平面曲线曲率之研究与动画模拟
- 格式:ppt
- 大小:1.05 MB
- 文档页数:25
姓名: 学号:摘要曲率是用来刻画曲线的弯曲程度,直观上当一点沿曲线以单位速度进行时,方向向量转动的快慢反应了曲线的弯曲程度。
半径小的圆的弯曲得厉害。
曲率的弯曲程度在工程技术、自然科学和日常生活中有着重要的作用。
曲线曲率的应用广泛,本文就此简单介绍一下曲线曲率。
关键词:空间曲线 ;平面曲线 ;曲线曲率 ;全曲率 ;相对曲率1.空间曲线的曲率设给定的空间曲线)(:s r r=Γ是3C 类曲线,其中s 为曲线的自然参数,在其上赋予Frenet 标架[])(),(),();(s s s s r γβα,则参数s 的变化导致标架基本向量的变化,而标架的变化刻画出曲线Γ在一点邻近的形状[2]。
•••=rα是)(s α对s 的旋转速度,它刻画出Γ在s 点邻近的弯曲程度。
对于曲线)(:s r r=Γ,称)()(s r s k ••= 为曲线Γ在s 点的曲率,当0)(≠s k 时,其倒数)(1)(s k s =ρ称为曲线Γ在s 点的曲率半径。
注:曲率)(s k 为α 对s 的旋转速度,并且)()()(s s k s βα=•。
事实上,ββααk rrr r ====••••••••••.定理:空间曲线)(:s r r=Γ为直线的充分必要条件是其曲率0)(≡s k .证明:若Γ为直线b a s s r +=)(,其中a 和b 都是常量,并且1=a ,则0)()(==••s r s k;反之,若0)()(≡=••s r s k ,则o s r ≡••)(,两次积分后有b a s s r+=)(,所以该曲线是直线。
设曲线Γ的一般参数表示为)(t r r=,则有222"')()()(dts d r dt ds r t r dt ds r dt ds ds r d t r ••••+=== , 于是3222"')()(dtds r r dt s d r dt ds r dt ds r r r •••••••⨯=⎥⎦⎤⎢⎣⎡+⨯=⨯3"')(,sin dtds r r r r r r ><=⨯•••••• 因为',,1r dtds r r r =⊥=••••,所以3'"'r k r r =⨯。
平面曲线曲率半径的运动学探究以曲线和曲面为代表的几何特征在现代生活中随处可见,研究者对其在现代大型建筑设计、工业生产制造、物体运动学规律等诸多领域进行了广泛深入的探究。
本文详细分析了平面曲线曲率几何学特征以及其对应的运动学规律,试图从多个角度对曲线曲率问题进行全方位的解读与探索,同时利用电脑编程求解,进一步研究了椭圆曲线在不同长短半轴比下的曲率半径变化规律。
标签:平面曲线;曲率半径;运动学分析;椭圆曲线曲率;程序求解一、概述在现今社会生活中,以曲线和曲面为代表的几何特征处处可见。
建筑设计中的直曲结合、汽车外形流线型曲面的制造加工以及各种物体的曲线运动等,都是生活中对曲线、曲面的应用。
因此,在现实生活应用的基础上对各种曲线曲面几何特征的研究具有重要意义。
其中,平面曲线的曲率半径在数学和物理学中具有相通之处,由此又激发了我们从不同的学科角度对一个概念进行深入理解的灵感。
平面曲线在各种领域得到广泛应用。
在综合地质勘探的编录中,[1]地质学家利用曲率圆的某一段圆弧来近似地代表岩层的一段走向,即“以曲代直”;利用曲率半径来编录岩层走向变化大、有褶皱构造的坑道,并用这一编录结果与实际情况作比较。
勘测结果显示,这种方法具有一定的实用价值。
另外,科研人员根据平面曲线曲率半径的运动学规律制造各种机器零件。
例如,数控车床加工时,常常利用刀具切割多曲率圆弧面;在数控车床上加工多曲率圆弧面工件时,[2]不同曲率圆弧交接点的坐标值、加工工艺和刀具的应用非常重要,它不仅具备加工程序的简洁性,还会影响工件的加工质量和加工效率。
在工业制造中,加工特殊管道时,也需要对刀具的曲线加工路径以及刀具自身曲率半径进行深入的研究,用于工厂生产。
本文系统地从数学几何定理以及物理学物体曲线运动的角度探讨了平面曲线曲率的数学物理意义,从而全面认识平面曲线的几何特征的数学和运动学规律。
然后进一步以椭圆曲线为例,探讨了这一广泛存在于天体运动以及工业曲线加工领域的特征曲线的曲率半径变化规律,并通过数值程序的求解得到了不同位置的曲率半径,研究了椭圆曲线在不同位置的曲率半径大小。
第十章 定积分的应用 3 平面曲线的弧长与曲率一、平面曲线的弧长设平面曲线C=⌒AB. 如图所示,在C 上从A 到B 依次取分点: A=P 0,P 1,P 2,…,P n-1,P n =B ,它们成为曲线C 的一个分割,记为T. 用线段联结T 中每相邻两点,得到C 的n 条弦P i-1P i (i=1,2,…,n),这n 条弦又成为C 的一条内接折线,记:T =ni 1max ≤≤|P i-1P i |,s T =∑=n1i i 1-i |P P |,分别表示最长弦的长度和折线的总长度。
定义1:对于曲线C 的无论怎样的分割T , 如果存在有限极限:0T lim →s T =s ,则称曲线C 是可求长的, 并把极限s 定义为曲线C 的弧长.定义2:设平面曲线C 由参数方程x=x(t), y=y(t), t ∈[α,β]给出. 如果x(t)与y(t)在[α,β]上连续可微,且x ’(t)与y ’(t)不同时为零 (即x ’2(t)+y ’2(t)≠0, t ∈[α,β]),则称C 为一条光滑曲线.定理:设曲线C 由参数方程x=x(t), y=y(t), t ∈[α,β]给出. 若C 为一光滑曲线,则C 是可求长的,且弧长为:s=⎰'+'βα22(t)y (t)x dt.证:对C 作任意分割T={P 0,P 1,…,P n },并设P 0与P n 分别对应t=α与t=β, 且P i (x i ,y i )=(x(t i ),y(t i )), i=1,2,…,n-1.于是,与T 对应得到区间[α,β]的一个分割T ’: α=t 0< t 1<t 2<…t n-1<t n =β.在T ’所属的每个小区间△i =[t i-1,t i ]上,由微分中值定理得△x i =x(t i )-x(t i-1)=x ’(ξi )△t i , ξi ∈△i ;△y i =y(t i )-y(t i-1)=y ’(ηi )△t i , ηi ∈△i . 从而C 的内接折线总长为s T =∑=∆+∆n1i 2i 2i y x =∑='+'n1i i 2i 2)(ηy )(ξx △t i .记σi =)(ηy )(ξx i 2i 2'+'-)(ξy )(ξx i 2i 2'+',则s T =[]∑=+'+'n1i i i 2i 2σ)(ηy )(ξx △t i .又由三角形不等式可得:|σi |≤||y ’(ηi )|-|y ’(ξi )||≤|y ’(ηi )-y ’(ξi )|. 由y ’(t)在[α,β]上连续,从而一致连续,∴对任给的ε>0, 存在δ>0, 当T '<δ时,只要ηi , ξi ∈△i ,就有|σi |≤|y ’(ηi )-y ’(ξi )|<α-βε, i=1,2,…,n. ∴|s T -∑='+'n1i i 2i 2)(ξy )(ξx △t i |=|∑=n1i i σ△t i |≤∑=n1i i |σ|△t i <ε,∴0T lim →s T =∑=→''+'n1i i 2i 20T )(ξy )(ξx lim △t i ,即s=⎰'+'βα22(t)y (t)x dt.注:1、若曲线C 由直线坐标方程y=f(x), x ∈[a,b]表示,则看作参数方程:x=x, y=f(x), x ∈[a,b]. 因此,当f(x)在[a,b]上连续可微时,此曲线即为一光滑曲线,其弧长公式为:s=⎰'+ba 2(x )f 1dx. 2、若曲线C 由极坐标方程r=r(θ), θ∈[α,β]表示,则 化为参数方程:x=r(θ)cos θ, y=r(θ)sin θ, θ∈[α,β]. 由x ’(θ)=r ’(θ)cos θ-r(θ)sin θ, y ’(θ)=r ’(θ)sin θ+r(θ)cos θ, 得:x ’2(θ)+y ’2(θ)=r 2(θ)+r ’2(θ),∴当r ’(θ)在[α,β]连续,且r(θ)与r ’(θ)不同时为零时,此极坐标曲线为一光滑曲线, 其弧长公式为:s=⎰'+βα22 )(θr )(θr d θ.例1:求摆线x=a(t-sint), y=a(1-cost)(a>0)一拱的孤长.解:∵x’(t)=a-acost; y’(t)=asint. ∴x’2(t)+y’2(t)=2a2(1-cost)=4a2sin22t.其弧长为s=⎰2π222tsin4a dt=4a⎰2π02tsin d⎪⎭⎫⎝⎛2t=8a.例2:求悬链线y=2ee-xx+从x=0到x=a>0那一段的弧长.解:∵y’=2ee-xx-. ∴1+y’2=2x-x2ee⎪⎪⎭⎫⎝⎛+.其弧长为s=⎰+a-xx2ee dx=2ee-aa-.例3:求心形线r=a(1+cosθ) (a>0)的周长.解:∵r’(θ)=-asinθ. ∴r2(θ)+r’2(θ)=4a2cos22θ.其周长为s=⎰2π02θacos2dθ=4a⎰2π02θcos d⎪⎭⎫⎝⎛2θ=8a.注:∵s(t)=⎰'+'tα22(t)y(t)x dt连续,∴dtds=22dtdydtdx⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛,即有ds=22dydx+. 特别称s(t)的微分dx为弧微分. (如左下图)PR为曲线在点P处的切线,在Rt△PQR中,PQ为dx,QR为dy,PR则为dx,这个三角形称为微分三角形。