九下数学全册说课
- 格式:doc
- 大小:34.50 KB
- 文档页数:8
1 数学九年级下册说教材稿
奈曼旗第三中学 徐继辉
尊敬的各位领导、老师们:
大家好!
我研说的教材是人教版版数学九年级下册,我主要从课标基本要求;编写意图、编写体例;教材的内在结构和逻辑关系;教材内容分析;教材处理等方面对教材进行简单的分析。
一、课标基本要求
新课标中对数学课程提出这样的教育理念:“人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展”。本册教材正是依据这种教育理念编写的。
新课标对本学段的学习提出了四个方面的目标:
1、知识与技能:经历将一些实际问题抽象为数学问题的过程,掌握数学基础知识和基本技能,并能解决简单的问题。
2、数学思考:经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维能力、合情推理能力、逻辑推理能力,并能有条理地、清晰地阐述观点。
3、解决问题:初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。
4、情感与态度:能积极参与数学学习活动,对数学有好奇心与求知欲。在数学学习活动中获得成功的体验,锻炼克服困难的意志,增强自信心。这四方面的目标是一个密切联系的整体,其中数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时知识与技能的学习必须以有利于其他目标的 2 实现为前提。
二、编写特意图、体例安排
我认为本套教材主要体现了编者以下几个方面的的意图:
1、全面落实《课程标准》的基本理念,以内容的基础性、普及性、发展性为根本出发点;
2、以内容呈现方式的变革促进学生数学学习方式的根本变革;
3、以“容易些,有趣些、鲜活些”作为指导思想。
4、结合适当的素材体现数学的文化价值,重视隐形课程的作用。
关于教材的体例安排,教材是通过章、节、习题将知识有机的编排在一起的,我认为有以下几个方面的特点:(1)每一章的开始,设有一幅表现该章主要内容章头图(包括内容提要与情境导航),以期激发学生的学习兴趣与求知欲望。(2)各章的章末都安排了回顾与总结,帮助学生系统梳理本章的学习内容,从知识与技能、数学思考、解决问题、情感与态度等方面加以总结与升华。(3)检测站在每一章的最后,便于学生对本章所学内容进行自我检查与评价。(4)教材的正文中,根据教学内容的实际需要,适当设置了一些相应的栏目。如,“观察与思考”、“交流与发现”、“实验与探究”,通过真实的情境、鲜活的实例或数学自身的素材,用问题串的形式,帮助学生进入学习情境,使学生在观察、实验、思考、猜想、验证、推理与交流等数学活动中经历数学的探究与发现过程,成为数学学习的主人。在部分课节之后设置了挑战自我,向学有余力的学生提出了一两个深刻的、需要进一步思索的问题。(5)结合教材各块内容,安排一些有关的背景资料和阅读材料,有加油站、小资料、广角镜、智趣园和史海漫游等栏目,内容涉及数学应用素材、数学趣闻、名题、趣题、数学史料、数学家介绍等等。这些栏目有利于提高学生的学习兴趣、培养阅读能力与查阅资料 3 的习惯、增强文化素养。(6)本书的练习系统分为练习、习题与综合练习三个梯度。 “习题”和“综合练习”基础题,供全体学生使用,选做题供学有余力的学生,以满足不同层次的学生的需要。
三、教材的内在结构与逻辑关系
本册教材共安排了四章和一个课题学习,涉及三个领域。其中“反比例函数”、 “锐角三角函数”属于“数与代数”领域;“相似”、“投影与视图”属于“图形与几何”领域;知识较综合应用,活动内容与学生的生活现实和数学现实密切相关,探索的问题具有较强的挑战性与综合性。
总之,教材体系结构的设计力求反映各个领域内容之间的联系与综合,使它们形成一个有机的整体,以发展学生解决问题的能力。
教材的内在逻辑关系我认为注重了以下五个方面:
(1)各领域知识的编排注意知识的纵向逻辑结构,注重同一领域内容之间的相互关联,如函数等知识的实质性关联;相似三角形与全等的三角形之间的密切联系。
(2)加强了各领域知识之间的横向联系。加强不同领域数学知识的联系与综合。如“中心投影”将图形放入平面直角坐标系中,通过量化的方式研究图形与图形之间的关系,体现了形与数的统一,是用代数法研究图形的基础。
(3)具有一定的弹性,既注重基础,又提供发展空间。如:在部分课节之后设置了“挑战自我”,向学有余力的学生提出了一两个深刻的、需要进一步思索的问题,使不同的学生得到了不同的发展;习题设置了巩固性练习、拓展性练习、探索性问题等不同的层次,在全体学生获得必要发展的前提下,不同的学生又获得了不同的体验;
(4)螺旋上升的呈现重要的概念和思想。例如,对方程和函数是按照一次和 4 二次数量关系,使方程和函数交替出现,螺旋上升。一方面不断地深化对方程和函数的理解,另一方面强化它们之间的联系,从函数角度提高对方程、不等式等内容的认识。
(5)联系学生的生活现实与数学现实,体现知识的形成和应用过程,促进学习方式的改进,有利于生动、活泼、主动地学习。例如,相似三角形程内容的安排以实际问题为出发点和归宿点,体现了“问题情境—建立方程模型—解释、应用与拓展”的建模过程,从而使学生认识到数学的模型作用。
四、教材内容分析
本套教科书对于推理能力的培养有循序渐进的整体设计,即按照“说点儿理”、“说理”、“简单推理”、“用符号表示推理”等不同层次分阶段逐步加深地安排。本册书是九年级下学期的用书,一方面,对于学生的推理能力的要求,应在前面已有高度的基础上以“一以贯之”的精神来处理,即保持已有水平并适度地使之发展。另一方面,本册书的知识内容的难度和综合性较前面几册要高,教学中,对本册书所有内容都完全纯粹地按照严格逻辑证明来要求是不合适的,对于某些内容可以采取直观实验与逻辑推理相结合的方式。
《反比例函数》函数”是本套教科书继研究一次函数、二次例函数后以基本代数函数为研究对象的又一章。它的编写思路、内容结构等与前面的“一次函数”、“二次例函数”有许多相似的地方,都反映了“变化与对应”的基本观点,都体现了函数是解决变量间存在单值对应关系的数学模型,都渗透了综合运用函数解析式和函数图象的数形结合研究方法。本章的教学应注意在前面已学内容基础上学习新知识,同时应继续加深对函数的一般性认识。
《相似》“图形的相似”从学生熟悉的一些实际问题说起,引出相似图形的概念,以及相似多边形的概念、性质等,使学生对相似先有一个一般性的认识。 5 “相似三角形”的内容是讨论最基本的多边形──三角形的相似关系,这是认识相似关系的基础,也是本章的重点内容。教材首先安排了证明了“过三角形一边中点且平行于另一边的直线,截出的三角形与原三角形相似”,然后将其推广到更一般的结论“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”。在此基础上,教材安排了三个探究问题,引导学生得出相似三角形的三种主要判定方法。教材对于其中第一个问题进行了推导证明,另两个问题的推导证明安排学生自己完成其推广到更一般的结论“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”。在此基础上,教材安排了三个探究问题,引导学生得出相似三角形的三种主要判定方法。教材对于其中第一个问题进行了推导证明,另两个问题的推导证明安排学生自己完成。接着,教材通过三个例题讨论在测量中如何利用相似三角形的知识,这些例题代表了测量中的常见典型问题。本节最后安排了相似三角形的周长和面积问题。“位似”讨论一种图形变换──位似变换。位似是一种特殊的相似,它的特殊性表现在“两个相似图形的对应点的连线都交于一点(位似中心)”。教材安排了利用坐标描述位似变换的内容,这是数形结合方法的体现。本套教材中先后共出现了四种图形变换:平移、轴对称、旋转和位似,本节最后安排了一幅包含这四种变换的图案,学生通过思考图案中的问题,可以对四种变换进行综合回顾。
《锐角三角函数》中,教材从沿山坡铺设水管的问题谈起,通过讨论直角三角形中直角边与斜边的比,使学生感受到锐角的大小确定后相应边的比也随之确定,而且不同的角度对应不同的比值,这种对应正是函数关系。教材设置了“探究”栏目,让学生通过自主探究,利用相似三角形得出结论,由此引出正弦函数的概念。在此基础上,引导学生类比对正弦函数的讨论,得出余弦函 6 数和正切函数的定义。接着教材讨论了“已知角的大小求它的三角函数值”和“已知角的三角函数值求角”这两种问题,这样就从两个相反方向再次强调了锐角与其三角函数值之间的一一对应关系。现在计算器已经成为学习和运用三角函数的有力工具,教材在本节最后介绍了如何使用计算器求三角函数值以及如何由三角函数值求对应的角。 “解直角三角形”中,教材借助实际问题背景,要求学生探讨在直角三角形中,根据两个已知条件(其中至少有一个是边)求解直角三角形,并归纳出解直角三角形常用的知识和方法。接着教材又结合四个实际问题介绍了解直角三角形在实际中的应用,这些问题的已知条件分别属于几种不同类型,解决方法具有典型性,体现了正弦、余弦和正切这几个锐角三角函数在解决实际问题中的作用。本节最后通过对比测量大坝的高度与测量山的高度,直观形象地介绍了“化整为零,积零为整”,“化曲为直,以直代曲”的数学基本思想。
《投影与视图》 “三视图”讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过6道例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化。这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系。 本章内容有两个特点:第一,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算。第二,它将平面图形与立体图形紧密地联系起来,从“由物画图”和“由图想物”两个角度讨论平面图形与立体图形之间的相互转化,对于培养空间想象能力具有特殊作用。课题学习 制作立体模型”中,安排了观察、想象、制作相结合的实践活动,这是动脑与动手并重学习内 7 容。进行这个课题学习既可以采用独立完成的形式,也可以采用合作式学习的方式。应该把这个课题学习看作对前面学习的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验。
总之,本册书中多处涉及推理,教学中既要注意进一步培养学生的推理能力,使初中毕业生的数学推理水平达到应有高度,又要注意掌握推理训练的方式、数量和难度。。
五、数学思想方法: 对于数学的学习,如果把数学知识看成是金子,那么点金之术就是数学思想方法。数学思想方法是从数学知识中提炼出来的数学学科的精髓,是数学的生命和灵魂,是将知识转化为能力的桥梁,学生只有领会了数学思想方法才能有效的应用知识、形成能力。九年级所学的内容中蕴含着许多重要的数学思想方法。综上分析,本册书的教学应结合学生的实际情况,对以前所学内容进行适当复习,加强知识间的相互联系与综合,在学生已有经验的基础上进行教学,使学生的学习形成正迁移。同时应注意进行适当的归纳总结,加深和完善对初中阶段知识的整体性认识。2.直观实验与逻辑证明相结合,适度地培养推理能力
六、高效数学课堂标准
数学教育,自然是以“数学”内容为核心。数学课堂教学的优劣,自然应该以学生是否能学好“数学”为依托。我心目中的高效数学课堂概括起来是“五点”:
一要“清” ,知识清,方法清,思路清、环节清,渗透点清。总之是数学课应该是“清清楚楚一条线”,千万不能是“模模糊糊一大片”,这不是数学课堂应有的特点,数学课就应该有“数学味”。
二要“新” ,内容新颖,方法创新,这样的数学课更能吸引人,也有更多