流体力学 第8章
- 格式:ppt
- 大小:838.00 KB
- 文档页数:62
第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。
对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。
速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。
若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。
对于非粘性流场,则可按理想流体来处理。
则N-S 方程可由欧拉方程代替,从而使问题大为简化。
Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。
由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。
但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。
所以,在这一薄层中,两者均不能略去。
这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。
a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。
b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。
层内,粘性流,主要速度降在此,有旋流动。
c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。
d .按流动状态,边界层又分为层流边界层和紊流边界层。
由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。
所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。
边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。
(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。
第八章 旋转水射流第一节 概 述所谓旋转射流是指在射流喷嘴不旋转的条件下产生的具有三维速度的、射流质点沿螺旋线轨迹运动而形成的扩散式射流,也称之为旋动射流。
这种射流与常规的普通圆射流的主要不同点在于其外形呈明显扩张的喇叭状,具有较强的扩散能力和卷吸周围介质参与流动的能力,并能够形成较大的冲击面积,产生良好的雾化效果。
旋转射流作为一种特殊射流,早巳被用于工农业生产中。
喷洒农药的雾化器就是一个典型实例,液体农药通过管道被压到一个装有旋流片的雾化器中,使农药液流产生高速旋转,并喷出雾化器,达到雾化农药的目的。
工程技术中常常利用旋风原理来组织燃烧炉中的燃烧过程,如旋风燃烧室、旋风预燃室等。
因为燃料的燃烧过程可分为三个基本阶段:燃料与助燃空气的混合、燃料与空气的混合物升温到藉火温度,以及燃烧反应过程。
燃烧反应过程也就是燃料和空气中氧气之间进行的氧化过程,这个阶段实际上是瞬间完成的。
而前两个阶段则需要较长的时间。
因此,组织混合的过程决定着整个燃烧过程和火焰的特性,从而决定着炉膛内的温度分布和对工艺要求的适应程度。
在旋风燃烧室或顶燃室中,由于旋转射流能使流体质点以较高的速度旋转前进,形成扩散,产生一定程度的雾化,并且在强旋射流的内部形成一个回流区.旋转射流不但从射流外侧卷吸周围介质,而且还从回流区中卷吸介质,故它有较好的“抽气”能力,使大量的高温烟气回流到火炬根部,使燃料与空气充分掺混 ,提高温度和浓度的均匀分布程度,保证燃料顺利着火和火炬稳定燃烧,提高燃烧效率。
另外,在石油钻并工程中使用的固控设备(如除砂器、除泥器、离心机等),也是利用旋转流体的离心力原理将流体中的因相颗粒进行分离清除,以保持洗井浓的性能,满足钻井过程中的安全快速钻进之需要,旋转射流的流动见图8·1所示。
通常用圆柱坐标来描述旋转射流的运动,将射流各质点的流速分解为三个v w分量:轴向流速u,径向流速和切向流速,这三个流速分量的时均流场和脉动流场就可表示旋转射流的运动状态。
流体力学第八章答案【篇一:流体力学第8、10、11章课后习题】>一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大;(3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)??v?vy?2v1?p?vy?????vx?x?y??x?y2????p??0?y???v?vy???0?x?y??其边界条件为:在y?0处,vx?vy?0 在y??处,vx?v(x)(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以?表示。
边界层的厚度?顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度?1?1?2、动量损失厚度?2?vx1?(v?v)dy?(1?)dy x??00vv?2?1?v2???vx(v?vx)dy???vxv(1?x)dy vv(四)边界层的动量积分关系式??2???p?vdy?v?vdy?????wdx xx??00?x?x?x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即p?常数。
这样,边界层的动量积分关系式变为?wd?2d?vdy?vvdy?? x?x??00dxdx?二、本章难点(一)平板层流边界层的近似计算根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。
第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。
对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。
速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。
若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。
对于非粘性流场,则可按理想流体来处理。
则N-S 方程可由欧拉方程代替,从而使问题大为简化。
Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。
由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。
但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。
所以,在这一薄层中,两者均不能略去。
这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。
a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。
b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。
层内,粘性流,主要速度降在此,有旋流动。
c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。
d .按流动状态,边界层又分为层流边界层和紊流边界层。
由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。
所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。
边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。
(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。
第六、七、八章习题简答6-1 假设自由落体的下落距离s与落体的质量m,重力加速度g及下落时间t有关,试用瑞利法导出自由落体下落距离的关系式。
解:首先将关系式写成指数关系:s=Km a g b t c其中,K为无量纲量,也称无量系数。
各变量的量纲分别为:dim s=L,dim W=MLT-2,dim t= T,dim g=LT-2。
将上式指数方程写成量纲方程:L=( MLT-2) a ( LT-2) b ( T) c根据物理方程量纲一致性原则得到M:0=aL:1=a+bT:0=-2a-2b+c得出a=0 b=1 c=2代入原式,得s=Km0gt2即s=Kgt2注意:式中重量的指数为零,表明自由落体距离与重量无关。
其中系数K须由实验确定。
6-7已知矩形薄壁堰的溢流量Q与堰上水头H、堰宽b、水的密度ρ和动力粘滞系数μ,重力加速度g 有关,试用π定理推导流量公式。
题6-7图解:首先将函数关系设为 F(Q ,H ,b ,ρ,μ,g )=0其中变量数n=6,选取基本变量H 、ρ、g ,这3个变量包含了L 、T 、M 三个基本量纲。
根据π定理,上式可变为 f (π1,π2,π3)=0 式中Q g H c b a 1111ρπ=b g Hc b a 2222ρπ=μρπ3333c b a g H =将各数方程写成量纲形式:)()()(dim 132********---==T L LT ML L T L M c b a π根据量纲的一致性,有: L :a 1-3b 1+c 1+3=0 T :-2c 1-1=0 M :b 1=0得a 1=-5/2,b 1= 0,c 1= -1/2所以 gHQ Q g H 2521251==--π同理可得Hb b H ==-12πgH g H ρμμρπ23211233==---这样原来的函数关系可写成0(2325=),,gH H b g H Q f ρμ 即),gH H b f gHQ ρμ23125(=则5252312((H g Hb f H g g H H b f Q )),==ρμ 6-8 加热炉回热装置冷态模型试验,模型长度比尺λl =5,已知回热装置中烟气的运动粘滞系数为ν=0.7×10-4m 2/s ,流速为υ=2.5m/s ,试求20℃空气在模型中的流速为多大时,流动才能相似。
第八章管道不可压缩流体恒定流有压管流是日常生活中最常见的输水方式,本章主要介绍了有压管流的水力特点,计算问题以及简单管道与串联、并联和管网的水力计算原理与应用。
概述一、概念有压管流(penstock):管道中流体在压力差作用下的流动称为有压管流。
有压恒定管流:管流的所有运动要素均不随时间变化的有压管流。
有压非恒定管流:管流的运动要素随时间变化的有压管流。
观看录像二、分类1.有压管道根据布置的不同,可分为:简单管路:是指管径、流速、流量沿程不变,且无分支的单线管道。
复杂管路:是指由两根以上管道所组成的管路系统。
2.按局部水头损失和流速水头之和在总水头损失中所占的比重,管道可分为长管:指管道中以沿程水头损失为主,局部水头损失和流速水头所占比重小于(5%-10%)的沿程水头损失,从而可予以忽略的管道。
短管:局部水头损失和流速水头不能忽略的、需要同时计算的管道。
三、有压管道水力计算的主要问题1.验算管道的输水能力:在给定作用水头、管线布置和断面尺寸的情况下,确定输送的流量。
2.确定水头:已知管线布置和必需输送的流量,确定相应的水头。
3.绘制测压管水头线和总水头线:确定了流量、作用水头和断面尺寸(或管线)后,计算沿管线各断面的压强、总比能,即绘制沿管线的测压管水头线和总水头线。
第一节简单管道的水力计算一、基本公式1.淹没出流图8-1中,列断面1-1与2-2的能量方程(4-15),图8-1令:且w1>>w, w2>>w,则有(8-1)说明:简单管道在淹没出流的情况下,其作用水头H0完全被消耗于克服管道由于沿程阻力、局部阻力所作负功所产生的水头损失上。
即:管道中的流速与流量为:(8-2)(8-3)式中:——管系流量系数,,它反映了沿程阻力和局部阻力对管道输水能力的影响。
H0——作用水头,指上、下游水位差加上游行进流速的流速水头。
——局部阻力系数,包含出口损失。
问题:图示两根完全相同的长管道,只是安装高度不同,两管道的流量关系为:A.Q1<Q2;B.Q1>Q2;C.Q1=Q2;D.不定。