小学奥数行程问题(相遇问题)(教师版)
- 格式:docx
- 大小:1.18 MB
- 文档页数:7
行程问题例1.A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。
解:后半段路程长:240÷2=120(千米)后半段用时为:6÷2-0.5=2.5(小时)后半段行驶速度应为:120÷2.5=48(千米/时)原计划速度为:240÷6=40(千米/时)汽车在后半段加快了:48-40=8(千米/时)。
答:汽车在后半段路程时速度加快8千米/时。
例2.两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?分析:求时间的问题,先找相应的路程和速度。
解:轮船顺水速度为:231÷11=21(千米/时)轮船逆水速度为:21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时)答:行驶这段路程逆水比顺水需要多用10小时。
例3.汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。
分析:求平均速度,就要考虑用总路程除以总时间。
解:设从甲地到乙地距离为S 千米。
则汽车往返用的时间为:S ÷48+S ÷72= + = 平均速度为:2S ÷ =144÷5×2=57.6(千米/时) 答:该车的平均速度为57.6千米/时例4.一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均 速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?分析:求速度,首先找相应的路程和时间,平均速度说明了总路程和总时间的关系。
解:剩下的路程为300-120=180(千米)计划总时间为:300÷50=6(小时)剩下的路程计划用时为:6-120÷40=3(小时)剩下的路程速度应为:180÷3=60(千米/小时)答:剩下的路程应以60千米/时行驶。
小学奥数-行程相遇问题(教师版)work Information Technology Company.2020YEAR行程相遇问题甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和。
解决行程问题,常常要借助于线段图。
【例1】★一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)×3.5=94×3.5=329(千米).【小试牛刀】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?【解析】根据相遇公式知道相遇时间是:255÷(45+40)=255÷85=3(小时),所以甲走的路程为:45×3=135(千米),乙走的路程为:40×3=120(千米).【例2】★大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【解析】大头儿子和小头爸爸的速度和:30005060÷=(米/分钟),小头爸爸的速度:6024242+÷=()(米/分钟),大头儿子的速度:604218-=(米/分钟).【小试牛刀】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【解析】方法一:由题意知聪聪的速度是:204262+=(米/分),两家的距离=明明走过的路程+聪聪走过的路程2020622040012401640=⨯+⨯=+=(米),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S v t =和和.对于刚刚学习奥数的孩子,注意引导他们认识、理解及应用公式.方法二:直接利用公式:2062201640=+⨯=()(米).【例3】★★A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【解析】包子的速度:90303÷=(米/秒),菠萝的速度:90156÷=(米/秒),相遇的时间:90(36)10÷+=(秒),包子距B 地的距离:9031060-⨯=(米).【例4】★★甲、乙两车分别从相距360千米的A 、B 两城同时出发,相对而行,已知甲车到达B 城需4小时,乙车到达A 城需12小时,问:两车出发后多长时间相遇?【解析】要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360490÷=(千米/时),乙车的速度是3601230÷=(千米/时),则相遇时间是360(9030)3÷+=(小时).【例5】★★甲、乙两辆汽车分别从A 、B 两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A 、B 两地间的距离.聪聪S v t =和和【解析】这题不同的是两车不“同时”.求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48(15)288⨯+=(千米),505250+=(千米).⨯=(千米),288250538【小试牛刀】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41282⨯=(千米),甲、乙两车同时相对而行路程:+=(千米/时),甲车行的时间:77082688-=(千米),甲、乙两车速度和:454186÷=(小时).688868【例6】★★甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B两地间相距多少千米?【解析】题目中写的“还”相距15千米指的就是最简单的情况。
小学奥数专题——第1讲:相遇问题与追及问题(老师版)本文介绍了相遇问题和追及问题的基本概念和计算方法。
速度是指单位时间内所经过的路程,而路程、时间和速度是行程问题中最重要的三个量。
常用的数量单位包括米、千米、秒、分钟和小时等。
文章通过例题的形式,让读者更好地理解了相关概念和计算方法。
例1中,甲乙两地相距XXX,一辆汽车原计划用8小时从甲地到乙地。
但实际上汽车在行驶一半路程后发生故障,在途中停留了1小时。
问题要求计算汽车每小时应该行驶多少千米,以及在后一半路程中每小时应该行驶多少千米。
解答中,第一问的计算公式为路程÷时间=速度,即360÷8=45千米/时。
第二问中,后一半路程为180千米,行驶时间为总时间8小时减去前半程行驶时间5小时再减去故障停留时间1小时,即3小时;所以后半程的速度为180÷3=60千米/时。
例2中,A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行。
问题要求计算甲从A走到B需要多长时间,以及两人从出发到相遇需要多长时间。
解答中,第一问的计算公式为路程÷速度=时间,即4800÷60=80分钟。
第二问中,两人从出发到相遇的路程和为4800米,速度和为60+100=160米/分,所以相遇时间为4800÷160=30分钟。
最后,例题中还有一道关于慢跑和赛跑的问题。
XXX练慢跑,12分钟跑了3000米,问题要求计算跑米需要多少分钟,以及如果XXX每天都以这个速度跑10分钟,连续跑一个月(30天),他一共跑了多少千米。
解答中,第一问的计算公式同样为路程÷速度=时间,即÷250=100分钟;第二问中,每天跑10分钟,一个月共30天,所以总跑步距离为250×10×30=米,即75千米。
文章中没有明显的格式错误或有问题的段落,只需要进行小幅度的改写即可。
简答:公共汽车和小轿车相向而行,路程和为350千米,速度和为40+60=100千米/小时。
戴氏教育中高考名校冲刺教育中心【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。
学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。
谢谢使用!!!】小升初奥数之基本行程问题我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在三年级的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s=vt(2)路程÷速度=时间可简记为:t=s÷v(3)路程÷时间=速度可简记为:v=s÷t显然,知道其中的两个量就可以求出第三个量.关于平均速度的计算,需要知道整个过程的总路程与总时间,平均速度=总路程÷总时间【例1】摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)练习1:胡老师骑自行车过一座桥,上桥速度为每小时12千米,下桥速度为每小时24千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?分析:题目中没有告诉我们总的路程,给计算带来不便,仔细想一想,只要上下桥路程相等,总路程是不影响平均速度的,我们自己设一个路程好了,不妨设为48千米,来回两段路,所以每段路程为:48÷2=24(千米),总时间是:24÷12+24÷24=3(小时),所以平均速度是:48÷3=16(千米/小时)【例2】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.分析:假设上坡、平路及下坡的路程均为66米,(引导学生思考设为66的原因),那么总时间=66÷11+66÷22+66÷33=6+3+2=11(秒),过桥的平均速度=66×3÷11=18(米/秒).练习2:甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?分析:(方法1)由于前一半时间与后一半时间的平均速度是已知的,因此可以计算出这人步行的时间.而如果了解清楚各段的路程、时间与速度,题目结果也就自然地被计算出来了.应指出,如果前一半时间平均速度为每分钟80米,后一半时间平均速度为每分钟60米,则这个人从甲走到乙的平均速度就为每分钟走(80+60)÷2=70米.这是因为一分钟80米,一分钟60米,两分钟一共140米,平均每分钟70米.而每分钟走80米的时间与每分钟走60米的时间相同,所以平均速度始终是每分钟70米.这样,就可以计算出这个人走完全程所需要的时间是6720÷70=96分钟.由于前一半时间的速度大于后一半时间的速度,所以前一半的时间所走路程大于6720÷2=3360米.则前一个3360米用了3360÷80=42分钟;后一半路程所需时间为96-42=54分钟.(方法2)设走一半路程时间是x分钟,则80x+60x=6720,解方程得:x=48分钟,因为80×48=3840(米),大于一半路程3360米,所以走前一半路程速度都是80米,时间是3360÷80=42(分钟),后一半路程时间是48+(48-42)=54(分钟).行程问题的两大方面:追及问题和相遇问题二、追及问题有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离= 甲的速度×时间-乙的速度×时间=(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.【例3】龟、兔进行1000米的赛跑.小兔斜眼瞅瞅乌龟,心想:“我小兔每分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.”比赛开始后,当小兔跑到全程的一半时,发现把乌龟甩得老远,便毫不介意地躺在旁边睡着了.当乌龟跑到距终点还有40米时,小兔醒了,拔腿就跑.请同学们解答两个问题:(1)它们谁胜利了?为什么?(2)胜者到终点时,另一个距终点还有几米?分析:(1)乌龟胜利了.因为兔子醒来时,乌龟离终点只有40米,乌龟需要40÷10=4(分钟)就能到达终点,而兔子离终点还有500米,需要500÷100=5(分钟)才能到达,所以乌龟胜利了.(2)乌龟跑到终点还要(40÷10)=4(分钟),而小兔跑到终点还要1000÷2÷100=5(分钟),慢1分钟.当胜利者乌龟跑到终点时,小兔离终点还有:100×1=100(米).练习3:小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是54-6=48(千米/小时).城门离学校的距离是48×1.5=72(千米).答:学校到城门的距离是72千米.【例4】解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?分析:“提前3天到达”可知实际需要18-3=15天的时间,而“实际平均每天比原计划多行12千米”,则15天内总共比原来15天多行的路程为:12×15=180千米,这180千米正好填补了原来3天的行程,因此原来每天行程为180÷3=60千米,问题就能很容易求解.原来的速度为:(18-3)×12÷3=60(千米/天),因此总行程为:60×18=1080(千米)练习4:小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50 ×10÷(75- 50)=20(分钟)〃因此,小张走的距离是75×20=1500(米).答:从家到公园的距离是1500米.【例5】一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少?解一:自行车1小时走了30×1-已超前距离,自行车40分钟走了自行车多走20分钟,走了因此,自行车的速度是答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:马上可看出前一速度差是15.自行车速度是35- 15=20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.练习5:上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸发现忘带了东西又立即回家拿,拿到后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8=12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.【例6】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟).【例7】小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.练习7、课后练习题1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
小学四年级奥数行程问题相遇问题教案(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除行程问题之相遇问题相遇问题关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间例1.甲、乙两人分别从A、B两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,两人经过3小时相遇。
问A、B两地相距多少千米?例2.例3.小明和小华两家相距3千米,他俩同时从家里出发相向而行,小明骑车每分钟行175千米,小华步行每分钟行75米,多少分钟后两人相遇?例4.例5.甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇。
A、B两地相距多少千米?例6.例7.甲、乙两车分别从A、B两地同时相向而行,甲车每小时行70千米,乙车每小时行65千米,两车相遇点距中点20千米。
求A、B两地相距多少千米?例8.路程差÷速度差=相遇时间例9.甲、乙两地相距300米,小明和小军各从甲、乙两地相背而行,7分后两人相距860米。
小明每分走多少米?例10.例11.A、B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,有经过10分钟两人相遇。
已知小军骑车比小明步行每分钟多行160米,小明步行速度是每分钟多少米?例12.例13.甲、乙两艘舰船,由相距418千米的两个港口同时相对开出,甲舰船每小时航行36千米,乙舰船每小时航行34千米,开出1小时候,甲舰船因有紧急任务,返回原港,又立即起航与乙舰船继续相对开出,经过几小时两舰船相遇?例14.例15.一支1800米长的队伍以每分钟90米的速度行进,队伍前端的通讯员用9分钟的时间跑到队伍末尾传达命令,通讯员每分钟跑多少米?例16.例17.甲、乙两车从相距360千米的两地同时出发相向而行,甲车每小时行70千米,乙车每小时行50千米。
行程相遇问题念知识梳理)甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么于辛- 甲乙-A B A B0时刻准备出发时间t后相遇相遇路程=甲走的路程+乙走的路程=甲的速度X相遇时间+乙的速度X相遇时间=(甲的速度+乙的速度)X相遇时间=速度和X相遇时间.$一般地,相遇问题的关系式为:速度和X相遇时间二路程和。
解决行程问题,常常要借助于线段图。
是:特色讲解)【例1】★一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
小时两车相遇。
甲、乙两个城市的路程是多少千米【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48) X=94X=329 (千米).【小试牛刀】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米【解析】根据相遇公式知道相遇时间是:2554- (45+40) =2554-85=3 (小时),所以甲走的路程为:45X3=135 (千米),乙走的路程为:40X3=120 (千米).【例2】★大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米(【解析】大头儿子和小头爸爸的速度和:3000^50 = 60(米/分钟),小头爸爸的速度:(60 + 24)*2 = 42(米/分钟),大头儿子的速度:60 - 42 = 18(米/分钟).【小试牛刀】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗【解析】方法一:由题意知聪聪的速度是:20+42 = 62 (米/分),两家的距离=明明走过的路程+聪 聪走过的路程= 20 x 20 + 62 x 20 = 400 + 1240 = 1640咪),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S 和=v f ,/.对于刚刚学习奥数 的孩子,注意引导他们认识、理解及应用公式.方法二:直接利用公式:/ = (20 + 62) x20 = 1640 侏).【例3] B 两地相距90米,包子从A 地到3地需要30秒,菠萝从〃地到A 地需要15秒, 现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米【解析】包子的速度:90-30 = 3 (米/秒),菠萝的速度:90-15 = 6咪/秒),相遇的时间:90*(3 + 6) = 10(秒),包子距 B 地的距离:90-3x10 = 60 咪).【例4】★★甲、乙两车分别从相距360千米的A 、B 两城同时出发,相对而行,已知甲车到达B 城 需4小时,乙车到达A 城需12小时,问:两车出发后多长时间相遇【解析】要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360-4 = 90 (千米/时), 乙车的速度是360*12 = 30 (千米/时),贝IJ 相遇时间是360*(90 + 30) = 3 (小时).【例5】★★甲、乙两辆汽车分别从A 、B 两地出发相对而行,甲车先行1小时,甲车每小时行48千 米,乙车每小时行50千米,5小时相遇,求A 、3两地间的距离.【解析】这题不同的是两车不“同时”.求A 、〃两地间的路程就是求甲、乙两车所行的路程和.这 样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48x (1 + 5) = 288 (千米), 50x5 = 250 (千米),288+250 = 538 (千米).【小试牛刀】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时 行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2 小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路 程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41x2 = 82 (-T-米),甲、 乙两车同时相对而行路程:770-82 = 688 (「米),甲、乙两车速度和:45 + 41 = 86(千米/时),甲聪聪 20分钟后相遇 V 明明车行的时间:688*86 = 8 (小时).【例6】★★甲、乙两辆汽车分别从A 、B 两地出发相向而行,甲车先行3小时后乙车从B 地出发, 乙车出发5小时后两车还相距15千米・甲车每小时行48千米,乙车每小时行50千米.求A 、B 两 地间相距多少千米【解析】题目中写的“还”相距15 T •米指的就是最简单的情况。
1行程之相遇问题1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个数量的关系。
2、通过课堂上的合作学习、汇报展示、互动交流,提高学生分析处理信息的能力,培养学生解决实际问题的能力。
3、让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。
甲从A 地到B 地,地,乙从乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程相遇路程=甲走的路程++乙走的路程=甲的速度×相遇时间乙走的路程=甲的速度×相遇时间++乙的速度×相遇时间速度×相遇时间=(甲的速度=(甲的速度++乙的速度)×相遇时间乙的速度)×相遇时间=速度和×相遇时间=速度和×相遇时间. .一般地,相遇问题的关系式为:速度和×相遇时间一般地,相遇问题的关系式为:速度和×相遇时间==路程和。
路程和。
解决行程问题,常常要借助于线段图。
解决行程问题,常常要借助于线段图。
1: 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。
2:两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。
两车开了几小时以后相遇?(适于五年级程度)解:已知两个城市之间的路程是500千米,又知客车和货车的速度,可求出两车的速度之和。
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】1星 【题型】解答 【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题 【难度】1星 【题型】解答 【解析】 17 【答案】17【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【考点】行程问题 【难度】2星 【题型】解答 【解析】 176 【答案】176【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答 【解析】 甲、乙两人的速度和第一次为60÷6=10(千米/时),第二次为12(千米/时),故第二次出发后5时相遇。
行程问题——环形路(教师版)一、【本讲知识点】在环行道路上的行程问题本质上讲是追及问题或相遇问题。
当二人(或物)同向运动就是追及问题,追及距离是二人初始距离及环形道路之长的倍数之和;当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。
二、【本讲经典例题】【铺垫】如下图,两名运动员在沿湖周长为2250米的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,多少分钟后甲第1次追上乙?若两人同时同地反向出发,多少分钟后甲、乙第1次相遇?分析与解答:2250÷(250-200)=2250÷50=45(分钟),即45分钟后甲第1次追上乙;2250÷(250+200)=2250÷450=5(分钟),即5分钟后甲、乙第1次相遇.【例1】如下图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,45分钟后甲追上了乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?(1)(2)分析与解答:根据图(1)用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长。
(250-200)×45=2250(米)。
同理,在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长。
如图(2),2250÷(250+200)=5(分钟)即经过5分钟两人相遇。
【随堂练习1】如下图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,54分钟后甲追上乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?分析与解答:具体分析见例题。
环形跑道周长:(250-200)×54=2700(米),两人相遇时间:2700÷(250+200)=2700÷450=6(分钟),即经过6分钟后两人相遇。
【拓展】甲、乙两运动员在周长为400米环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处。
本讲中的行程问题是特殊场地行程问题之一。
是多人〔一般至少两人〕屡次相遇或追与的过程解决多人屡次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进展分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追与时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,那么每合走一圈相遇一次;如果是同向而行,那么每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端 同向:路程差nS nS +0.5S 相对(反向):路程和nS nS-0.5S【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】☆☆【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=〔千米〕,那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=〔分钟〕. 例题精讲知识框架环形跑道【答案】4分钟【巩固】周老师和王教师沿着学校的环形林荫道散步,王教师每分钟走55米,周教师每分钟走65米。
林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王教师再走米就回到出发点。
【考点】行程问题之环形跑道【难度】☆☆【题型】填空【解析】几分钟相遇一次:480÷〔55+65〕=4〔分钟〕10次相遇共用:4×10=40〔分钟〕王教师40分钟行了:55×40=2200〔米〕2200÷480=4〔圈〕……280〔米〕所以正好走了4圈还多280米,480-280=200〔米〕答:再走200米回到出发点。
【答案】200米【例 2】小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】第一次追上时,小亚多跑了一圈,所以需要300(64)150÷-=秒,小亚跑了6150900⨯=〔米〕。
课堂小结
课堂小测验
1. 甲村与乙村要挖一条长580米的水渠,甲村比乙村每天多挖两米,
于是乙村先开工5天,然后甲村再动工与乙村一起挖。
从开始到完成共用了35天,那么乙村每天挖 米。
2. 小玲和小明同时从学校出发,跑向距离学校1200米的公园,到公园后再跑回来。
小玲每分钟跑300
米;小明去时每分钟跑200米,回来时每分钟跑400米,结果是( )
A.两人同时到校
B.小玲先回到学校
C.小明先回到学校
D.无法判断
3.一列慢车在上午9点钟以每小时40千米的速度由甲城开往乙城,另一列快车在上午9点30分以每小时56千米的速度也由甲城开往乙城,铁路部门规定,有相同方向前进的两列火车之间相距不能小于8千米。
问这列慢车最迟在什么时候停车让快车超过?
每天告诉自己一次,“我真的很不错”。
人教版小学数学五年级上册奥数思维拓展相遇问题一、解答题1.两辆客车同时从A、B两地相对开出,两车的速度分别是68千米/时、82千米/时,经过12小时相遇。
A、B两地相距多少千米?2.甲站到乙站。
客车要10小时,货车要12小时。
两车同时从两地相对开出,在离中点60千米的地方两车相遇,两站相距多少千米?3.两地相距480千米,甲、乙两辆汽车同时从两地出发相向而行,3小时后两车相遇,甲车每小时行82千米,乙车每小时行多少千米?4.甲、乙两车从相距350千米的两地相对而行,两车同时出发,经过3.5小时两车在途中相遇,已知甲车每小时行驶55千米,乙车每小时行驶多少千米?5.大连到北京的铁路线长990千米。
甲车从北京开往大连,速度是95千米/时,乙车同时从大连开往北京,速度是85千米/时。
经过几时两车相遇?相遇地点距大连多少千米?6.(1)请根据线段图把题补充完整。
甲、乙两车分别从()两地同时出发,()而行,在距AB两地中点()km处相遇。
(2)已知甲车行驶路程是乙车行驶路程的1.5倍,用方程求出相遇时乙车行驶路程。
7.黔江到成都的路程约580千米,甲、乙两辆车同时从两地相对开出,甲车平均每小时行65千米,乙车平均每小时行80千米,几小时后两车相遇?8.甲乙两车从相距800千米的两地同时相向而行,已知甲车每小时行42千米,乙车每小时行58千米,两车相遇时乙车行了多少千米?9.甲乙两地相距325.5千米,两车从两地相向而行,甲车每小时行45千米,乙车每小时行48千米,甲车开出2小时后,乙车才出发,再经过几小时两车相遇?10.甲、乙、丙三人同时出发,甲、乙两人由A地到B地,丙由B地到A地;甲步行,速度是5千米/小时;乙骑自行车,速度是15千米/小时;丙也骑自行车,速度是18千米/小时。
已知丙在途中遇到乙后,又经过1小时才遇到甲,求丙和乙从出发到相遇用了多长时间?11.如图,两辆汽车从两个城市同时相对开出,几小时相遇?相遇时两辆车分别行驶了多少千米?12.客车和货车两辆车从相距600千米的甲、乙两地同时出发,相向而行,4小时后相遇,客车每小时行驶70千米,货车每小时行驶多少千米?13.快、慢两同时分别从甲乙两地相对而行,经过6小时在离中点30千米处两车相遇,相遇后两车仍以原速行驶,快车又用5小时到达乙地。
二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式: =⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).【答案】37800米【巩固】 一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【考点】行程问题【难度】☆☆ 【题型】解答 例题精讲知识框架多人相遇和追及问题【解析】4004502502()(分钟).÷-=【答案】2分钟【例 2】在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少千米?【考点】行程问题【难度】☆☆☆【题型】解答【解析】汽车A在与汽车B相遇时,汽车A与汽车C的距离为:(8050)2260+⨯=千米,此时汽车B与汽车C的距离也是260千米,说明这三辆车已经出发了260(7050)13÷-=小时,那么甲、乙两站的距离为:(8070)131950+⨯=千米.【答案】1950千米【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【考点】行程问题【难度】☆☆☆【题型】解答【解析】甲遇到乙后15分钟,甲遇到了丙,所以遇到乙的时候,甲和丙之间的距离为:(60+40)×15=1500(米),而乙丙之间拉开这么大的距离一共要1500÷(50-40)=150(分),即从出发到甲与乙相遇一共经过了150分钟,所以A、B之间的距离为:(60+50)×150=16500(米).【答案】16500米【例 3】小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【考点】行程问题【难度】☆☆☆【题型】解答【解析】画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离:()54.810.8 1.360+⨯=(千米),这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是:1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A 到甲地需要:130÷2=65(分钟).从乙地到甲地需要的时间是:130+65=195(分钟)=3小时15分.小李从乙地到甲地需要3小时15分.【答案】3小时15分【巩固】 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【考点】行程问题 【难度】☆☆☆ 【题型】解答【解析】 那2分钟是甲和丙相遇,所以距离是(60+70)×1=130米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=130÷(65-60)=26分钟,所以路程=26×(65+70)=3510米。
第一讲行程问题学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“ 1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用 3 个公式迅速作答;汽车间距=(汽车速度+行人速度)X相遇事件时间间隔汽车间距=(汽车速度-行人速度)X追及事件时间间隔汽车间距=汽车速度X汽车发车时间间隔( 2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图一一尽可能多的列3个好使公式一一结合s全程=vXt-结合植树问题数数。
( 3 ) 当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶ 火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同) 、班级速度(不同班不同速) 、班数是否变化分类为四种常见题型:( 1)车速不变-班速不变- 班数2 个(最常见)(2)车速不变-班速不变-班数多个( 3)车速不变-班速变-班数 2 个( 4)车速变-班速不变- 班数2 个标准解法:画图+列 3 个式子1、总时间=一个队伍坐车的时间+ 这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间= 班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上 2 人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格”。
小学奥数行程问题( 分类 )( 教师版)行程问题知识点拨发车问题(1)、一般间隔发车问题。
用 3 个公式快速作答;汽车间距 =(汽车速度 +行人速度)×相遇事件时间间隔汽车间距 =(汽车速度 - 行人速度)×追及事件时间间隔汽车间距 =汽车速度×汽车发车时间间隔(2)、求抵达目的地后相遇和追及的公共汽车的辆数。
标准方法是:绘图——尽可能多的列 3 个好使公式——联合 s 全程= v×t- 联合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法1⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,所以火车的行程是桥长与车身长度之和 .⑵ 火车与人错身时,忽视人自己的长度,二者行程和为火车自己长度;火车与火车错身时,二者行程和则为两车身长度之和 .⑶ 火车与火车上的人错身时,只需以为人具备所在火车的速度,而忽视自己的长度,那么他所看到的错车的相应行程仍不过对面火车的长度 .关于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种种类的题目,在剖析题目的时候必定得联合着图来进行 .接送问题依据校车速度(来回不一样)、班级速度(不一样班不一样速)、班数能否变化分类为四种常有题型:(1)车速不变 - 班速不变 - 班数 2 个(最常有)(2)车速不变 - 班速不变 - 班数多个(3)车速不变 - 班速变 - 班数 2 个2(4)车速变 - 班速不变 - 班数 2个标准解法:绘图+列 3 个式子1、总时间 =一个队伍坐车的时间 +这个队伍步行的时间;2、班车走的总行程;3、一个队伍步行的时间 =班车同时出发后回来接它的时间。
多人多次相遇和追击问题1.多人相遇追及问题,即在同向来线上, 3 个或3个以上的对象之间的相遇追及问题。
全部行程问题都是环绕“ 行程速度时间”这一条基本关系式睁开的,比方我们碰到的两大典型行程题相遇问题和追及问题的实质也是这三个量之间的关系转变.由此还能够获得以下两条关系式:行程和速度和相遇时间;行程差速度差追实时间;多人相遇与追及问题固然较复杂,但只需抓住这两条公式,逐渐表征题目中所波及的数目,3问题即可水到渠成.2、多人多次相遇追及的解题重点多次相遇追及的解题重点几个全程多人相遇追及的解题重点行程差时钟问题:时钟问题能够看做是一个特别的圆形轨道上 2 人追及问题,可是这里的两个“人”分别是时钟的分针和时针。
行程之相遇问题1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个数量的关系。
2、通过课堂上的合作学习、汇报展示、互动交流,提高学生分析处理信息的能力,培养学生解决实际问题的能力。
3、让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。
甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和。
解决行程问题,常常要借助于线段图。
1:两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。
2:两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。
两车开了几小时以后相遇?(适于五年级程度)解:已知两个城市之间的路程是500千米,又知客车和货车的速度,可求出两车的速度之和。
用两城之间的路程除以两车的速度之和可以求出两车相遇的时间。
500÷(55+45)=500÷100=5(小时)答略。
3:甲、乙二人以均匀的速度分别从A 、B 两地同时出发,相向而行,他们第一次相遇地点离A 地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B 地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B 地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
4:甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
5:两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车4次,每次停车15分钟,经过7小时两车相遇,求两城的距离?【解析】每列车停车时间:15460⨯=(分)=1(小时),两列车停车时间共2小时,共同行驶时间:716-=小时,速度和:404585+=(千米),两城距离:856510⨯=(千米).6:甲乙两人同时从两地相向而行.甲每小时行5千米,乙每小时行4千米.两人相遇时乙比甲少行3千米.两地相距多少千米?【解析】两人行驶的时间为3÷(5-4)=3小时,所以两地相距(5+4)×3=27千米7:甲乙二人同时分别自A 、B 两地出发相向而行,相遇之地距A 、B 中点300米,已知甲每分钟行100米,乙每分钟行70米,求A 地至B 地的距离.【解析】相遇时甲比乙多行3002600⨯=(米),相遇时共用了()6001007020÷-=(分),A 、B 两地之间的距离为()10070203400+⨯=(米).1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。
一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。
两车行驶路程之和,就是两地距离。
56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。
2:在一次战役中,敌我双方原来相距62.75千米。
据侦察员报告,敌人已向我处前进了11千米。
我军随即出发迎击,每小时前进6.5千米,敌人每小时前进5千米。
我军出发几小时后与敌人相遇?(适于五年级程度)解:此题已给出总距离是62.75千米,由“敌人已向我处前进了11千米”可知实际的总距离减少到(62.75-11)千米。
(62.75-11)÷(6.5+5)=51.75÷11.5=4.5(小时)答:我军出发4.5小时后与敌人相遇。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
5:大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【解析】大头儿子和小头爸爸的速度和:30005060÷=(米/分钟),小头爸爸的速度:6024242+÷=()(米/分钟),大头儿子的速度:604218-=(米/分钟).6:甲、乙两车分别从相距360千米的A 、B 两城同时出发,相对而行,已知甲车到达B 城需4小时,乙车到达A 城需12小时,问:两车出发后多长时间相遇?【解析】要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360490÷=(千米/时),乙车的速度是3601230÷=(千米/时),则相遇时间是360(9030)3÷+=(小时).7:甲、乙两辆汽车分别从A 、B 两地出发相向而行,甲车先行3小时后乙车从B 地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A 、B 两地间相距多少千米?【解析】题目中写的“还”相距15千米指的就是最简单的情况。
画线段图如下:由图中可以看出,甲行驶了358+=(小时),行驶距离为:488384⨯=(千米);乙行驶了5小时,行驶距离为:505250⨯=(千米),此时两车还相距15千米,所以A 、B 两地间相距:38425015++ 649=(千米)也可以这样做:两车5小时一共行驶:48505490+⨯=()(千米),A 、B 两地间相距:490483+⨯ 15649+=(千米),所以,A 、B 两地间相距649千米.1: 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
(适于五年级程度)解:两车相遇时,两车的路程差是20千米。
出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。
由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。
(60+55)×[20÷(60-55)]=115×[20÷5]=460(千米)2:甲、乙两地相距200千米,一列货车由甲地开往乙地要行驶5小时;一列客车由乙地开往甲地需要行驶4小时。
如果两列火车同时从两地相对开出,经过几小时可以相遇?(得数保留一位小数)(适于五年级程度)解:此题用与平常说法不同的方式给出了两车的速度。
先分别求出速度再求和,根据“时间=路程÷速度”的关系,即可求出相遇时间。
200÷(200÷5+200÷4)=200÷(40+50)=200÷90≈2.2(小时)答:两车大约经过2.2小时相遇3:一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)×3.5=94×3.5=329(千米).4:A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【解析】包子的速度:90303÷=(米/秒),菠萝的速度:90156÷=(米/秒),相遇的时间:90(36)10÷+=(秒),包子距B 地的距离:9031060-⨯=(米).5:甲、乙两辆汽车分别从A 、B 两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A 、B 两地间的距离.【解析】这题不同的是两车不“同时”.求A 、B 两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48(15)288⨯+=(千米),505250⨯=(千米),288250538+=(千米).6:甲乙二人同时分别自A 、B 两地出发相向而行,相遇之地距A 、B 中点300米,已知甲每分钟行100米,乙每分钟行70米,求A 地至B 地的距离.【解析】相遇时甲比乙多行3002600⨯=(米),相遇时共用了()6001007020÷-=(分),A 、B 两地之间的距离为()10070203400+⨯=(米).7:甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地90千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地30千米处相遇.求A 、B 两地间的距离?【解析】第一次相遇意味着两车行了一个A 、B 两地间距离,第二次相遇意味着两车共行了三个A 、B 两地间的距离.当甲、乙两车共行了一个A 、B 两地间的距离时,甲车行了90千米,当它们共行三个A 、B 两地间的距离时,甲车就行了3个90千米,即903270⨯=(千米),而这270千米比一个A 、B 两地间的距离多30千米,可得:9033027030240⨯-=-= (千米).1:在复线铁路上,快车和慢车分别从两个车站开出,相向而行。