四川省各地市高考数学一轮复习 第8部分立体几何
- 格式:doc
- 大小:580.50 KB
- 文档页数:9
高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。
第七节立体几何中的向量方法[最新考纲][考情分析][核心素养]1。
理解直线的方向向量与平面的法向量。
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。
4。
能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。
主要通过空间角(异面直线所成角、直线与平面所成角、二面角)的求法考查向量方法应用,多为解答题第2问,分值为12分.1.直观想象2.逻辑推理3.数学运算‖知识梳理‖空间角的求法(1)求异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角βl1与l2所成的角θ范围(0,π)错误!错误!求法cos β=a·b|a||b|cos θ=|cos β|=|a·b||a||b|►常用结论两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.(2)求直线与平面所成的角设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=错误!|cos<a,n〉|=错误!错误!.(3)求二面角的大小①如图①,AB,CD是二面角α-l-β的两条面内与棱l垂直的直线,则二面角的大小θ=错误!〈错误!,错误!>.②如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=错误!|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).►常用结论解空间角最值问题时往往会用到最小角定理cosθ=cosθ1cos θ2如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cos θ=cos θ1cos θ2。
第八章 立 体 几 何1.立体几何初步 (1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④了解球、棱柱、棱锥、台的表面积和体积的计算公式.(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:·公理1:如果一条直线上的两点在同一个平面内,那么这条直线在此平面内.·公理2:过不在一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线平行. ·定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理: ·平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.·一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.·一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.·一个平面过另一个平面的垂线,则两个平面垂直.理解以下性质定理,并能够证明:·如果一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线和该直线平行.·两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.·垂直于同一个平面的两条直线平行.·两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.2.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式. 3.空间向量与立体几何 (1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示. (3)掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.(4)理解直线的方向向量及平面的法向量. (5)能用向量语言表述线线、线面、面面的平行和垂直关系.(6)能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理).(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.§8.1 空间几何体的结构、三视图和直观图1.棱柱、棱锥、棱台的概念 (1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相______,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是A.棱柱的底面一定是平行四边形( 得到图解:还原正方体知该几何体侧视图为正方形,为实线,B 1C 的正投影为A 1D ,且B 1C 被遮挡为虚故选B.(2014·福建)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面________.解:所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.故填2π.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′O ′C ′=68a.各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是三棱柱 C.四棱锥解:该几何体的三视图由一个三角形,两个矩形组成,经分析可知该几何体为三棱柱,故选解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是解:D 选项的正视图应为如图所示的图形.故选积为20cm ________cm 解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三直角边长分别为5cm ,6cm ,三棱锥的高为则三棱锥的体积为V =13×12×5×6×h =20,解得4.对于空间几何体的考查,从内容上看,锥的定义和相关性质是基础,以它们为载体考查三视图、体积和棱长是重点.本题给出了几何体的三视图,要掌握三视图的画法“长对正、高平齐,宽相等”,不难将其还原得到三棱锥.(2014·北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为__________.解:该三棱锥的直观图如图所示,易知PB ⊥平面ABC ,则有PA =22+2,故最长棱为P A.类型三 空间多面体的直观图 如图是一个几何体的三视图,用斜二测画法画出它的直观图解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥画法:(1)画轴.如图1,画x 轴、y 使∠xOy =45°,∠xOz =90°.图1画底面.利用斜二测画法画出底面′使OO ′等于三视图中相应高度,过的平行线′,Oy 的平行线O ′y ′,利用′画出底面A ′B ′C ′D ′.图2画正四棱锥顶点.在Oz 上截取点等于三视图中相应的高度.连接PA ′,PB ′,PC ′,PD ′D ,整理得到三视图表示的几何体2所示.点拨:根据三视图可以确定一个几何体的长、宽、高,再按照斜二测画法,建立x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴、y 轴、z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A. 2B.6 2C.13D.2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =22.因此该四棱锥的体积为V =13Sh =13×22×3=22.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上、下底面半径分别为r ,4r.根据相似三角形的性质得, 33+l =r4r,解得 l =9. 所以,圆台的母线长为9cm .点拨:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.(2014·湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4解:该几何体为一直三棱柱,底面是边长为6,8,10的直角三角形,侧棱为12,其最大球的半径为底面直角三角形内切圆的半径r ,由等面积法可得12×(6+8+10)·r =12×6×8,得r =2.故选B.1.在研究圆柱、圆锥、圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.正多面体(1)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.(2)如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a的正四面体A 1BDC 1,其体积为正方体体积的13.(3)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R).3.长方体的外接球(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .4.棱长为a 的正四面体(1)斜高为32a ;(2)高为63a ;(3)对棱中点连线长为22a ; (4)外接球的半径为64a ,内切球的半径为612a ;(5)正四面体的表面积为3a 2,体积为212a 3.5.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度.由此得到:主俯长对正,主左高平齐,俯左宽相等.6.一个平面图形在斜二测画法下的直观图与原图形相比发生了变化,注意原图与直观图中的“三变、三不变”.三变:坐标轴的夹角改变,与y 轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x 轴平行的线段长度不变,相对位置不变.1.由平面六边形沿某一方向平移形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C.2.下列说法中,正确的是( ) A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等 解:棱柱的侧面都是平行四边形,选项A 错误;其它侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.4.(2014·江西)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解:由直观图可知,该几何体由一个长方体和一个截角三棱柱组成,从上往下看,外层轮廓线是一矩形,矩形内部有一条线段连接两个三角形.故选B.5.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )A.棱柱B.棱台C.圆柱D.圆台解:由俯视图可知该几何体的上、下两底面为半径不等的圆,又∵正视图和侧视图相同,∴可判断其为旋转体.故选D.6.(2014·课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.4 2C.6D.4解法一:如图甲,设辅助正方体棱长为4,三视图对应的多面体为三棱锥D ABC ,最长的棱为AD =6.解法二:将三视图还原为三棱锥D ABC ,如图若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为的正三棱柱,所以底面积为2×3×2×1=6,所以其表面积为3.已知某一多面体内接于球构成一个简单组合体,该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球____________.解:由三视图可知该组合体为球内接棱长为∴正方体的体对角线为球的直径,,r=3.故填是截去一个角的长方体,试按图示的中几何体三视图如图b.如图1是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图1中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图2,画x轴,xOy=45°,∠xOz=∠yOz=90°画底面,利用斜二测画法画出底面ABCDEF 轴上截取O′,使OO′等于正六棱柱的高,过的平行线O′x′,Oy的平行线O′x′与O′y′画出底面A′.画正六棱锥顶点.在Oz上截取点P,使等于正六棱锥的高.成图.连接PA′,PB′,PC′,PD′,′,BB′,CC′,DD′,EE′,FF理得到三视图表示的几何体的直观图如图3注意:图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来..某长方体的一条对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条对角线的投影长分和b,求ab的最大值.解:如图,则有1=7,DC1=6,1=a,AC=b,AB=x,AD=y,AA1=z,有图如图所示,其中与题中容器对应的水的高度解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2 空间几何体的表面积与体积1.柱体、锥体、台体的表面积(1)直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=__________,S 正棱锥侧=__________, S 正棱台侧=__________(其中C ,C ′为底面周长,h 为高,h ′为斜高).(2)圆柱、圆锥、圆台的侧面积S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________(其中r ,r ′为底面半径,l 为母线长). (3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和. 2.柱体、锥体、台体的体积 (1)棱柱、棱锥、棱台的体积 V 棱柱=__________,V 棱锥=__________,V 棱台=__________ (其中S ,S ′为底面积,h 为高). (2)圆柱、圆锥、圆台的体积V 圆柱=__________,V 圆锥=__________,V 圆台=__________(其中r ,r ′为底面圆的半径,h 为高). 3.球的表面积与体积(1)半径为R 的球的表面积S 球=________. (2)半径为R 的球的体积V 球=________,________).自查自纠:1.(1)Ch 12Ch ′ 12()C +C ′h ′(2)2πrl πrl π(r +r ′)l (3)侧面积 两个底面积 侧面积 一个底面积2.(1)Sh 13Sh 13h ()S +SS ′+S ′(2)πr 2h 13πr 2h 13πh ()r 2+rr ′+r ′23.(1)4πR 2 (2)43πR 3圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( ) A.6π(4π+3)B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2) 解:分两种情况:①以边长为6π的边为高时,4π为圆柱底面周长,则2πr =4π,r =2,∴S 底=πr 2=4π,S 侧=6π×4π=24π2,S 表=2S 底+S 侧=8π+24π2=8π(3π+1);②以边长为4π的边为高时,6π为圆柱底面周长,则2πr =6π,r =3.∴S 底=πr 2=9π,S 表=2S 底+S 侧=18π+24π2=6π(4π+3).故选C. 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( ) A.23 2 B. 2 C.23 D.43 2解:∵正三棱锥的侧面均为直角三角形,故侧面为等腰直角三角形,且直角顶点为棱锥的顶点,∴侧棱长为2,V =13×12×(2)2×2=23.故选C.(2014·安徽)一个多面体的三视图如图所示,则该多面体的体积是( )A.233B.476C.6D.7 解:如图示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.故选A. 长方体ABCD A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =3,AA 1=1,则球面面积为________.单位:解:由三视图可知,该几何体为圆柱与圆锥的其体积V =π×12×4+13π×22×.类型一 空间几何体的面积问题 如图,在△ABC 中,∠ABC =45°,AD 是BC 边上的高,沿AD 把△ABD BDC =90°.若BD =1,求三棱锥D ABC解:∵折起前AD 是BC 边上的高,∴沿AD 把△ABD 折起后,AD ⊥DC ,AD ⊥又∠BDC =90°.=DA =DC =1,∴AB =BC =CA =2.从而S △DAB =S △DBC =S △DCA =12×1×1=12,ABC =12×2×2×sin60°=32. ∴三棱锥D ABC 的表面积S =12×3+. 的矩形,正视图高为4的等腰三角形,侧视图底边长为6,面积S.解:由已知可得该几何体是一个底面为矩形,,顶点在底面的射影是矩形中心的四棱锥PAD ,PBC 是全等的等腰三角形,边上的高为h 1=42+⎝ ⎛2PAB ,PCD 也是全等的等腰三角形,h 2=42+⎝ ⎛⎭⎪⎫622⎝ ⎛12×6×42+12×8×5空间旋转体的面积问题如图,半径为4的球O 柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.设球的一条半径与圆柱相应的母线的夹角为=2π×4sin α=π4时,S 取最大值球的表面积与该圆柱的侧面积之差为32π.点拨:根据球的性质,内接圆柱上、下底面中心连线的中点为球心,且圆柱的上、下底面圆周均在球面上,球心和圆柱的上、下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.圆台的上、下底面半径分别是10 cm和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的侧面积是____________cm 2.解:如图示,设上底面周长为c.∵扇环的圆心角是180°,∴c =π·S A. 又∵c =2π×10=20π, ∴SA =20.同理SB =40. ∴AB =SB -SA =20,∴S 圆台侧=π(10+20)·AB=600π(cm 2).故填600π.类型三 空间多面体的体积问题如图,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32 解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD BNC +V E AMD +V F BN C.依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32. 作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F BNC =13·S △BNC ·NF =224,V E AMD =V F BNC =224,V AMD BNC =S △BNC ·MN =24.∴V ABCDEF =23,故选A.点拨:求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体、锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30解:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.所以该几何体的体积为V =12×3×4×5-13×12×3×4×3=24.故选C. 类型四 空间旋转体的体积问题已知某几何体的三视图如图所示,其中,正(主)视图、侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12B.4π3+16C.2π6+16 D.2π3+12解:由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V =12×43π×⎝ ⎛⎭⎪⎫223+13×⎝ ⎛⎭⎪⎫12×1×1×1=2π6+16.故选C.点拨:根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式进行计算.(2014·课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727 B.59 C.1027 D.13解:原来毛坯体积为:π·32·6=54π(cm 3),由三视图知该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,故该零件的体积为:π·22·4+π·32·2=34π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故切削掉部分的体积与原来毛坯体积的比值为20π54π=1027 .故选C.1.几何体的展开与折叠 (1)几何体的表面积,除球以外,都是利用展开图求得的,利用空间问题平面化的思想,把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法.(2)多面体的展开图①直棱柱的侧面展开图是矩形;②正棱锥的侧面展开图是由一些全等的等腰三角形拼成的,底面是正多边形;③正棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边形.(3)旋转体的展开图①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线长;②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周长;③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.注:①圆锥中母线长l 与底面半径r 和展开图扇形中半径和弧长间的关系及符号容易混淆,同学们应多动手推导,加深理解.②圆锥和圆台的侧面积公式S 圆锥侧=12cl 和S 圆台侧=12(c ′+c )l 与三角形和梯形的面积公式在形式上相同,可将二者联系起来记忆.2.空间几何体的表面积的计算方法有关空间几何体的表面积的计算通常是将空间图形问题转化为平面图形问题,这是解决立体几何问题常用的基本方法.(1)棱柱、棱锥、棱台等多面体的表面积可以分别求各面面积,再求和,对于直棱柱、正棱锥、正棱台也可直接利用公式;(2)圆柱、圆锥、圆台的侧面是曲面,计算其侧面积时需将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和;(3)组合体的表面积应注意重合部分的处理. 3.空间几何体的体积的计算方法(1)计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面特别是轴截面,将空间问题转化为平面问题求解.(2)注意求体积的一些特殊方法:分割法、补体法、还台为锥法等,它们是计算一些不规则几何体体积常用的方法,应熟练掌握.(3)利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.1.已知圆锥的正视图是边长为2的等边三角π B.8-π2 D.8-π4解:直观图为棱长为2的正方体割去两个底面14圆柱,其体积V =23-2×14×π×故选B.将长、宽分别为4和3的长方形ABCD 折成直二面角,得到四面体A BCD ,则四面体的外接球的表面积为( )B.50πC.5πD.10π解:由题设知AC 为外接球的直径,∴,S 表=4πR 2=4π×⎝ ⎛⎭⎪⎫522=25π.故选,N 是球O 半径OP 上的两点,且分别过N ,M ,O 作垂直于OP 的平面,得三个圆,则这三个圆的面积之比为( )∶6 B.3∶6∶8 ∶9 D.5∶8∶9解:设球的半径为R ,以N ,M 为圆心的圆的半,r 2.由题知M ,N 是OP 的三等分点,三个圆的面积之比即为半径的平方比,在球的轴截面的外接圆的半径R 2-r 2=63,的距离为2d =2d =13×34×23ABC ×2R =36,排除)一个六棱锥的体积为的正六边形,侧棱长都相等,则该________.设该六棱锥的高是h ,则V ,解得h =1.∴侧面三角形的高为,∴侧面积S =12×由题意可设直角梯形上底、下底和高为,它们分别为圆台的上、下底半径和高BC ⊥OA 于C ,则Rt ′B =4x -2x =2x ,+BC 2=(2x )2侧=[π(2x )2∶[π=2∶8∶9.·上海)底面边长为,其表面展开图是三角形P 1的边长及三棱锥的体积V.解:由正三棱锥P ABC 的性质及其表面展开图,B ,C 分别是△P 1P 2P .依三角形中位线定理可得4.易判断正三棱锥P 的正四面体,其体积为V =212×四面体体积公式可见8.1名师点津4)一个圆锥的底面半径为R =2,高为在这个圆锥内部有一个高为x 的内接圆柱值时,圆柱的表面积最大?最大值是多少?解:如图是圆锥的轴截面,设圆柱的底面半径,解得r =R -R H x =2- (图所示,该几何体从上到下由四个简单几何体组成,4<V 3 B.V 1<V 3<V 2<V 4 3<V 4 D.V 2<V 3<V 1<V 4解:由已知条件及三视图可知,该几何体从上到下依次是圆台,圆柱,正方体,棱台,则·π+4π)=7π3,V 2=π×8,V 4=13×1×(4+4×16+<V 1<V 3<V 4.故选C.§8.3 空间点、线、面之间的位置关系1.平面的基本性质 (1)公理1:如果一条直线上的______在一个平面内,那么这条直线在此平面内.它的作用是可用来证明点在平面内或__________________.(2)公理2:过____________上的三点,有且只有一个平面.公理2的推论如下:①经过一条直线和直线外一点,有且只有一个平面;②经过两条相交直线,有且只有一个平面; ③经过两条平行直线,有且只有一个平面. 公理2及其推论的作用是可用来确定一个平面,或用来证明点、线共面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们____________过该点的公共直线.它的作用是可用来确定两个平面的交线,或证明三点共线、三线共点等问题.2.空间两条直线的位置关系 (1)位置关系的分类 错误!(2)异面直线①定义:不同在任何一个平面内的两条直线叫做异面直线.注:异面直线定义中“不同在任何一个平面内的两条直线”是指“不可能找到一个平面能同时经过这两条直线”,也可以理解为“既不平行也不相交的两条直线”,但是不能理解为“分别在两个平面内的两条直线”.②异面直线的画法:画异面直线时,为了充分显示出它们既不平行又不相交,也不共面的特点,常常需要以辅助平面作为衬托,以加强直观性.③异面直线所成的角:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).异面直线所成角的范围是____________.若两条异面直线所成的角是直角,则称两条异面直线__________,所以空间两条直线垂直分为相交垂直和__________.3.平行公理公理4:平行于____________的两条直线互相平行(空间平行线的传递性).它给出了判断空间两条直线平行的依据.4.等角定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角____________.自查自纠:1.(1)两点 直线在平面内 (2)不在一条直线 (3)有且只有一条2.(1)一个公共点 没有公共点 没有公共点(2)③⎝⎛⎦⎥⎤0,π2 互相垂直 异面垂直3.同一条直线4.相等或互补(2013·安徽)在下列命题中,不是..公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解:公理是不需要证明的原始命题,而选项A 是面面平行的性质定理,故选A.若∠AOB =∠A 1O 1B 1,且OA ∥O 1A 1,OA 与O 1A 1的方向相同,则下列结论中正确的是( )A.OB ∥O 1B 1且方向相同B.OB ∥O 1B 1C.OB 与O 1B 1不平行D.OB 与O 1B 1不一定平行解:两角相等,角的一边平行且方向相同,另一边不一定平行,如圆锥的母线与轴的夹角.故选D.若点P ∈α,Q ∈α,R ∈β,α∩β=m ,且R ∉m ,PQ ∩m =M ,过P ,Q ,R 三点确定一个平面γ,则β∩γ是( )A.直线Q RB.直线P RC.直线R MD.以上均不正确 解:∵PQ ∩m =M ,m ⊂β,∴M ∈β.又M ∈平面PQ R ,即M ∈γ,故M 是β与γ的公共点.又R∈β,R ∈平面PQ R ,即R∈γ,∴R 是β与γ的公共点.∴β∩γ=M R .故选C.给出下列命题:①空间四点共面,则其中必有三点共线; ②空间四点不共面,则其中任何三点不共线; ③空间四点中有三点共线,则此四点必共面; ④空间四点中任何三点不共线,则此四点不共。
第八章 立体几何初步第1课时 空间点、直线、平面之间的 位置关系理解空间点、线、面的基本位置关系;会用数学语言规范地表述空间点、线、面的位置关系.了解公理1,2,3及公理3的推论1,2,3,并能正确判定;了解平行公理和等角定理.理解空间直线、平面位置关系的定义,能判定空间两直线的位置关系;了解异面直线所成的角.1. (必修2P 24练习2改编)用集合符号表示“点P 在直线l 外,直线l 在平面α内”为________.答案:P ∉l ,l ⊂α解析:考查点、线、面之间的符号表示. 2. (必修2P 28练习2改编)已知AB∥PQ,BC ∥QR ,若∠ABC=45°,则∠PQR=________. 答案:45°或135°解析:由等角定理可知∠PQR 与∠ABC 相等或互补,故答案为45°或135°. 3. (原创)若直线l 上有两个点在平面α外,则________.(填序号) ① 直线l 上至少有一个点在平面α内; ② 直线l 上有无穷多个点在平面α内; ③ 直线l 上所有点都在平面α外; ④ 直线l 上至多有一个点在平面α内. 答案:④解析:由已知得直线l ⊄α,故直线l 上至多有一个点在平面α内.4. (必修2P 31习题15改编)如图所示,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上除端点外的点,AE AB =AH AD =λ,CF CB =CGCD=μ,则下列结论中不正确的是________.(填序号)① 当λ=μ时,四边形EFGH 是平行四边形; ② 当λ≠μ时,四边形EFGH 是梯形;③ 当λ≠μ时,四边形EFGH 一定不是平行四边形; ④ 当λ=μ时,四边形EFGH 是梯形. 答案:④解析:由AE AB =AH AD =λ,得EH∥BD,且EH BD =λ,同理得FG ∥BD 且 FGBD=μ,当λ=μ时,EH ∥FG 且EH =FG.当λ≠μ时,EH ∥FG ,但EH≠FG,只有④错误.5. (必修2P 30练习2改编)在正方体A 1B 1C 1D 1ABCD 中,与AB 异面的棱有______________________.答案:A 1D 1,DD 1,CC 1,C 1B 11. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系 位置关系 共面情况 公共点个数 相交直线 在同一平面内 有且只有一个 平行直线 在同一平面内 没有 异面直线 不同在任何一个平面内 没有(1) 公理4:平行于同一条直线的两条直线互相平行. (2) 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.4. 异面直线的判定(1) 判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.(2) 符号表示:若l ⊂α,A ∉α,B ∈α,B ∉l ,则直线AB 与l 是异面直线. 5. 异面直线所成的角(1) 定义:设a ,b 是异面直线,经过空间任意一点O ,作直线a′∥a,b ′∥b ,我们把直线a′与b′所成的锐角(或直角)叫做异面直线a ,b 所成的角.(2) 范围:⎝⎛⎦⎥⎤0,π2.(3) 若异面直线a ,b 所成的角是直角,就称异面直线a ,b 互相垂直.记作a⊥b. [备课札记], 1平面的基本性质), 1) 如图,正方体ABCDA1B1C1D1中,点E,F分别为CC1,AA1的中点,画出平面BED1F和平面ABCD的交线.解:如图,在平面ADD1A1内延长D1F与DA交于一点P,则P∈平面BED1F.∵ DA⊂平面ABCD,∴ P∈平面ABCD,∴点P是平面ABCD与平面BED1F的一个公共点.又点B是两平面的一个公共点,∴ PB为两平面的交线.备选变式(教师专享)如图,在直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.解:显然点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵ E∈AC,AC⊂平面SAC,∴ E∈平面SAC.同理,可证E∈平面SBD,∴点E在平面SBD和平面SAC的交线上,连结SE,则直线SE是平面SBD和平面SAC的交线., 2共点、共线、共面问题), 2) 如图,在四边形ABCD 和四边形ABEF 中,BC ∥AD ,BC =12AD ,BE∥FA ,BE =12FA ,点G ,H 分别为FA ,FD 的中点.(1) 求证:四边形BCHG 是平行四边形. (2) C ,D ,F ,E 四点是否共面?为什么?(1) 证明:因为点G ,H 分别为FA ,FD 的中点,所以GH∥AD,GH =12AD.又BC∥AD,BC=12AD , 所以GH∥BC,且GH =BC ,所以四边形BCHG 为平行四边形.(2) 解:C ,D ,F ,E 四点共面.理由如下:由BE∥FA,BE =12FA ,点G 为FA 的中点知,BE ∥FG ,BE =FG ,所以四边形BEFG 为平行四边形,所以EF∥BG. 由(1)知BG∥CH,BG =CH ,所以EF∥CH,所以EF 与CH 共面. 又D∈FH,所以C ,D ,F ,E 四点共面. 变式训练如图,在直四棱柱ABCDA 1B 1C 1D 1中,点E ,F 分别是AB ,BC 的中点,A 1C 1与B 1D 1交于点O.求证:A 1,C 1,F ,E 四点共面.证明:如图,连结AC ,因为点E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线,所以EF ∥AC.由直棱柱知AA 1綊CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC∥A 1C 1. 所以EF∥A 1C 1,故A 1,C 1,F ,E 四点共面., 3 空间直线位置关系问题), 3) 如图,在正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是A 1B 1,B 1C 1的中点.求证:(1) AM 和CN 共面;(2) D 1B 和CC 1是异面直线.证明:(1) 如图,连结MN,A1C1,AC.∵点M,N分别是A1B1,B1C1的中点,∴ MN∥A1C1.∵ A1A綊C1C,∴四边形A1ACC1为平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ A,M,N,C四点共面,即AM和CN共面.(2) ∵ ABCDA1B1C1D1是正方体,∴ B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,∴ D1,B,C,C1∈α,这与B,C,C1,D1不共面矛盾.∴假设不成立,即D1B与CC1是异面直线.变式训练已知空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD 的中点.(1) 求证:BC与AD是异面直线;(2) 求证:EG与FH相交.证明:(1) 假设BC与AD不是异面直线,则BC与AD共面.不妨设它们所共平面为α,则B,C,A,D∈α,所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.(2) 如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是平行四边形EFGH的对角线,所以EG与FH相交.1. 在下列命题中,不是公理的是________.(填序号)①如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;②过不在同一条直线上的三点,有且只有一个平面;③如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内;④平行于同一个平面的两个平面相互平行.答案:④解析:④不是公理,是个常用的结论,需经过推理论证;①②③是平面的基本性质公理.2. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:① AB⊥EF;② AB与CM所成的角为60°;③ EF与MN是异面直线;④ MN∥CD.以上结论中正确的是________.(填序号)答案:①③解析:把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.3. 在正方体ABCDA1B1C1D1中,点E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.答案:无数解析:在A1D1,C1D1上任取一点P,M,过点P,M与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设α∩CD =Q,连结PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性知,有无数条直线与直线A1D1,EF,CD都相交.4. 如图,在正方体ABCDA1B1C1D1中,点E,F,G分别是棱CC1,BB1及DD1的中点.求证:∠BGC=∠FD1E.证明:∵ 点E,F,G分别是正方体的棱CC1,BB1,DD1的中点,∴ CE平行且等于GD1,BF平行且等于GD1,则四边形CED1G与四边形BFD1G均为平行四边形.则GC∥D1E,GB∥D1F.∵∠BGC与∠FD1E对应两边的方向分别相同,∴∠BGC=∠FD1E.5. 如图,在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,点E为AB的中点,点F为AA1的中点.求证:(1) C1,O,M三点共线;(2) E,C,D1,F四点共面;(3) CE,D1F,DA三线共点.证明:(1) ∵ C 1,O ,M ∈平面BDC 1,又C 1,O ,M ∈平面A 1ACC 1,由公理3知,点C 1,O ,M 在平面BDC 1与平面A 1ACC 1的交线上,∴ C 1,O ,M 三点共线.(2) ∵ 点E ,F 分别是AB ,A 1A 的中点,∴ EF ∥A 1B. ∵ A 1B ∥CD 1,∴ EF ∥CD 1.∴ E ,C ,D 1,F 四点共面.(3) 由(2)可知,E ,C ,D 1,F 四点共面.∵ EF∥A 1B ,EF =12A 1B ,∴ EF =12D 1C ,∴ D 1F ,CE 为相交直线,记交点为P.则P∈D 1F ⊂平面ADD 1A 1,P ∈CE ⊂平面ADCB ,∴ P ∈平面ADD 1A 1∩平面ADCB =AD ,∴ CE ,D 1F ,DA 三线共点.1. 如图,在正方体ABCDEFMN 中,①BM 与ED 平行;②CN 与BM 是异面直线;③CN 与BE 是异面直线;④DN 与BM 是异面直线.以上四个命题中,正确的命题是________.(填序号)答案: ②④解析:观察图形,根据异面直线的定义可知,BM 与ED 是异面直线,CN 与BM 是异面直线,CN 与BE 不是异面直线,DN 与BM 是异面直线,故①③错误,②④正确.即正确的命题是②④.2. 在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P.连结PM ,PN ,则PM∥AB,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN=30°或∠MPN=150°. 若∠MPN=30°,因为PM∥AB,所以∠PMN 是AB 与MN 所成的角(或所成角的补角).又AB =CD ,所以PM =PN ,则△PMN 是等腰三角形,所以∠PMN=75°, 即直线AB 与MN 所成的角为75°.若∠MPN=150°,易知△PMN 是等腰三角形,所以∠PMN=15°, 即直线AB 与MN 所成的角为15°.故直线AB 和MN 所成的角为75°或15°.3. 已知在棱长为a 的正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是棱CD ,AD 的中点.求证: (1) 四边形MNA 1C 1是梯形; (2) ∠DNM=∠D 1A 1C 1.证明:(1) 如图,连结AC ,在△ACD 中,∵ 点M ,N 分别是CD ,AD 的中点, ∴ MN 是三角形ACD 的中位线,∴ MN ∥AC ,MN =12AC.由正方体的性质得AC∥A 1C 1,AC =A 1C 1,∴ MN ∥A 1C 1且MN =12A 1C 1,即MN≠A 1C 1,∴ 四边形MNA 1C 1是梯形.(2) 由(1)知MN∥A 1C 1.又∵ ND∥A 1D 1, ∴ ∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形中的锐角, ∴ ∠DNM =∠D 1A 1C 1.1. 证明点线共面的常用方法:一是依据题中所给部分条件先确定一个平面,然后证明其余的点或线都在平面内;二是将所有元素分成几个部分,然后分别确定几个平面,再证这些平面重合;三是采用反证法.2. 证明三线共点的方法:通常先证明两条直线的交点在第三条直线上,而第三条直线是分别经过这两条直线的两个平面的一条交线.3. 异面直线的证明方法:一是应用判定定理(过平面内一点与平面外一点的连线与平面内不经过该点的直线是异面直线);二是采用反证法.判定异面直线时通常采用排除法(既不相交也不平行)或判定定理.4. 对于异面直线所成的角,要注意角的范围是⎝⎛⎦⎥⎤0,π2以及两条直线垂直的定义,平移法是解决此类问题的关键.[备课札记]第2课时 直线与平面的位置关系(1) (对应学生用书(文)109~110页、(理)111~112页)了解直线与平面的位置关系,了解线面平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还能运用定义判断位置关系.① 要熟练掌握线面平行的定义、判定及性质.② 要注意线线关系、线面关系以及面面关系的转化.对于直线与平面所成的角,点到面的距离了解即可.1. (必修2P 35练习2改编)给出下列条件:① l∥α;② l 与α至少有一个公共点;③ l 与α至多有一个公共点.则能确定直线l 在平面α外的条件为________.(填序号)答案:①③解析:直线l 在平面α外:l∥α或直线l 与平面α仅有一个交点. 2. (必修2P 35练习7改编)在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系是________.答案:平行或异面解析:因为AB∥CD,AB ⊂平面α,CD ⊄平面α,所以CD∥平面α,所以CD 与平面α内的直线可能平行,也可能异面.3. (必修2P 35练习4改编)在正六棱柱ABCDEFA 1B 1C 1D 1E 1F 1的表面中,与A 1F 1平行的平面是________.答案:平面ABCDEF 、平面CC 1D 1D解析:在正六棱柱中,易知A 1F 1∥AF ,AF ⊂平面ABCDEF ,且A 1F 1⊄平面ABCDEF ,所以A 1F 1∥平面ABCDEF.同理,A 1F 1∥C 1D 1,C 1D 1⊂平面CC 1D 1D ,且A 1F 1⊄平面CC 1D 1D ,所以A 1F 1∥平面CC 1D 1D.其他各面与A 1F 1均不满足直线与平面平行的条件.故答案为平面ABCDEF 与平面CC 1D 1D.4. (原创)P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,给出下列四个命题:① OM ∥平面PCD ;② OM∥平面PBC ;③ OM∥平面PDA ;④ OM∥平面PBA.其中正确命题的个数是________. 答案:2解析:由已知OM∥PD,得OM∥平面PCD 且OM∥平面PAD.故正确的只有①③.5. (必修2P 41习题5改编)在四面体ABCD 中,点M ,N 分别是△ACD,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案:平面ABC、平面ABD解析:如图,连结AM并延长交CD于E,连结BN并延长交CD于F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,由EMMA =ENNB=12,得MN∥AB,因此,MN∥平面ABC,且MN∥平面ABD.1. 一条直线和一个平面的位置关系有且只有以下三种:位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示判定定理性质定理文字如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行符号图形作用线线平行⇒线面平行线面平行⇒线线平行, 1基本概念辨析), 1) 下列命题中真命题的个数为W.①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线.答案:1解析:∵ 直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴ l不一定平行于α.∴ ①是假命题.∵ 直线a在平面α外,包括两种情况:a∥α和a与α相交,∴ a和α不一定平行.∴ ②是假命题.∵ 直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴ a不一定平行于α.∴ ③是假命题.∵ a∥b,b⊂α,那么a⊂α或a∥α,∴ a可以与平面α内的无数条直线平行.∴ ④是真命题.综上可知,真命题的个数为1.备选变式(教师专享)下列命题中正确的是W.(填序号)①若直线a不在平面α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.答案:④⑤解析:如图①,a∩α=A时,a⊄α,∴①错误;直线l与α相交时,l上有无数个点不在α内,∴②错误;l∥α时,α内的直线与l平行或异面,∴③错误;l∥α,l与α无公共点,∴ l与α内任一直线都无公共点,④正确;如图②,长方体ABCDA1B1C1D1中,A1C1与B1D1都与平面ABCD平行,∴⑤正确., 2线面平行的判定), 2) 如图,在底面为平行四边形的四棱锥PABCD中,点E是PC的中点.求证:PA∥平面BDE.证明:如图,连结AC交BD于点O,连结OE.在平行四边形ABCD中,O是AC的中点,又E是PC的中点,∴ OE∥PA.∵ PA⊄平面BDE,OE⊂平面BDE,∴ PA∥平面BDE.变式训练如图,在三棱柱A1B1C1ABC中, E,F分别是A1B,AC1的中点.求证:EF∥平面ABC.证明:如图,连结A1C,因为三棱柱A1B1C1ABC中,四边形AA1C1C是平行四边形,所以点F在A1C上,且为A1C的中点.在△A1BC中,因为E,F分别是A1B,A1C的中点,所以EF∥BC.因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.备选变式(教师专享)如图,在正方体ABCDA1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:AP∥平面C1MN.证明:在正方体ABCDA1B1C1D1中,因为点M ,P 分别为棱AB ,C 1D 1的中点,所以AM =PC 1. 又AM∥CD,PC 1∥CD ,故AM∥PC 1,所以四边形AMC 1P 为平行四边形.从而AP∥C 1M. 又AP ⊄ 平面C 1MN ,C 1M ⊂平面C 1MN , 所以AP∥平面C 1MN., 3 线面平行的性质), 3) 如图,在直三棱柱ABCA 1B 1C 1中,AC ⊥BC ,CC 1=4,M 是棱CC 1上的一点.若点N 是AB 的中点,且CN∥平面AB 1M ,求CM 的长.解:(解法1)如图①,取AB 1的中点P ,连结NP ,PM.①因为点N 是AB 的中点,所以NP∥BB 1.因为CM∥BB 1,所以NP∥CM,所以NP 与CM 共面.因为CN∥平面AB 1M ,平面CNPM∩平面AB 1M =MP ,所以CN∥MP.所以四边形CNPM 为平行四边形,所以CM =NP =12CC 1=2.(解法2)如图②,设NC 与CC 1确定的平面交AB 1于点P ,连结NP ,PM.②因为CN∥平面AB 1M ,CN ⊂平面CNPM ,平面AB 1M ∩平面CNPM =PM ,所以CN∥MP. 因为BB 1∥CM ,BB 1⊄平面CNPM ,CM ⊂平面CNPM ,所以BB 1∥平面CNPM. 又BB 1⊂平面ABB 1,平面ABB 1∩平面CNPM =NP ,所以BB 1∥NP ,所以CM∥NP,所以四边形CNPM 为平行四边形.因为点N 是AB 的中点,所以CM =NP =12BB 1=12CC 1=2.(解法3)如图③,取BB 1的中点Q ,连结NQ ,CQ.③因为点N 是AB 的中点,所以NQ∥AB 1. 因为NQ ⊄平面AB 1M ,AB 1⊂平面AB 1M , 所以NQ∥平面AB 1M.因为CN∥平面AB 1M ,NQ ∩NC =N ,NQ ,NC ⊂平面NQC , 所以平面NQC∥平面AB 1M.因为平面BCC 1B 1∩平面NQC =QC ,平面BCC 1B 1∩平面AB 1M =MB 1,所以CQ∥MB 1. 因为BB 1∥CC 1,所以四边形CQB 1M 是平行四边形,所以CM =B 1Q =12CC 1=2.(解法4)如图④,分别延长BC ,B 1M ,设交点为S ,连结AS.④因为CN∥平面AB 1M ,CN ⊂平面ABS , 平面ABS∩平面AB 1M =AS ,所以CN∥AS. 由于AN =NB ,所以BC =CS.又CM∥BB 1,同理可得SM =MB 1,所以CM =12BB 1=12CC 1=2.备选变式(教师专享) 如图,在斜三棱柱ABCA 1B 1C 1中,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE∥平面BCC 1B 1.求证:点E 是AB 的中点.证明:连结BC 1,因为OE∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE∥BC 1.在斜三棱柱ABCA 1B 1C 1中,侧面AA 1C 1C 是平行四边形,AC 1∩A 1C =O , 所以点O 是AC 1的中点,所以AE EB =AOOC 1=1,即点E 是AB 的中点.1. 如图,在直三棱柱ABCA 1B 1C 1中,已知AB =AC ,点M ,N ,P 分别为BC ,CC 1,BB 1的中点.求证:A 1N ∥平面AMP.证明:取C 1B 1的中点D ,连结A 1D ,DN ,DM ,B 1C.由于点D ,M 分别为C 1B 1,CB 的中点,所以DM∥CC 1且DM =CC 1,故DM∥AA 1且DM =AA 1,则四边形A 1AMD 为平行四边形,所以A 1D ∥AM.又A 1D ⊄平面APM ,AM ⊂平面APM ,所以A 1D ∥平面APM.由于D ,N 分别为C 1B 1,CC 1的中点,所以DN∥B 1C.又点P ,M 分别为BB 1,CB 的中点,所以MP∥B 1C.所以DN∥MP.又DN ⊄平面APM ,MP ⊂平面APM , 所以DN∥平面APM.由于A 1D ∩DN =D ,所以平面A 1DN∥平面APM. 由于A 1N ⊂平面A 1DN ,所以A 1N ∥平面APM.2. 如图,在四棱锥EABCD 中,四边形ABCD 为矩形,点M ,N 分别是AE ,CD 的中点.求证:直线MN∥平面EBC.证明:取BE 中点F ,连结CF ,MF.因为点M 是AE 的中点,所以MF 綊12AB.又点N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN∥CF.又MN ⊄平面EBC ,CF ⊂平面EBC ,所以MN∥平面EBC. 3. 如图,在正三棱柱ABCA′B′C′中,D 是AA′上的点,点E 是B′C′的中点,且A′E∥平面DBC′.试判断D 点在AA′上的位置,并给出证明.解:点D 为AA′的中点.证明如下:如图,取BC 的中点F ,连结AF ,EF ,设EF 与BC′交于点O ,连结DO ,BE ,C ′F ,在正三棱柱ABCA′B′C′中,点E 是B′C′的中点,所以 EF ∥BB ′∥AA ′,且EF =BB′=AA′, 所以四边形A′EFA 是平行四边形.因为A′E∥平面DBC′,A ′E ⊂平面A′EFA,且平面DBC′∩平面A′EFA=DO , 所以A′E∥DO.在正三棱柱ABC -A′B′C′中,点E 是B′C′的中点, 所以EC′∥BC 且EC′=BF ,所以四边形BFC′E 是平行四边形,所以点O 是EF 的中点. 因为在平行四边形A′EFA 中, A ′E ∥DO , 所以点D 为AA′的中点. 4. 如图,在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形,点E 是A 1C 1的中点.求证:BE∥平面ACD 1.证明:如图,连结B 1D 1交A 1C 1于点E ,连结BD 交AC 于点O ,连结OD 1.∵ 在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形, ∴ D 1E ∥BO 且D 1E =BO ,∴ 四边形BED 1O 是平行四边形, ∴ BE ∥OD 1.∵ OD 1⊂平面ACD 1,BE ⊄平面ACD 1, ∴ BE ∥平面ACD 1.5. 如图,在四棱锥PABCD 中,PC ⊥平面PAD ,AB ∥CD ,CD =2AB =2BC ,点M ,N 分别是棱PA ,CD 的中点.求证:PC∥平面BMN.证明:设AC∩BN=O ,连结MO ,AN.因为AB =12CD ,AB ∥CD ,点N 为CD 的中点,所以AB =CN ,AB ∥CN ,所以四边形ABCN 为平行四边形, 所以O 为AC 的中点.又点M 为PA 的中点,所以MO∥PC. 因为MO ⊂平面BMN ,PC ⊄ 平面BMN , 所以PC∥平面BMN.1. 如图,在三棱锥PABC中,点M,N分别为AB,PA的中点.求证:PB∥平面MNC.证明:因为点M,N分别为AB,PA的中点,所以MN∥PB.因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.2. 如图,在直三棱柱ABCA1B1C1中,点D是AB的中点.求证:BC1∥平面A1CD.证明:连结AC1,设交A1C于点O,连结OD.∵四边形AA1C1C是矩形,∴ O是AC1的中点.∵在△ABC1中, O,D分别是AC1,AB的中点,∴OD∥BC1.∵ OD⊂平面A1CD,BC1⊄平面A1CD,∴ BC1∥平面A1CD.3. 如图,在长方体ABCDA1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:连结AC,A1C1,在长方体ABCDA1B1C1D1中,AA1∥CC1,且AA1=CC1,∴四边形ACC1A1是平行四边形.∴ AC∥A1C1.∵ AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴ AC∥平面A1BC1.∵ AC⊂平面PAC,平面A1BC1∩平面PAC=MN,∴ AC∥MN.∵ MN⊄平面ABCD,AC⊂平面ABCD,∴ MN∥平面ABCD.1. 判定或证明直线与平面平行的常用方法(1)利用直线与平面平行的定义(无公共点).(2)利用直线与平面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用平面与平面平行的性质(α∥β,a⊂α⇒a∥β).注意不管用哪种方法,都应将相应的条件写全,缺一不可.2. 直线与平面平行的性质定理的作用是证线线平行,应用时常常需构造辅助平面,和在平面几何中添加辅助线一样,在构造辅助平面时要确认这个平面的存在性.3. 证明平行问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间的平行关系,实现“空间问题”与“平面问题”之间的转化.[备课札记]第3课时直线与平面的位置关系(2)(对应学生用书(文)111~113页、(理)113~115页)1. (必修2P38练习2(3)改编)已知直线l,a,b,平面α.若l∥a,a⊥α,b⊥α,则l与b的位置关系是W.答案:平行解析:由线面垂直的性质可知,若a⊥α,b ⊥α,则a∥b.因为l ∥a ,所以l∥b. 2. 已知两条异面直线平行于一平面,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是 W.(填序号)① 平行;② 垂直;③ 斜交;④ 不能确定. 答案:② 解析:设a ,b 为异面直线,a ∥平面α,b ∥平面α,直线l⊥a,l ⊥b.过a 作平面β∩α=a′,则a ∥a ′,∴ l ⊥a ′.同理过b 作平面γ∩α=b′,则l ⊥b ′.∵ a ,b 异面,∴ a ′与b′相交,∴ l ⊥α.3. 设l ,m 表示直线,m 是平面α内的任意一条直线,则“l⊥m”是“l⊥α”成立的 条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案:充要解析:由线面垂直的定义知,直线垂直于平面内任意一条直线,则直线与平面垂直,说明是充分条件,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l⊥m”是“l⊥α”成立的充要条件.4. (必修2P 42习题9改编)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上不同于A ,B 的任一点,则图中直角三角形的个数为 W.答案:4解析:因为AB 是圆O 的直径,所以AC⊥BC,△ACB 是直角三角形;由PA⊥平面ABC 可得,PA ⊥AB ,PA ⊥AC ,所以△PAB 与△PAC 是直角三角形;因为PA⊥平面ABC ,且BC ⊂平面ABC ,所以PA⊥BC.又BC⊥AC,PA ∩AC =A ,所以BC⊥平面PAC.而PC ⊂平面PAC ,所以BC⊥PC,△PCB 是直角三角形.故直角三角形的个数为4.5. (必修2P 38练习3改编)在正方体ABCDA 1B 1C 1D 1中,已知AB =1,则点C 到平面B 1BDD 1.解析:连结AC ,则AC⊥BD,又BB 1⊥AC ,故AC⊥平面B 1BDD 1,所以点C 到平面B 1BDD 1的距离为12AC =22.1. 直线与平面垂直的定义:如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 与平面α互相垂直,记作a ⊥α,直线a 叫做平面α的垂线,平面α叫做直线a 的垂面,垂线和平面的交点称为垂足W.2. 结论:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直.3. 直线与平面垂直从平面外一点引平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.5. 直线和平面的距离一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.6. 直线与平面所成的角(1)斜线一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段.(2)射影过平面α外一点P向平面α引斜线和垂线,那么过斜足Q和垂足P1的直线就是斜线在平面内的正投影(简称射影),线段P1Q就是斜线段PQ在平面α内的射影,如图.(3)直线和平面所成的角平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角.特别地,如果直线和平面垂直,那么就说这条直线与平面所成的角是直角;如果直线与平面平行或在平面内,则它们所成的角是0°的角.[备课札记], 1直线与平面垂直的判定), 1) 如图,在直四棱柱ABCDA1B1C1D1中,点E,F分别是AB,BC的中点,A1C1与B1D1交于点O.若底面ABCD是菱形,且OD⊥A1E,求证:OD⊥平面A1C1FE.证明:连结BD,因为直棱柱中DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,所以DD1⊥A1C1.因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1.又DD1∩B1D1=D1,所以A1C1⊥平面BB1D1D.因为OD⊂平面BB1D1D,所以OD⊥A1C1.又OD⊥A1E,A1C1∩A1E=A1,A1C1⊂平面A1C1FE,A1E⊂平面A1C1FE,所以OD⊥平面A1C1FE.变式训练如图,在三棱锥PABC中,平面PA B⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.若AC=BC,求证:PA⊥平面MNC.证明:因为M,N分别为AB,PA的中点,所以MN∥PB.又因为PA⊥PB,所以PA⊥MN. 因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB,所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又因为PA⊥MN,MN⊂平面MNC,CM⊂平面MNC,MN∩CM=M,所以PA⊥平面MNC., 2直线与平面垂直性质的应用), 2) 如图,在四棱锥PABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明:(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.因为AP⊥AB,AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD ①.因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.因为AP⊥AB,AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD ②.由①②得CD∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.变式训练如图,在正方体ABCDA1B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:(1)EF⊥平面AB1C;(2)EF∥BD1.证明:(1)在正方体ABCDA1B1C1D1中,A1B1∥AB∥CD,且A1B1=AB=CD,所以四边形A1B1CD是平行四边形,所以A1D∥B1C.因为EF⊥A1D,所以EF⊥B1C.又因为EF⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C ⊂平面AB1C,所以EF⊥平面AB1C.(2)连结BD,则BD⊥AC.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.因为AC⊥BD,DD1∩BD=D,DD1⊂平面BDD1B1,BD⊂平面BDD1B1,所以AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,所以AC⊥BD1.同理可证BD1⊥B1C,又AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以BD1⊥平面AB1C.又EF⊥平面AB1C,所以EF∥BD1., 3直线与平面垂直的探索题), 3) 在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;(2)试在棱CC1上找一点M,使MB⊥AB1.(1)证明:(反证法)假设AP⊥平面BCC1B1,∵ BC⊂平面BCC1B1,∴ AP⊥BC.又正三棱柱ABCA1B1C1中,CC1⊥BC,AP∩CC1=P,AP⊂平面ACC1A1,CC1⊂平面ACC1A1,∴ BC⊥平面ACC1A1.而AC⊂平面ACC1A1,∴ BC⊥AC,这与△ABC是正三角形矛盾,故AP 不可能与平面BCC 1B 1垂直. (2) 解:M 为CC 1的中点.∵ 在正三棱柱ABCA 1B 1C 1中,BC =BB 1, ∴ 四边形BCC 1B 1是正方形.∵ 点M 为CC 1的中点,点D 是BC 的中点, ∴ △B 1BD ≌△BCM ,∴ ∠BB 1D =∠CBM,∠BDB 1=∠CMB.∵ ∠BB 1D +∠BD B 1=π2,∴ ∠CBM +∠BDB 1=π2,∴ BM ⊥B 1D.∵ △ABC 是正三角形,D 是BC 的中点, ∴ AD ⊥BC.∵ 平面ABC⊥平面BB 1C 1C ,平面ABC∩平面BB 1C 1C =BC ,AD ⊂平面ABC , ∴ AD ⊥平面BB 1C 1C.∵ BM ⊂平面BB 1C 1C ,∴ AD ⊥BM. ∵ AD ∩B 1D =D ,∴ BM ⊥平面AB 1D. ∵ AB 1⊂平面AB 1D ,∴ MB ⊥AB 1. 备选变式(教师专享)如图,在棱长为1的正方体ABCDA 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.试确定点F 的位置,使得D 1E⊥平面AB 1F.解:如图,连结A 1B ,CD 1,则A 1B ⊥AB 1.∵ 在正方体ABCDA 1B 1C 1D 1中,D 1A 1⊥平面ABB 1A 1,AB 1⊂平面ABB 1A 1,∴ A 1D 1⊥AB 1.又A 1D 1∩A 1B =A 1,A 1D 1,A 1B ⊂平面A 1BCD 1, ∴ AB 1⊥平面A 1BCD 1.又D 1E ⊂平面A 1BCD 1,∴ AB 1⊥D 1E.于是使D 1E ⊥平面AB 1F 等价于使D 1E ⊥AF. 连结DE ,易知D 1D ⊥AF ,若有AF⊥平面D 1DE ,只需证DE⊥AF.∵ 四边形ABCD 是正方形,点E 是BC 的中点, ∴ 当且仅当点F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.1. 如图,在矩形ABCD 中,AB =1,BC =a (a>0),PA ⊥平面ABCD ,且PA =1,问BC 边上是否存在点Q ,使得PQ ⊥QD ,并说明理由.解:假设存在点Q ,使得PQ⊥QD.连结AQ. ∵ PA ⊥平面ABCD ,且DQ ⊂平面ABCD , ∴ PA ⊥DQ.∵ PQ ⊥DQ ,且PQ∩PA=P ,PQ ⊂平面PAQ ,PA ⊂平面PAQ , ∴ DQ ⊥平面PAQ.∵ AQ ⊂平面PAQ ,∴ AQ ⊥DQ.设BQ =x ,则CQ =a -x ,AQ 2=x 2+1,DQ 2=(a -x )2+1.∵ AQ 2+DQ 2=AD 2,∴ x 2+1+(a -x )2+1=a 2,即x 2-ax +1=0 (*).方程(*)的判别式Δ=a 2-4. ∵ a>0,∴ 当Δ<0,即0<a<2时,方程(*)无实根;当Δ=0,即a =2时,方程(*)有惟一实根,此时x =1;当Δ>0,即a>2时,方程(*)有两个不等实根,设两个实根分别为x 1,x 2.由于x 1+x 2=a>0,x 1x 2=1>0,则这两个实根均为正数.因此,当0<a<2时,BC 边上不存在点Q 使PQ⊥QD; 当a =2时,BC 边上存在惟一一点Q (即BC 的中点),使PQ ⊥QD ; 当a>2时,BC 边上存在不同的两点Q ,使PQ⊥QD.2. 如图,在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.(1) 求证:AC 1∥平面BDE ; (2) 求证:A 1E ⊥平面BDE.证明:(1) 连结AC 交BD 于点O ,连结OE.在长方体ABCDA 1B 1C 1D 1中,四边形ABCD 是正方形,点O 为AC 的中点,AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,得EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE.因为OE ⊂平面BDE ,AC 1⊄平面BDE ,所以AC 1∥平面BDE.(2) 连结B 1E.设AB =a ,则在△BB 1E 中,BE =B 1E =2a ,BB 1=2a.所以BE 2+B 1E 2=BB 21,所以B 1E ⊥BE.在长方体ABCDA 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BE ⊂平面BB 1C 1C ,所以A 1B 1⊥BE.。
专题8.8 立体几何综合问题(知识点讲解)【知识框架】【核心素养】以几何体为载体,考查空间几何体中的最值问题、折叠问题以及探索性问题,凸显直观想象、数学运算、逻辑推理的核心素养.【知识点展示】(一)空间向量的概念及有关定理1.空间向量的有关概念2.(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=x a+y b+z c,其中,{a,b,c}叫做空间的一个基底.(二)空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3);②λa =(λa 1,λa 2,λa 3);③a ·b =a 1b 1+a 2b 2+a 3b 3.(2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).(3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则||(AB d AB a ==(三)异面直线所成的角①定义:设a ,b 是两条异面直线,过空间任一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做a 与b 所成的角. ②范围:两异面直线所成角θ的取值范围是(0,]2π.③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos |cos |||||||a b a b θϕ⋅==⋅. (四)直线与平面所成角 直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |. (五) 二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).(六)利用向量求空间距离点面距的求法:如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |. 【常考题型剖析】 题型一: 向量与立体几何中最值问题 例1. (2022·浙江·效实中学模拟预测)已知圆锥SO 的高1,SO AB =是底面上圆O 的直径,2AB =,M 是圆O 上的动点,N 是SM 的中点,则直线AN 与平面SBM 所成角的正弦值的最大值为( )A .13B .23C .223D .1 例2.(山东·高考真题(理))如图所示,已知四棱锥P—ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,∠ABC=60°,E,F 分别是BC,PC 的中点.(1)证明:AE ⊥PD;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为,求二面角E—AF—C 的余弦值. 例3.(2021·全国·高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【方法技巧】解决空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:一是从问题的几何特征入手,充分利用其几何性质去解决;二是利用空间几何体的侧面展开图;三是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及高阶函数的拐点导数法等.空间向量法求最值也是要求出目标函数,但是需要先依据题意建立空间直角坐标系,注意建系时使坐标易于求解或表达,然后求目标函数的表达式.题型二:立体几何“翻折”“折叠”问题例4.(2018·全国·高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.例5.(2019年高考全国Ⅲ卷理)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B −CG −A 的大小.例6.(2022·辽宁实验中学模拟预测)如图所示正四棱锥,2,7P ABCD AB PA -==(1)求证:PA BD ⊥(2)若沿侧棱将此四棱锥剪开,四个侧面向外旋转,P AD 旋转至1,P AD PCD 旋转至2P CD 如图所示,其中二面角1P AD B --与二面角2P CD B --相同,当12DP DP ⊥时,求平面1PAD 与2P CD 所成的锐二面角的余弦值 【总结提升】解答“翻折”“折叠”问题的两个策略:1.确定翻折前后变与不变的关系:画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决2.确定翻折后关键点的位置:所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算题型三:探索性问题----空间角的存在性问题例7. (2022·湖南·长沙一中高三开学考试)如图,在直三棱柱ABC −A 1B 1C 1中,O ,M ,N 分别为线段BC ,AA 1,BB 1的中点,P 为线段AC 1上的动点,AO=12BC ,AB=3,AC=4,AA 1=8.(1)求点C到平面C1MN的距离;(2)试确定动点P的位置,使线段MP与平面BB1C1C所成角的正弦值最大.例8.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))如图,在四棱锥P—ABCD中,底面ABCD为=,N为线段BC上的动正方形,PD⊥底面ABCD,M为线段PC的中点,PD AD点.(1)证明:平面MND⊥平面PBC(2)当点N在线段BC的何位置时,平面MND与平面P AB所成锐二面角的大小为30°?指出点N的位置,并说明理由.例9.(湖北·高考真题(理))如图1,,,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).(Ⅰ)当的长为多少时,三棱锥的体积最大;(Ⅱ)当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.【总结提升】与空间角有关的探索性问题主要为与两异面直线所成的角、直线与平面所成的角和二面角有关的存在性问题,常利用空间向量法求解.求解时,一般把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等问题,并注意准确理解和熟练应用夹角公式.其步骤是:(1)假设存在(或结论成立);(2)建立空间直角坐标系,设(求)出相关空间点的坐标;(3)构建有关向量;(4)结合空间向量,利用线面角或二面角的公式求解;(5)作出判断.题型四: 探索性问题----线面关系中的存在性问题例10. (2023·全国·高三专题练习)如图,在四棱锥E ABCD -中,//AB CD ,4CD AB =,点F 为棱CD 的中点,与E ,F 相异的动点P 在棱EF 上.(1)当P 为EF 的中点时,证明://PB 平面ADE ;(2)设平面EAD 与平面EBC 的交线为l ,是否存在点P 使得//l 平面PBD ?若存在,求EP PF的值;若不存在,请说明理由. 例11.(2019·北京·高考真题(理))如图,在四棱锥P –ABCD 中,P A ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,P A =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (Ⅰ)求证:CD ⊥平面P AD ;(Ⅱ)求二面角F–AE–P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.例12. (2016·北京·高考真题(理))如图,在四棱锥P ABCD -中, 平面PAD ⊥平面ABCD ,,,,1,2,5PA PD PA PD AB AD AB AD AC CD ⊥=⊥====.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在, 求AM AP的值;若不存在, 说明理由. 【总结提升】解决线面关系中存在性问题的策略对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用向量法进行线面关系的逻辑推理,寻找假设满足的数据或事实,若满足,则肯定假设,若得出矛盾的结论,则否定假设.专题8.8 立体几何综合问题(知识点讲解)【知识框架】【核心素养】以几何体为载体,考查空间几何体中的最值问题、折叠问题以及探索性问题,凸显直观想象、数学运算、逻辑推理的核心素养.【知识点展示】(一)空间向量的概念及有关定理1.空间向量的有关概念2.(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=x a+y b+z c,其中,{a,b,c}叫做空间的一个基底.(二)空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3);②λa =(λa 1,λa 2,λa 3);③a ·b =a 1b 1+a 2b 2+a 3b 3.(2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).(3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则||(AB d AB a ==(三)异面直线所成的角①定义:设a ,b 是两条异面直线,过空间任一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做a 与b 所成的角. ②范围:两异面直线所成角θ的取值范围是(0,]2π.③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos |cos |||||||a b a b θϕ⋅==⋅. (四)直线与平面所成角 直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |. (五) 二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>). (六)利用向量求空间距离点面距的求法:如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【常考题型剖析】题型一: 向量与立体几何中最值问题例1. (2022·浙江·效实中学模拟预测)已知圆锥SO 的高1,SO AB =是底面上圆O 的直径,2AB =,M 是圆O 上的动点,N 是SM 的中点,则直线AN 与平面SBM 所成角的正弦值的最大值为( )A .13B .23 C .223D .1 【答案】C 【解析】【分析】做OE AB ⊥交圆上一点E ,以O 为原点,、、OE OB OA 所在的直线为、、x y y 轴的正方向建立空间直角坐标系,设(),,0M a b ,则1,,222⎛⎫⎪⎝⎭a b N ,且221a b +=, 求出AN 、平面AMB 的一个法向量坐标,设直线AN 与平面SBM 所成的角为θ,可得sin cos ,θ⋅===-AN n AN n AN n()()()()3222791,121--+=∈--x x f x x x ,利用导数可得()f x 的最值,从而得到答案. 【详解】做OE AB ⊥交圆上一点E ,以O 为原点,、、OE OB OA 所在的直线为、、x y y 轴的正方向建立空间直角坐标系, 则()0,0,0O ,()0,1,0A -,()0,1,0B ,()0,0,1S , 设(),,0M a b ,则1,,222⎛⎫⎪⎝⎭a b N ,且221a b +=,当0,1a b ==时,()0,1,0M 与()0,1,0B 重合,此时SMA 构不成平面, 当0,1a b ==-时,()0,1,0-M 与()0,1,0A -重合,此时SMB 构不成平面, 即1b ≠±,0a ≠,所以(),,1=-SM a b ,()0,1,1=-SB ,1,1,222⎛⎫=+ ⎪⎝⎭a bAN ,设平面AMB 的一个法向量为(),,n x y z =,所以00⎧⋅=⎪⎨⋅=⎪⎩SM n SB n ,即00+-=⎧⎨-=⎩ax by z y z ,令1y =,则1,1-==bx z a , 所以1,1,1-⎛⎫= ⎪⎝⎭b n a ,设直线AN 与平面SBM 所成的角为θ,111sin cos ,θ-+++⋅===b bAN n AN n AN n ==,令()()()()3222791,121--+=∈--x x f x x x ,()()()()()221,11x x f x x x +=∈--' 当01x <<时,()0f x '>,()f x 单调递增,当10x -<<时,()0f x '<,()fx 单调递减,所以()()min902≥=fx f ,≤=,直线AN 与平面SBM . 故选:C.例2.(山东·高考真题(理))如图所示,已知四棱锥P—ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,∠ABC=60°,E,F 分别是BC,PC 的中点.(1)证明:AE⊥PD;(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.【答案】(1)证明略(2)所求二面角的余弦值为【解析】【详解】(1) 由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.因为PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.而PA平面PAD,AD平面PAD且PA∩AD=A,所以AE⊥平面PAD.又PD平面PAD,所以AE⊥PD.(2) 如图所示,设AB=2,H为PD上任意一点,连结AH、EH,由(1)知,AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角.在Rt△EAH中,AE=,所以,当AH最短时,∠EHA最大,即当AH⊥PD时,∠EHA最大.此时,tan∠EHA===,因此AH=.又AD=2,所以∠ADH=45°,所以PA=2.方法一因为PA⊥平面ABCD,PA平面PAC,所以,平面PAC⊥平面ABCD.过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E—AF—C的平面角.在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=,又F是PC的中点,在Rt△ASO中,SO=AO·sin45°=,又SE===,在Rt△ESO中,cos∠ESO===,即所求二面角的余弦值为.方法二由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E、F分别为BC、PC的中点,所以A(0,0,0),B(,-1,0),C(,1,0),D(0,2,0),P(0,0,2),E(,0,0),F(,,1),所以=(,0,0),=(,,1).设平面AEF的一法向量为m=(x1,y1,z1),因此取z1=-1,则m=(0,2,-1),因为BD⊥AC,BD⊥PA,PA∩AC=A,所以BD⊥平面AFC,故为平面AFC的一法向量.又=(-,3,0),所以cos 〈m,〉===.因此,二面角E—AF—C 为锐角, 所以所求二面角的余弦值为例3.(2021·全国·高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠. 又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=22025-=,所以BF ED ⊥. (2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF的二面角的平面角为θ, 则cos m BA mBAθ⋅=⋅==当12a =时,2224a a -+取最小值为272, 此时cos θ.所以()minsin θ==112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B H FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-. 又1111BD B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即11B H =1B H =.所以DH == 则11sin B D DHB DH∠===所以,当12t =时,()1min sin DHB ∠= [方法三]:投影法 如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F 中,DF在Rt ECF 中,EF D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE 在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅sin DFE∠=1sin2DFES DF EF DFE=⋅∠13,2B NFS= 1cos B NFDFESSθ==,sinθ=当12t=,即112B D=,面11BB CC与面DFE【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C与面DFE所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE在面11BB C C上的投影三角形的面积与DFE△面积之比即为面11BB C C与面DFE所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.【方法技巧】解决空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:一是从问题的几何特征入手,充分利用其几何性质去解决;二是利用空间几何体的侧面展开图;三是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及高阶函数的拐点导数法等.空间向量法求最值也是要求出目标函数,但是需要先依据题意建立空间直角坐标系,注意建系时使坐标易于求解或表达,然后求目标函数的表达式.题型二:立体几何“翻折”“折叠”问题例4.(2018·全国·高考真题(理))如图,四边形ABCD为正方形,,E F分别为,AD BC的中点,以DF为折痕把DFC△折起,使点C到达点P的位置,且PF BF⊥.(1)证明:平面PEF⊥平面ABFD;(2)求DP 与平面ABFD 所成角的正弦值.【答案】(1)证明见解析;(2 【解析】 【分析】(1)首先从题的条件中确定相应的垂直关系,即BF PF ⊥,BF EF ⊥,又因为PF EF F =,利用线面垂直的判定定理可以得出BF ⊥平面PEF ,又BF ⊂平面ABFD ,利用面面垂直的判定定理证得平面PEF ⊥平面ABFD ;(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD 的法向量,设DP与平面ABFD 所成角为θ,利用线面角的定义,可以求得34sin 3HP DP HP DPθ⋅===⋅.【详解】(1)由已知可得,BF PF ⊥,BF EF ⊥,又PFEF F =,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD ; (2)作PH EF ⊥,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H xyz -.由(1)可得,DE PE ⊥.又2DP =,1DE =,所以PE =又1PF =,2EF =,故PE PF ⊥.可得32PH EH ==.则()330,0,0,,1,,0,1,,22H P D DP ⎛⎛⎛⎫--= ⎪ ⎝⎭⎝⎭⎝⎭ HP ⎛= ⎝⎭为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则34sin 3HP DP HP DPθ⋅===⋅所以DP 与平面ABFD 例5.(2019年高考全国Ⅲ卷理)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH .以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0CG =(1,0AC =(2,–1,0). 设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧=⎪⎨-=⎪⎩ 所以可取n =(3,6又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.例6.(2022·辽宁实验中学模拟预测)如图所示正四棱锥,2,7P ABCD AB PA -==(1)求证:PA BD ⊥(2)若沿侧棱将此四棱锥剪开,四个侧面向外旋转,P AD 旋转至1,P AD PCD 旋转至2P CD 如图所示,其中二面角1P AD B --与二面角2P CD B --相同,当12DP DP ⊥时,求平面1P AD 与2P CD 所成的锐二面角的余弦值 【答案】(1)证明见解析 (2)34【解析】【分析】(1)连接,BD AC ,交于点O ,连接PO ,PO ⊥面ABCD ,得PO BD ⊥,从而证得BD ⊥平面PAC ,得线线垂直;(2)以D 为原点,DA 为x 轴,DC 为y 轴,过点D 且垂直于平面ABCD 的直线为z轴建立空间直角坐标系,设是二面角1P AD B --大小为θ,表示出12,P P 的坐标,由向量垂直求出θ,得12,P P 的坐标,再求出平面1P AD 与平面2P CD 的一个法向量,则法向量夹角得二面角. (1)证明:连接,BD AC ,交于点O ,连接PO ,PO ⊥面ABCD ,BD ⊂平面ABCD ,PO BD ∴⊥,又BD AC ⊥,PO AC O =,,PO AC ⊂平面PAC ,所以BD ⊥平面PAC ,又PA ⊂平面PAC ,BD PA ∴⊥.(2)以D 为原点,DA 为x 轴,DC 为y 轴,过点D 且垂直于平面ABCD 的直线为z 轴建立空间直角坐标系,设点E 为DA 中点,则1PE F 是BC 中点,则EF AD ⊥,又1PE AD ⊥, 所以1PEF ∠是二面角1P AD B --的平面角,即1PEF θ∠=,1(1)P θθ∴,同理2,1)P θθ2124348sin 0DP DP θθθ⋅=++=解得:cos θ=1sin 2θ=,12(1,(6,1P P ∴--1(1,(2,0,0)DP DA =-=设1(,,)n x y z =为平面1P AD 的法向量,则10n DA ⋅= ,20x ∴=, 0x ∴=,110n DP ⋅=,60x y ∴-+=,取1y =,则z = 1n ∴=2(6,1DP =-,(0,2,0)DC =,设2(,,)n m s t =为平面2P CD 的法向量,则 20n DC ⋅= ,20s ∴= ,0s ∴=,220n DP ⋅=,60m -+=,取1m =,则t 2n ∴=,123cos ,4n n <>==,平面1P AD 与平面2P CD 所成的锐二面角的余弦值为34.【总结提升】解答“翻折”“折叠”问题的两个策略:1.确定翻折前后变与不变的关系:画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决2.确定翻折后关键点的位置:所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算题型三:探索性问题----空间角的存在性问题例7.(2022·湖南·长沙一中高三开学考试)如图,在直三棱柱ABC−A1B1C1中,O,M,N分别为线段BC,BC,AB=3,AC=4,AA1=8.AA1,BB1的中点,P为线段AC1上的动点,AO=12(1)求点C到平面C1MN的距离;(2)试确定动点P的位置,使线段MP与平面BB1C1C所成角的正弦值最大.【答案】(1)(2)35【解析】 【分析】(1)利用面面垂直的性质定理可得AB ⊥平面11ACC A ,线面垂直的性质定理可得AB CM ⊥,,M N 分别为11,AA BB 的中点得CM MN ⊥,再利用勾股定理可得1CM C M ⊥,再由线面垂直的判定定理可得答案.(2)以A 为原点,以1,,AB AC AA 为,,x y z 轴建立空间直角坐标系,求出平面11BB C C 的法向量,设()000,,P x y z ,利用1=AP mAC 可得MP ,再由线面角的向量求法可得直线MP 与平面11BB C C 所成的角θ的正弦值,再分0m ≠、0m ≠讨论可得答案. (1)在ABC 中,O 为BC 中点且1,2AO BC AB AC =∴⊥, 平面ABC ⊥平面11ACC A ,平面ABC平面11ACC A AC =,AB ∴⊥平面11ACC A ,又CM ⊂平面11,ACC A AB CM ∴⊥,,M N 分别为11,AA BB 的中点,.MN AB CM MN ∴∴⊥∥,在直角AMC 和直角11MA C △中,1114,4AM A M AC AC ====,111,AMC AMC CM C M ∴≅∴==222111323264,CM C M CC CM C M ∴+=+==∴⊥,11,,MN C M M MN C M ⋂=⊂平面1,MNC CM ∴⊥平面1C MN ,∴点C 到平面1C MN 的距离为CM =(2)1AA ⊥平面ABC ,由(1)得1,,AB AC AA 三线两两重直,以A 为原点,以1,,AB AC AA 为,,x y z 轴建立空间直角坐标系如图,则()()()()()()110,0,0,3,0,0,0,4,0,0,4,8,0,0,4,3,0,8A B C C M B ,()()13,4,0,0,0,8BC BB ∴=-=,设平面11BB C C 的法向量为()1111,,n x y z =,则111340,80,x y z -+=⎧⎨=⎩令14x =得()113,4,3,0y n ==,设()()0001,,,01P x y z AP mAC m =,则()()000,,0,4,8x y z m =,()()0,4,8,0,4,84P m m MP m m ∴=-,设直线MP 与平面11BB C C 所成的角为θ,则11sin 516n MP n MPθ⋅===,若0,sin0m θ==,此时,点P 与A 重合;若0m ≠,令()11t t m=,则3sin 5θ==,当2t =,即1,2m P =为1AC 的中点时,sin θ取得最大值35.例8.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥底面ABCD ,M 为线段PC 的中点,PD AD =,N 为线段BC 上的动点.(1)证明:平面MND ⊥平面PBC(2)当点N 在线段BC 的何位置时,平面MND 与平面P AB 所成锐二面角的大小为30°?指出点N 的位置,并说明理由.【答案】(1)证明见解析 (2)点N 在线段BC 的中点 【解析】 【分析】(1)由PD ⊥底面ABCD ,可得PD BC ⊥,而CD BC ⊥,可证得BC ⊥平面PCD ,从而得BC DM ⊥,而DM PC ⊥,所以DM ⊥平面PBC ,再由面面垂直的判定定理可得结论,(2)设1PD AD ==,以D 为原点,以,,DA DC DP 所在的直线分别为,,x y z 轴建立空间直角坐标系,然后利用空间向量求解即可 (1)证明:因为PD ⊥底面ABCD ,BC ⊂底面ABCD , 所以PD BC ⊥,因为CD BC ⊥,CD PD D =,所以BC ⊥平面PCD ,因为DM ⊂平面PCD , 所以BC DM ⊥,因为四边形ABCD 为正方形,PD AD =, 所以PD CD =,因为在PDC △中,PD CD =,M 为线段PC 的中点, 所以DM PC ⊥, 因为PC BC C ⋂=, 所以DM ⊥平面PBC ,因为DM ⊂平面DMN , 所以平面MND ⊥平面PBC , (2)当点N 在线段BC 的中点时,平面MND 与平面P AB 所成锐二面角的大小为30°,理由如下: 因为PD ⊥底面ABCD ,,⊂DA DC 平面ABCD , 所以,PD DA PD DC ⊥⊥, 因为DA DC ⊥,所以,,DA DC DP 两两垂直,所以以D 为原点,以,,DA DC DP 所在的直线分别为,,x y z 轴建立空间直角坐标系,如图所示, 设1PD AD ==,则11(0,0,0),(1,0,0),(1,1,0),(0,0,1),(0,1,0),0,,22D A B P C M ⎛⎫⎪⎝⎭,设(,1,0)(01)N λλ<<,则11(1,0,1),(0,1,0),(,1,0),0,,22AP AB DN DM λ⎛⎫=-=== ⎪⎝⎭,设(,,)m x y z =为平面PAB 的法向量,则0m AP x z m AB y ⎧⋅=-+=⎨⋅==⎩,令1x =,则=(1,0,1)m , 设(,,)n a b c =为平面MND 的法向量,则01122n DN a b n DM b c λ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1a =,则(1,,)n λλ=-, 因为平面MND 与平面P AB 所成锐二面角的大小为30°,所以cos ,2m n m n m n⋅==⨯,化简得24410λλ-+=,得12λ=,所以当点N 在线段BC 的中点时,平面MND 与平面P AB 所成锐二面角的大小为30°例9.(湖北·高考真题(理))如图1,,,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).(Ⅰ)当的长为多少时,三棱锥的体积最大;(Ⅱ)当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.【答案】(Ⅰ)(Ⅱ)与平面所成角的大小【解析】【详解】本题考察立体几何线面的基本关系,考察如何取到最值,用均值不等式和导数均可求最值.同时考察直线与平面所成角.本题可用综合法和空间向量法都可以.运用空间向量法对计算的要求要高些.(Ⅰ)解法1:在如图1所示的△中,设,则.由,知,△为等腰直角三角形,所以.由折起前知,折起后(如图2),,,且,所以平面.又,所以.于是,当且仅当,即时,等号成立,故当,即时, 三棱锥的体积最大.解法2:同解法1,得.令,由,且,解得.当时,;当时,.所以当时,取得最大值.故当时, 三棱锥的体积最大.(Ⅱ)解法1:以为原点,建立如图a所示的空间直角坐标系.由(Ⅰ)知,当三棱锥的体积最大时,,.于是可得,,,,,,且.设,则. 因为等价于,即,故,.所以当(即是的靠近点的一个四等分点)时,.设平面的一个法向量为,由及,得可取.设与平面所成角的大小为,则由,,可得,即.故与平面所成角的大小为解法2:由(Ⅰ)知,当三棱锥的体积最大时,,.如图b,取的中点,连结,,,则∥.由(Ⅰ)知平面,所以平面.如图c,延长至P点使得,连,,则四边形为正方形,所以. 取的中点,连结,又为的中点,则∥,所以. 因为平面,又面,所以.又,所以面. 又面,所以.因为当且仅当,而点F是唯一的,所以点是唯一的.即当(即是的靠近点的一个四等分点),.连接,,由计算得,所以△与△是两个共底边的全等的等腰三角形,如图d所示,取的中点,连接,,则平面.在平面中,过点作于,则平面.故是与平面所成的角.在△中,易得,所以△是正三角形,故,即与平面所成角的大小为【总结提升】。
【第1讲简单几何体及其直观图、三视图】之小船创作一、知识梳理1.空间几何体的结构特征(1)多面体的结构特征(1)画法:常用斜二测画法.(2)规则:①在已知图形中建立直角坐标系xOy,画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使x′O′y′=45°,它们确定的平面表示水平平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段.③已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的12. 3.三视图 (1)几何体的三视图包括主视图、左视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法 ①基本要求:长对正,高平齐,宽相等. ②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.常用结论1.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变2.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.二、教材衍化1.下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行解析:选D.由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.2.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案:③⑤3.已知如图所示的几何体,其俯视图正确的是________.(填序号)解析:由俯视图定义易知选项③符合题意.答案:③一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( )(6)菱形的直观图仍是菱形.( )答案:(1)×(2)×(3)×(4)×(5)×(6)×二、易错纠偏常见误区|K(1)棱柱的概念不清致误;(2)不清楚三视图的三个视图间的关系,想象不出原几何体而出错;(3)斜二测画法的规则不清致误.1.如图,长方体ABCDA′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱解析:选C.由几何体的结构特征,剩下的几何体为五棱柱.故选C.2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的主视图与俯视图如图所示,则该几何体的左视图为( )解析:选B.先根据主视图和俯视图还原出几何体,再作其左视图.由几何体的主视图和俯视图可知该几何体为图①,故其左视图为图②.故选B.3.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO 为________,面积为________cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8空间几何体的几何特征(自主练透) 1.下列说法正确的是( )A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.由图知,A不正确.两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.侧棱长与底面多边形的边长相等的棱锥一定不是六棱锥,故C错误.由定义知,D正确.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B.①不一定,只有这两点的连线平行于旋转轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④空间几何体概念辨析问题的常用方法空间几何体的三视图(多维探究)角度一已知几何体,识别三视图(1)(2020·宜宾模拟)已知棱长都为2的正三棱柱ABCA1B1C1的直观图如图.若正三棱柱ABCA1B1C1绕着它的一条侧棱所在直线旋转,则它的左视图可以为( )(2)(2020·湖南衡阳二模)如图,正方体ABCDA1B1C1D1的顶点A,B在平面α上,AB= 2.若平面A1B1C1D1与平面α所成角为30°,由如图所示的俯视方向,正方体ABCDA1B1C1D1在平面α上的俯视图的面积为( )A.2 B.1+ 3 C.2 3 D.22【解析】(1)由题知,四个选项的高都是2.若左视图为A,则中间应该有一条竖直的实线或虚线;若左视图为C,则其中有两条侧棱重合,不应有中间竖线;若左视图为D,则长度应为3,而不是1.故选B.(2)由题意得AB在平面α内,且平面α与平面ABCD 所成的角为30°,与平面B1A1AB所成的角为60°,故所得的俯视图的面积S=2×(2cos 30°+2cos 60°)=2(cos 30°+cos 60°)=1+ 3.【答案】(1)B (2)B角度二已知三视图,判断几何体(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥D.四棱柱(2)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2C.3 D.4【解析】(1)由题三视图得直观图如图所示,为三棱柱,故选B.(2)将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =PA =2,AB ⊥AD ,PA ⊥平面ABCD ,故△PAD ,△PAB 为直角三角形,因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC ,又BC ⊥AB ,且PA ∩AB =A ,所以BC ⊥平面PAB ,又PB ⊂平面PAB ,所以BC ⊥PB , 所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22,故△PCD 不是直角三角形,故选C.【答案】 (1)B (2)C【迁移探究1】 (变问法)在本例(2)条件下,求该四棱锥的所有棱中,最长棱的棱长是多少?解:由三视图可知,PA =AB =AD =2,BC =1,经计算可知,PB =PD =22,PC =3,CD =5,故最长棱为PC ,且|PC |=3.【迁移探究2】 (变问法)在本例(2)条件下,求该四棱锥的五个面中,最小面的面积.解:面积最小的面为面PBC ,且S △PBC =12BC ·PB =12×1×22=2,即最小面的面积为 2. 角度三 已知几何体的某些视图,判断其他视图(1)(2020·福州模拟)如图为一圆柱切削后的几何体及其主视图,则相应的左视图可以是( )(2)(2020·河北衡水中学联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的主视图和俯视图如图中粗实线所示,则该楔体的左视图的周长为( )A .3丈B .6丈C .8丈D .(5+13)丈【解析】 (1)圆柱被不平行于底面的平面所截,得到的截面为椭圆,结合主视图,可知左视图最高点在中间,故选B.(2)由题意可知该楔体的左视图是等腰三角形,它的底边长为3丈,相应高为2丈,所以腰长为 22+⎝ ⎛⎭⎪⎪⎫322=52(丈),所以该楔体左视图的周长为3+2×52=8(丈).故选C. 【答案】 (1)B (2)C三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测其直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为直观图.1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2020·安徽宣城二模)一个几何体的三视图如图所示,在该几何体的各个面中,面积最大面的面积是( ) A.2 B.2 2 C.2 3 D.4解析:选C.如图所示,由三视图可知该几何体是四棱锥PABCD截去三棱锥PABD后得到的三棱锥PBCD.其中四棱锥中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB=2,易知面积最大面为面PBD,面积为34×(22)2=2 3.故选C.3.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为( )A.217 B.2 5 C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.空间几何体的直观图(自主练透) 1.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为( )A.平行四边形B.梯形C.菱形D.矩形解析:选D.由斜二测画法可知在原四边形ABCD中DA⊥AB,并且AD∥BC,AB∥CD,故四边形ABCD为矩形.2.已知等边三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2B.38a2C.68a2D.616a2解析:选D.如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a.所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.故选D.3.在等腰梯形ABCD中,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.解析:因为OE=(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22.答案:22(1)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变(2)平面图形直观图与原图形面积间的关系对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S 与直观图面积S ′之间的关系S ′=24S ,能更快捷地进行相关问题的计算.构造法求解三视图问题的三个步骤三视图问题(包括求解几何体的表面积、体积等)是培养和考查空间想象能力的好题目,是高考的热点.由三视图还原几何体是解决这类问题的关键,而由三视图还原几何体只要按照以下三个步骤去做,基本都能准确还原出来.这三个步骤是:第一步,先画长(正)方体,在长(正)方体中画出俯视图;第二步,在三个视图中找直角;第三步,判断直角位置,并向上(或向下)作垂线,找到顶点,连线即可.一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体的体积为( ) A.16 B .26 C.36D .12【解析】 几何体还原说明:①画出正方体,俯视图中实线可以看作正方体的上底面及底面对角线.②俯视图是正方形,有四个直角,主视图和左视图中分别有一个直角.主视图和左视图中的直角对应上底面左边外侧顶点(图中D 点上方顶点),将该顶点下拉至D 点,连接DA ,DB ,DC 即可.该几何体即图中棱长为1的正方体中的四面体ABCD ,其体积为13×12×1×1×1=16.故选A. 【答案】 A如图是一个四面体的三视图,三个三角形均是腰长为2的等腰直角三角形,还原其直观图.【解】 第一步,根据题意,画正方体,在正方体内画出俯视图,如图①.第二步,找直角,在俯视图、主视图和左视图中都有直角.第三步,将俯视图的直角顶点向上拉起,与三视图中的高一致,连线即可.所求几何体为三棱锥ABCD,如图②.[基础题组练]1.如图所示是水平放置的三角形的直观图,点D是△ABC的BC边的中点,AB,BC分别与y′轴,x′轴平行,则在原图中三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选 B.由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.2.如图所示的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是( ) A.①② B.②③ C.③④D.①⑤解析:选D.圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件;故截面图形可能是①⑤.3.(2020·陕西彬州质检)一个几何体的三视图如图所示,其中主视图中△ABC 是边长为1的等边三角形,左视图为正六边形,那么该几何体的左视图的面积为( ) A.38 B .34 C .1 D .32 解析:选A.由三视图可知该几何体为正六棱锥,其直观图如图所示.该正六棱锥的底面正六边形的边长为12,侧棱长为1,高为32.左视图的底面边长为正六边形的高,为32,则该几何体的左视图的面积为12×32×32=38,故选A. 4.(2020·江西省名校学术联盟质检)如图所示,边长为1的正方形网格中粗线画出的是某几何体的三视图,则该几何体所有棱长组成的集合为( )A .{1,5}B .{1,6}C .{1,2,5}D .{1,2,22,6}解析:选B.如图所示,该几何体是四棱柱,底面是边长为1的正方形,侧棱长为6,故选B.5.(一题多解)(2020·河南非凡联盟4月联考)某组合体的主视图和左视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O′A′B′C′的面积为( )A.12 B.3 2 C.6 2 D.6解析:选B.法一:由题图易知,该几何体为一个四棱锥(高为23,底面是长为4,宽为3的矩形)与一个半圆柱(底面圆半径为2,高为3)的组合体,所以其俯视图的外侧边沿线组成一个长为4,宽为3的矩形,其面积为12,由斜二测知识可知四边形O′A′B′C′的面积为4×32sin 45°=3 2.法二:由斜二测画法可先还原出俯视图的外轮廓是长为4,宽为3的矩形,其面积为4×3=12,结合直观图面积是原图形面积的24,即可得结果.6. 某多面体的三视图如图所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12.答案:127.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为______cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5(cm).所以AB=122+52=13(cm).答案:138.已知正四棱锥VABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥VABCD的高.因为底面面积为16,所以AO=2 2.因为一条侧棱长为211,所以VO=VA2AO2=44-8=6.所以正四棱锥VABCD的高为6.答案:69.如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图如图所示(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3). 10.已知正三棱锥V ABC 的主视图和俯视图如图所示.(1)画出该三棱锥的直观图和左视图;(2)求出左视图的面积.解:(1)如图.(2)左视图中VA =42-⎝ ⎛⎭⎪⎪⎫23×32×232=12=2 3. 则S △VBC =12×23×23=6. [综合题组练]1.(2020·河南开封一模)如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )解析:选B.由题意可以判断出两球在正方体的面AA 1C 1C 上的正投影与正方形相切,排除C ,D.由于两球不等,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,所以排除A.B 正确.2.某几何体的三视图如图所示,则该几何体的左视图中的虚线部分是( )A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分解析:选D.根据几何体的三视图可得,左视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故左视图中的虚线部分是双曲线的一部分,故选D.3.如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD的俯视图与主视图面积之比的最大值为( )A.1 B.2C. 3 D.2解析:选D.主视图,底面B,C,D三点,其中D与C重合,随着点P的变化,其主视图均是三角形且点P在主视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S主视图=12×a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点P在OC1上移动时,S俯视图就是底面三角形BCD的面积,当点P在OA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a2,所以S俯视图S主视图的最大值为a212a2=2,故选D.4.(2020·河北衡水二模)某几何体的三视图如图所示,三视图中的点P ,Q 分别对应原几何体中的点A ,B ,在此几何体中从点A 经过一条侧棱上点R 到达点B 的最短路径的长度为( )A .aB .2a C.52a D .3a解析:选D.由几何体的三视图可知,该几何体为棱长为a 的正四面体(如图1),将侧面三角形CDB 绕CD 翻折到与面ACD 在同一平面内(如图2),连接AB 与CD 交于一点R ,该点即为使路径最短的侧棱上的点R ,且最短路径为AB 长,在△ACB 中,由余弦定理易知AB =a 2+a 2-2a ·a ·cos 120°=3a .故选D.5.已知正方体ABCD A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎥⎥⎤0,13 B .⎝ ⎛⎦⎥⎥⎤0,12 C.⎣⎢⎢⎡⎭⎪⎪⎫12,1 D .⎣⎢⎢⎡⎦⎥⎥⎤12,23 解析:选B.由题意,正方体ABCD A 1B 1C 1D 1的棱长为1,如图所示,当点M为线段BC的中点时,截面为四边形AMND1,当0<BM≤12时,截面为四边形,当BM>12时,截面为五边形,故选B.6.已知直三棱柱ABCA1B1C1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA1,BB1,CC1分别交于三点M,N,Q,若△MNQ为直角三角形,则该直角三角形斜边长的最小值为( )A.2 2 B.3C.2 3 D.4解析:选C.如图,不妨设N在B处,AM=h,CQ=m,则MB2=h2+4,BQ2=m2+4,MQ2=(h-m)2+4,由MB2=BQ2+MQ2,得m2-hm+2=0.Δ=h2-8≥0即h2≥8,该直角三角形斜边MB=4+h2≥2 3.故选C.7.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为________.解析:由题图(2)及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD=2,OD=2×22=42,所以CO=CD2+OD2=6=OA,所以俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.答案:968.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:26 2-1。
四川省各地市2011年高考数学最新联考试题分类大汇编第8部分:立体几何一、选择题:10.(四川省成都市外国语学校2011年3月高三考试理科)如图所示,PAB ∆所在的平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =,8BC =,6AB =。
若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( C ) A .椭圆的一部分 B .线段 C .双曲线的一部分 D .以上都不是11.(四川省成都市外国语学校2011年3月高三考试理科)如图所示,已知球O 为棱长为1的正方体ABCD —A1B1C1D1的内切球,则平面ACD1截球O 的截面面积为( A )A .6πB .3πC .D .10.(四川省成都市外国语学校2011年3月高三考试文科)如图所示,PAB ∆所在的平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =,8BC =,6AB =。
若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( C )A .椭圆的一部分B .线段C .双曲线的一部分D .以上都不是11.(四川省成都市外国语学校2011年3月高三考试文科)如图所示,已知球O 为棱长为1的正方体ABCD —A1B1C1D1的内切球,则平面ACD1截球O 的截面面积为( A )A .6πB .3πC.D.4、(四川省泸州高中2011届高三一模适应性考试理科)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( B )A 若l m ⊥,m α⊂,则l α⊥B 若l α⊥,l m //,则m α⊥C 若l α//,m α⊂,则l m //D 若l α//,m α//,则l m //3. (四川省泸州高中2011届高三一模适应性考试文科)设l,m,n 为三条不同的直线,α、β为两个不同的平面,下列命题中正确的个数是① 若l ⊥α,m ∥β,α⊥β则l ⊥m② 若,,,,n l m l n m ⊥⊥⊂⊂αα则l ⊥α③ 若l ∥m ,m ∥n ,l ⊥α,则n ⊥α④ 若l ∥m ,m ⊥α,n ⊥β,α∥β,则l ∥n ( C ) A. 1 B. 2 C. 3 D. 49.(四川省泸州高中2011届高三一模适应性考试文科)已知正三棱柱ABC —A1B1C1的侧棱长与底面边长都相等,则直线AC1与侧面ABB1A1所成角的正弦值等于 ( B )A .B. C. D.10. (四川省南充市2011届高三第一次高考适应性考试理科)—个球的表面积为144,在该球的球面上有P 、Q 、R 三点,且每两点间的球面距离均为,则过P 、Q 、R 三点的截面到球心的距离为( D )A.B.C.D.4.(四川省攀枝花市七中2011届高三下学期开学考试文科)设有直线m 、n 和平面α、β,下列四个命题中,正确的是 ( D )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥αα∙AB∙β9.(四川省攀枝花市七中2011届高三下学期开学考试文科)正方体ABCD —A1B1C1D1的棱长为1,线段B1D1上有两个动点E ,F ,且EF =,则下列结论中错误的是( D )A .AC BE ⊥B .EF//平面ABCDC .三棱锥A —BEF 的体积为定值D .异面直线AE ,BF 所成角为定值3.(四川省成都石室中学2011届髙三二诊模拟考试文科)已知两个不同的平面a 、和两条不重合的直线,m 、n ,有下列四个命题 ①若,则②若,则③若,则 ④若,,则其中正确命题的个数是( D ) (A)O 个 (B)1 个 (C) 2 个 (D) 3 个8.(四川省2011届普通高考考生知识能力水平摸底测试一理科)已知点O 为正方体ABCD —A1B1C1D1底面ABCD 的中心,则下列结论正确的是( D ) A .直线1OA ⊥平面AB1C1 B .直线OA1//直线BD1C .直线1OA ⊥直线ADD .直线OA1//平面CB1D110.(四川省2011届普通高考考生知识能力水平摸底测试一理科)设地球半径为R ,如果A 、B 两点在北伟30°的纬线上,它们的经度差为60︒,则A 、B 两点的球面距离为( B )A .1cos4R arc ⋅ B .5cos 8R arc ⋅ C .3R π D .4R π8.(四川省2011届普通高考考生知识能力水平摸底测试一文科)给出下列命题:①平行于同一平面的两个平面互相平行 ②平行于同一平面的两条直线互相平行 ③垂直于同一平面的两个平面互相平等 ④垂直于同一平面的两条直线互相平等 其中正确命题的序号为 ( C ) A .①② B .①③ C .①④ D .②④ 二、填空题: 16、(四川省泸州高中2011届高三一模适应性考试理科)下列命题:①过离心率为e 且焦点在x 轴,中心在原点的双曲线的右焦点F 的直线与双曲线右支交于A 、B 两点,弦AB 的垂直平分线交x 轴于P ,则e AB PF 1||||=;②若函数1)(1)()2(-+=-x f x f x f ,则f(x)是周期函数;③如图,二面角l αβ--的大小是45°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是43;④三棱锥P —ABC 的三条侧棱PA 、PB 、PC 两两垂直且长度均为1,四个顶点在同一个球面上,则A 、B 两点的球面距离是)31arccos(23-;其中正确的是 ②④ ;⑤已知)1,0(=,)0,1(=,且)sin 3,cos 3(θθ=,则与夹角的最大值是43π。
16. (四川省泸州高中2011届高三一模适应性考试文科)给出下列四个命题: ①过平面外一点,作与该平面成θ角的直线一定有无穷多条。
②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行; ④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等; 其中正确的命题序号为: ②④ .14. (四川省南充市2011届高三第一次高考适应性考试理科)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成二面角等于 答案:6015.(四川省攀枝花市七中2011届高三下学期开学考试文科)在球的内接三棱锥A-BCD 中,侧棱AB 、AC 、AD 两两垂直,AB=AC=1,AD=2,则A 、B 两点的球面距离为 3π14. (四川省成都石室中学2011届髙三二诊模拟考试理科)设地球的半径为R ,赤道上东经40°的点A 与北纬45°、东经130°的点B 的球面距离是________2Rπ15.(四川省2011届普通高考考生知识能力水平摸底测试一理科)设正三棱锥S —ABC 的底面边长为3,侧棱长为2,则侧棱SA 与底面ABC 所成角的大小是 。
3015.(四川省2011届普通高考考生知识能力水平摸底测试一文科)正方形ABCD 中,E 、F 分别为AB 、CD 的中点,沿EF 将正方形折成60︒的二面角,则异面直线FB 与AE 所成角的余弦值为。
10[三、解答BCDEF题:19.(四川省成都市外国语学校2011年3月高三考试理科)(本小题满分12分)如图所示,多面体EF ABCD-中,ABCD是梯形,//AB CD,ACFE是矩形,平面ACFE⊥平面ABCD,AD DC CB AE a====,2ACBπ∠=。
(1)求证:BC⊥平面ACFE;(2)若M是棱EF上一点,//AM平面BDF,求EM;(3)求二面角B EF D--的平面角的余弦值。
19.证明与求解:(1)平面ACFE ABCD AC=,2ACBπ∠=,从而BC AC⊥。
又因为BC⊂面ABCD,平19.(四川省成都市外国语学校2011年3月高三考试文科)(本小题满分12分)ABCDEF如图所示,多面体EF ABCD -中,ABCD 是梯形,//AB CD ,ACFE 是矩形,平面ACFE ⊥平面ABCD ,AD DC CB AE a ====,2ACB π∠=。
(1)求证:BC ⊥平面ACFE ;(2)若M 是棱EF 上一点,//AM 平面BDF ,求EM ; (3)求二面角B EF D --的平面角的余弦值。
19.证明与求解:(1)平面ACFEABCD AC =,2ACB π∠=,从而BC AC ⊥。
又因为BC ⊂面ABCD ,平面ACFE ⊥平面ABCD ,所以BC ⊥平面ACFE 。
(2)连接BD ,记AC BD O =,在梯形A B C D 中,因为AD DC CB a ===,//AB CD ,所以ACD CAB DAC ∠=∠=∠,32ABC BCD DAB ACD ACB DAC ππ=∠+∠=∠+∠+∠=∠+,6DAC π∠=,从而6CBO π∠=。
又因为2ACB π∠=,CB a =,所以CO a=。
连接FO ,由//AM 平面BDF 得//AM FO ,因为ACFE 是矩形,所以EM CO ==。
(3)以C 为原点,CA 、CB 、CF 分别为x 轴、y 轴、z轴建立空间直角坐标系C xyz -,则(0,0,0)C ,,0,0)A,(0,,0)B a ,,,0)2a D-,(0,0,)F a ,,0,)E a ,设平面DEF 的一个法向量为1(,,)n r s t =,则有1100n EF n DF ⎧⋅=⎪⎨⋅=⎪⎩,即002r a r s a t ⨯=⎨⨯+⨯+⨯=⎪⎩,解得1(0,2,1)n =-。
同理可得平面BEF 的一个法向量为2(0,1,1)n =,观察知二面角B EF D --的平面角为锐角,所以其余弦值为1212||10cos ||||n n n n θ⋅==。
19. (四川省泸州高中2011届高三一模适应性考试理科)(本小题共12分)正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE ⊥AC,EF ∥CE=EF=1. (Ⅰ)求证:AF ∥平面BDE ;(Ⅱ)求证:CF ⊥平面BDE ;(Ⅲ)求二面角A-BE-D 的大小。
证明:(I )设AC 与BD 交于点G ,因为EF ∥AG ,且EF=1,AG=12AC=1,所以四边形AGEF 为平行四边形。
所以AF ∥EG 。
因为EG ⊂P 平面BDE ,AF ⊄平面BDE ,所以AF ∥平面BDE 。
(II )因为正方形ABCD 和四边形ACEF 所在的平面互相垂直,且CE ⊥AC ,所以CE ⊥AC ,所以CE ⊥平面ABCD 。