步试验的随机事件发生的概率。
教学难点:正确的利用树形图法,计算三步试验随机事件的发生概率。
教学方法:引导——探究法教学设计一、创设问题情境引入新课当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易全部列举出来,但如果出现结果的数目较多时,要想不重不漏的列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题。
二、讲授新课例1:同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数。
计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子的点数之和是9(3)至少有一个骰子的点数为2第一个第二个(6,6)(5,6)(4,6)(3,6)(2,6)(1,6)(6,5)(5,5)(4,5)(3,5)(2,5)(1,5)(6,4)(5,4)(4,4)(3,4)(2,4)(1,4)(6,3)(5,3)(4,3)(3,3)(2,3)(1,3)(6,2)(5,2)(4,2)(3,2)(2,2)(1,2)(6,1)(5,1)(4,1)(3,1)(2,1)(1,1)1 2 3 4 5 6351246解:由列表得,可能出现的结果有36个,它们出现的可能性相等。
(1)点数相同(记为事件A)的结果有6个,则P(A)=61366= (2)点数之和是9(记为事件B)的结果有4个,则P(B)=91364= (3)至少有一个骰子的点数为2(记为事件C )的结果有11个,则P(C )=3611想一想: 如果把上一个例题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所有可能出现的结果有变化吗?例2:甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I 。
用列举法求概率
、知识和技能:
、情感、态度、价值观:通过应用列表法解决实际问题
①掷一枚质地均匀的硬币,有几种可能的结果?②先后掷两枚硬币,又有几种可能的结果呢?结果是由
这两种试验的所有可能结果一样吗?
刚学完概率的定义,小明和小军在解答:求掷俩玫硬币,全部正面朝上的概率,意见出现了分歧,你能作探究:
“两枚硬币至少有一枚正面朝上”的概率是多少?为什么?
4)上述问题中影响事件发生可能性的因素有几个?每个因素可能出现的结果有几个?
“基础反思。