第十章 地统计分析
- 格式:ppt
- 大小:4.63 MB
- 文档页数:45
第10章空间统计分析空间统计分析是一种地理信息系统(GIS)中的工具和方法,用于研究和分析地理现象的空间分布模式。
它结合了统计学和地理学的原理,能够帮助我们理解和解释地理现象之间的关系,并为决策制定者提供有关地理现象的更全面和准确的信息。
本章将介绍空间统计分析的基本概念、常用方法和应用案例。
空间统计分析的基本概念包括空间自相关、空间聚集和空间差异。
空间自相关指的是地理现象在空间上的相似性和相关性,例如城市人口分布的集中性和扩散性。
空间聚集是指地理现象在空间上的聚集和集群现象,例如城市的主要商业区域和住宅区域。
空间差异是指地理现象在空间上的差异和变化,例如不同地区的气候和生态环境的差异。
常用的空间统计分析方法包括空间自相关分析、空间插值分析和空间聚类分析。
空间自相关分析通过计算地理现象之间的相似性和相关性来研究其空间分布模式,例如计算城市之间的距离和相关性。
空间插值分析通过将已知的地理现象数据点推算到未知的区域,来估计未知区域的数值,例如将气温观测点的数据插值到整个地区。
空间聚类分析通过计算地理现象之间的距离和相似性来研究其聚集和集群现象,例如将商业建筑和住宅区域进行聚类分析。
空间统计分析在很多领域有广泛的应用。
在城市规划和土地利用方面,空间统计分析可以帮助我们了解不同地区的人口分布、经济活动和交通状况,从而指导城市规划和土地开发。
在环境保护和资源管理方面,空间统计分析可以帮助我们了解不同地区的生态环境和自然资源的分布,从而制定有效的环保和资源管理策略。
在流行病学和卫生地理学方面,空间统计分析可以帮助我们了解不同地区的疾病传播和健康状况,从而指导公共卫生政策和疾病预防控制。
总之,空间统计分析是一种有助于我们理解和解释地理现象的工具和方法。
它能够帮助我们揭示地理现象之间的关系和模式,为决策制定者提供有关地理现象的更全面和准确的信息。
通过空间统计分析,我们能够更好地理解和管理我们的地球。
七年级数学下册第十章数据的收集整理与描述考点总结单选题1、某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生的数学成绩是个体;③200名初一学生的数学成绩是总体的一个样本;其中说法正确的是()A.3个B.2个C.1个D.0个答案:A分析:根据总体、个体、样本、样本容量的定义,总体是我们把所要考查的对象的全体,个体是把组成总体的每一个考查对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位,判断即可.解:①这3000名初一学生的数学成绩的全体是总体,说法正确;②每个初一学生的数学成绩是个体,说法正确;③200名初一学生的数学成绩是总体的一个样本,说法正确;所以其中说法正确的是3个.故选:A.小提示:本题考查了总体、个体、样本、样本容量的定义,熟练掌握相关定义是解本题的关键.2、如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人答案:C分析:根据大学生的人数与所占的百分比求出总人数为300人,再用初中生所占的百分比乘以总人数即可得到答案.解:总人数=60÷20%=300(人);300×40%=120(人),故选:C.小提示:本题主要考查了根据扇形统计图求总人数和单项的人数,关键在于公式的灵活运用.3、为了解某市七年级15000名学生的体重情况,从中抽取了500名学生进行测量,这500名学生的体重是()A.总体B.个体C.总体的一个样本D.样本容量答案:C分析:总体是指考查的对象的全体;个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解:A、总体是七年级15000名学生的体重情况,这500名学生的体重是样本,故A错误;B、个体是七年级每一名学生的体重,故B错误;C、这500名学生的体重是总体的一个样本,故C正确;D、样本容量是500,故D错误;故选:C.小提示:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°答案:B分析:过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出及角平分线的定义可得“∠FBE+∠EDF=12结论.如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=1(∠ABE+∠CDE)=149.5°,2∵四边形的BFDE的内角和为360°,∴∠BFD=360°-149.5°-61°=149.5°.故选B.小提示:本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.5、下列调查中,适合采用全面调查(普查)方式的是()A.调查北京冬奥会开幕式的收视率B.调查某批玉米种子的发芽率C.调查昆仑学校的空气质量情况D.调查疫情期间某超市人员的健康码答案:D分析:根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.解:A.调查北京冬奥会开幕式的收视率,适合抽样调查,故选项A不符合题意;B.调查某批玉米种子的发芽率,适合抽样调查,故选项B不符合题意;C.调查昆仑学校的空气质量情况,适合抽样调查,故选项C不符合题意;D.调查疫情期间某超市人员的健康码,适合全面调查,故选项D符合题意;故选:D.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %答案:C分析:观察直方图,根据直方图中提供的数据逐项进行分析即可得.观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4×100%=8 %,故D选项错误,50故选C.小提示:本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7、从某公司3000名职工随机抽取30名职工,每个职工周阅读时间(单位:min)依次为.1800D.2100答案:A分析:依据抽取的样本中周阅读时间超过一个半小时的职工人数所占的百分比,即可估计该公司所有职工中,周阅读时间超过一个半小时的职工人数.=1200(人),解:由题可得,3000×10+230∴该公司所有职工中,周阅读时间超过一个半小时的职工人数约为1200人,故选A.小提示:本题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,对总体的估计也就越精确.8、平顶山某校有3000名学生,随机抽取了300名学生进行睡眠质量调查,下列说法错误的是()A.总体是该校3000名学生的睡眠质量B.个体是每一个学生C.样本是抽取的300名学生的睡眠质量D.样本容量是300答案:B分析:根据题意可得3000名学生的睡眠质量情况,从中抽取了300名学生进行睡眠质量调查,这个问题中的总体是3000名学生的睡眠质量情况,样本是抽取的300名学生睡眠质量情况,个体是每一个学生的睡眠质量情况,样本容量是300,注意样本容量不能加任何单位.解:A.总体是该校3000名学生的睡眠质量,故此选项正确,不合题意;B.个体是每名学生的睡眠质量,故此选项错误,符合题意;C.样本是抽取的300名学生的睡眠质量,故此选项正确,不合题意;D.样本容量是300,故此选项正确,不合题意;故选:B.小提示:本题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、从A地到B地有驾车、公交、地铁三种出行方式,为了选择适合的出行方式,对6:00—10:00时段这三种出行方式不同时刻出发所用时长(从A地到B地)进行调查、记录与整理,数据如图所示.根据统计图提供的信息,下列推断合理的是()A.若7:00前出发,地铁是最快的出行方式B.若选择公交出行且需要30分钟以内到达,则7:00之前出发均可C.驾车出行所用时长受出发时刻影响较小D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间答案:D分析:根据折线统计图中的信息进行判定即可得出答案.解:A.根据统计图可得,7:00出行,公交快,故A选项说法不正确,不符合题意;B.根据统计图可得,若选择公交出行且需要30分钟以内到达,则6:00之前出发均可,故B选项说法不正确,不符合题意;C.根据统计图可得,地铁出行所用时长受出发时刻影响较小,故C选项说法不正确,不符合题意;D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间,故D选间说法正确,符合题意.故选:D.小提示:本题主要考查了折线统计图,根据题目要求读懂折线统计图中的信息进行求解是解决本题的关键.10、如图是某种学生快餐的营养成分统计图,若脂肪有30g,则蛋白质有()A.135gB.130gC.125gD.120g答案:A分析:脂肪有30g占总质量的10%,可知总质量为300g,再根据蛋白质所占比例即可求解.由题意可得,30÷10%×45%=300×0.45=135g,即快餐中蛋白质有135克,故选:A.小提示:本题考查了扇形统计图的知识点,数量掌握扇形统计图并正确计算是解答本题的关键.填空题11、下列调查中必须用抽样调查方式来收集数据的有________.①检查一大批灯泡的使用寿命;②调查某大城市居民家庭的收入情况;③了解全班同学的身高情况;④了解NBA各球队在2015-2016赛季的比赛结果.答案:①②分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:①检查一大批灯泡的使用寿命采用抽样调查方式;②调查某大城市居民家庭的收入情况采用抽样调查方式;③了解全班同学的身高情况采用全面调查方式;④了解NBA各球队在2015-2016赛季的比赛结果采用全面调查方式,故答案是:①②.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、经调查,我区高中学生上学所用的交通方式中,选择“电瓶车”、“自行车”、“其他”的比例为5:2:5,若该校学生有600人,则选择“电瓶车”的学生人数是___________.答案:250人分析:用总人数600乘以选择“电瓶车”的比例即可.=250人,解:选择“电瓶车”的学生人数是600×55+2+5所以答案是:250人.小提示:此题考查了利用总体中部分的比例求总体中的数量,正确理解题意是解题的关键.13、为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是______.答案:抽取400名学生的数学成绩分析:根据样本的定义解答.解:为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是抽取400名学生的数学成绩,所以答案是:抽取400名学生的数学成绩.小提示:此题考查了样本的定义:抽取的部分的调查对象是样本,熟记定义是解题的关键.14、某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,你认为调查结果________普遍代表性.答案:不具有分析:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.利用样本的代表性和广泛性即可作出判断.解:在某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,范围和人群太集中,不具有代表性.所以答案是:不具有小提示:本题考查了调查的对象的选择,要读懂题意,分清调查的内容所对应的调查对象是什么是解题的关键.注意所选取的对象要具有代表性.15、某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好 B.一般 C.不好答案:(1)21;(2) 96% ;(3)A试题分析:(1)根据总人数=频数÷频率计算;(2)得出60分以上的频率和除以总即为本次测试这50名学生成绩的及格率=96%;(3)由及格率很高,故由频数分布表可以看出该年级此学科的成绩较好.试题解析:(1)由题意可知:测试90分以上(包括90分)的人数为50×0.42=21人;=96%;(2)本次测试这50名学生成绩的及格率是0.04+0.16+0.34+0.421(3)由频数分布表可以看出该年级此学科的及格率比较高,优秀人数比较多,成绩较好.故选A.解答题16、某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:舞请结合统计图表,回答下列问题:(1)填空:a=;(2)本次调查的学生总人数是多少?(3)请将条形统计图补充完整;(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.答案:(1)10%(2)100人(3)见解析(4)建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大分析:(1)用1分别减去A、C、D类的百分比即可得到a的值;(2)用A类学生数除以它所占的百分比即可得到总人数;(3)用35%乘以总人数得到B类人数,再补全条形统计图画树状图;(4)根据选择两个项目的人数得出答案.(1)解:a=1﹣35%﹣25%﹣30%=10%,所以答案是:10%;(2)解:25÷25%=100(人),答:本次调查的学生总人数是100人;(3)解:B类学生人数:100×35%=35,补全条形统计图如图,(4)解:建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大.小提示:本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.17、2021年秋季教育部明确提出,要减轻义务教育阶段学生的作业负担,学生的校外培训负担.依据政策要求,初中书面作业平均完成时间不超过90分钟,学生每天的完成作业时长不能超过2小时.某中学为了积极推进教育部的新政策实施,对本校学生的作业情况进行了抽样调查,统计结果如图所示:(1)这次抽样共调查了名学生,并补全条形统计图.(2)计算扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数.(3)若该中学共有学生3000人,请据此估计该校学生的作业时间不少于2小时的学生人数.答案:(1)500;补全条形统计图见解析(2)扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数57.6°(3)估计该校学生的作业时间不少于2小时的学生人数为1320人分析:(1)用完成作业时间是2小时的学生人数除以相应的比例即可得到调查总数,然后用总数乘以1.5小时人数所在的比例;(2)作业时长为2.5小时对应的扇形圆心角度数等于80×360°=57.6°;500(3)不少于2小时的学生人数为总数乘以不少于2小时的学生所占比例.(1)140÷28%=500;500×36%=180(人),(2)作业时长为2.5小时对应的扇形圆心角度数为80×360°=57.6°;500=1320 (人)(3)3000×140+80500小提示:本题考查了条形统计图和扇形统计图的知识,从图中获取正确的信息是本题的解题关键.18、某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是450人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.答案:(1)50(2)见解析(3)72°(4)该校初二年级跳绳成绩为“优秀”的人数为90人分析:(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1) 中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.(1)解:由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);所以答案是:50;(2)由(1)的优秀的人数为:50-3-7-10-20=10,如图所示:;(3)×360°=72°,“中等”部分所对应的圆心角的度数是:1050所以答案是:72°;(4)该校初二年级跳绳成绩为“优秀”的人数为:450×10=90(人).50答:该校初二年级跳绳成绩为“优秀”的人数为90人.小提示:此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.。
七年级数学(下)第十章《统计调查》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列统计图能够显示数据变化趋势的是A.条形图B.扇形图C.折线图D.以上都正确【答案】C【解析】易于显示数据的变化趋势和变化规律的统计图是折线统计图,故选C.2.淮安区教育局为了了解实行课改后七年级学生在家的学习时间,应采用的最佳调查方式是A.对所有学校进行全面调查B.只对城区学校进行调查C.只对一所学校进行调查D.抽取农村和城区部分学校进行调查【答案】D3.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查【答案】B【解析】A、总体是25000名学生的身高情况,故A错误;B、1200名学生的身高是总体的一个样本,故B正确;C、每名学生的身高是总体的一个个体,故C错误;D、该调查是抽样调查,故D错误,故选B.4.在调查一年内某地区降雨的情况时,下列选取的样本较为恰当的是A.春、夏、秋、冬各观察一个月B.春、夏、秋、冬各观察一天C.春天和秋天各观察一个月D.冬天和夏天各观察一个月【答案】A【解析】本题中为了调查一年内某地区降雨的情况,随机抽取春、夏、秋、冬各观察一个月作为样本较为恰当,故选A .5.某市的中考各科试卷总分为600分,其中数学为120分,若用扇形统计图画出各科分数比例,则数学所占扇形圆心角为 A .90°B .45°C .120°D .72°【答案】D【解析】根据题意得:360°×120600=72°.所以数学所占扇形圆心角为72°,故选D . 二、填空题:请将答案填在题中横线上.6.为了预防“禽流感”的传播,检疫人员对某养殖场的家禽进行检验,任意抽取了其中的100只,此种方式属于__________调查,样本容量是__________. 【答案】抽样;100【解析】任意抽取了其中的100只,此种方式属于抽样调查,样本容量是100,故答案为:抽样;100. 7.某地区推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是该地区某一天收到的厨余垃圾的统计图,则m 的值为__________.【答案】69.01【解析】1-22.39%-0.9%-7.55%-0.15%=69.01%,故答案为:69.01. 三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某实验中学为了进一步丰富学生的课余生活,拟调整兴趣活动小组,为此进行了一次调查,结果如下,请看表回答:选项美术 电脑 音乐 体育 占调查人数的百分率15%30%30%(1)喜欢体育项目的人数占总体的百分比是多少? (2)表示“电脑”部分的圆心角是多少度?(3)根据所给数据,画出表示调查结果的扇形统计图. 【解析】(1)1-15%-30%-30%=25%.(2)360°×30%=108°.(3)如图:。
地统计分析的总结
地统计分析是指将空间数据分析和统计方法相结合的一种分析方法。
其主要目的是对地理数据进行统计学分析和空间模式分析,以更好地理解和预测地理现象。
在地理信息系统 (GIS) 中,地统计分析常用于以下几个方面:
1. 空间分布分析:通过空间统计方法,探索研究区域内各种现象在空间上的分布规律和空间相关性。
2. 空间插值分析:通过已知的地理数据和空间分析方法,预测或估算未知位置的数据。
3. 空间聚类分析:在空间范围内运用聚类算法,将空间上相近的地理现象进行归类,研究各类地理现象的空间分布特征。
4. 空间回归分析:在空间范围内运用回归分析方法,探索影响一种地理现象的各种因素及其空间相关性。
总而言之,地统计分析是一种用来研究地理现象的方法,它将统计学和空间数据分析方法有机地结合起来,为我们理解和预测地理现象提供了强大的工具。