机床控制
- 格式:ppt
- 大小:827.50 KB
- 文档页数:73
数控机床控制系统设计数控机床控制系统是现代机械加工中的重要设备,不仅减轻了人工操作的负担,还能够实现高效精确加工。
本文将从数控机床控制系统的设计原理、控制器的分类以及系统设计中需要考虑的因素等各方面进行详细阐述。
一、数控机床控制系统设计原理数控机床是一种以计算机控制的工具设备。
数控机床的工作原理是通过加工程序与自动化机床相连接,由计算机系统对机床运动进行控制。
数控机床的加工程序是一种由G代码和M 代码组成的程序,G代码主要用于控制机床的直线运动和圆弧运动、刀具半径、零点位置等,M代码则是用于控制机床的主轴转速、冷却液开关等控制信号。
基本上数控机床可以实现加工各种形状的物件,而且加工精度高,生产效率高。
二、控制器的分类数控机床控制器根据其构成和结构可以大致分为以下几个类型:1、点位控制器(P控制器):点位控制器可以控制每一个轴单独移动到预定的位置后,马上停止这一轴的运动,使其它轴继续运动。
2、直线插补控制器(L控制器):直线插补控制器是比点位控制器更为先进的控制器,它不仅在每个轴位置上进行控制,还可以控制各轴在不同的位置上同时启动或同时停止。
3、圆弧插补控制器(C控制器):圆弧插补控制器是对圆弧运动进行控制的控制器。
它可以自动地计算和控制机床在坐标平面或变位平面上的转折点、曲线半径以及运动方向等,圆心和半径的计算完全由控制器来完成。
4、模态控制器(M控制器):模态控制器是负责管理机床程序重复执行的控制器。
它只需输入一次程序,就可以重复地使用该程序。
换言之,它可以使用多个程序段,从而实现切换各种不同加工方式,同时还可以根据不同的工件要求随时更改程序的具体内容。
三、系统设计中需要考虑的因素在设计数控机床控制系统时,需要考虑如下因素:1、系统稳定性:稳定性是数控机床控制系统设计的重要指标,必须保证系统在加工过程中不会出现任何一个运动轴的失控。
系统设计时需要合理选用现代控制技术,同时要对硬件和软件进行完整测试,保证系统的稳定性。
一、引言随着我国制造业的快速发展,机床自动化控制技术已成为现代制造业的重要支撑。
为了提高我国机床制造业的竞争力,培养一批具备机床自动化控制技能的专业人才,我们学校特开设了机床自动化控制实训课程。
本文将对我校机床自动化控制实训进行总结和分析,以期为我国机床自动化控制技术的发展提供参考。
二、实训目的与意义1. 目的通过机床自动化控制实训,使学生掌握机床自动化控制的基本原理、技术方法和实际应用,提高学生的实际操作能力、创新能力和团队协作能力。
2. 意义(1)提高学生的专业技能:通过实训,使学生掌握机床自动化控制的基本知识,提高学生的实际操作技能。
(2)培养学生的创新意识:在实训过程中,鼓励学生进行创新实践,提高学生的创新能力和解决实际问题的能力。
(3)促进校企合作:通过实训,加强与企业的联系,为毕业生提供更多的就业机会。
三、实训内容与方法1. 实训内容(1)机床自动化控制基本原理:介绍机床自动化控制的基本概念、发展历程、分类、应用等。
(2)数控机床编程与操作:学习数控机床编程语言,掌握数控机床编程技巧,进行实际编程操作。
(3)PLC编程与调试:学习PLC编程软件,掌握PLC编程方法,进行PLC编程与调试。
(4)电气控制系统设计与安装:学习电气控制系统设计原理,掌握电气控制系统安装方法。
(5)故障诊断与维修:学习故障诊断方法,掌握机床自动化控制设备的维修技能。
2. 实训方法(1)理论教学:通过课堂讲解,使学生掌握机床自动化控制的基本理论。
(2)实践操作:在实训室进行实际操作,使学生熟练掌握机床自动化控制技能。
(3)项目实践:通过完成实际项目,提高学生的综合应用能力。
(4)竞赛活动:参加各类机床自动化控制竞赛,锻炼学生的团队协作能力和实际操作能力。
四、实训成果与分析1. 成果(1)学生掌握了机床自动化控制的基本理论、技术方法和实际应用。
(2)学生的实际操作能力、创新能力和团队协作能力得到提高。
(3)学生获得了丰富的实践经验,为今后的就业奠定了基础。
数控机床主轴驱动变频控制一、前言数控机床是传统机床向智能化方向发展的结果,其操作简单、精度高、效率高等特点,使得其在现代制造业中大有用处。
数控机床中的主轴驱动控制是其中的一个重要环节,其精度和可靠性对整个机床的操作效果有着至关重要的作用。
本篇文档将主要介绍数控机床主轴驱动变频控制相关知识。
二、数控机床主轴驱动变频控制的原理数控机床的主轴驱动控制系统主要是由相关电气元件组成的变频器控制系统。
变频器就是将市电通过整流、滤波、逆变后输出一定的频率、电压并控制电机转速的电子装置。
在数控机床的主轴驱动系统中,变频器通过对电机控制进行电压和频率的调整,来实现主轴的旋转,进而控制其转速和输出功率。
变频器输出的频率、电压均可调整,因此可以通过控制变频器的输出,来实现对主轴的速度调节。
电气控制系统通过实时监测机床运行状态、主轴运行状态、机床速度、主轴转速等信息,根据预先设定的运转条件,通过控制变频器输出的电压、频率实现对机床的工作状态并实现对主轴的速度调节。
三、数控机床主轴驱动变频控制的优点与传统机床的主轴驱动方式相比,数控机床主轴驱动变频控制有诸多优点,主要体现在以下几个方面:1.可调性强:通过对变频器的控制,可以实现精确的主轴转速调节,可以满足不同需求的工件加工。
2.精度高:由于采用了电气控制系统,可以实现主轴转速的精确控制,进而实现加工精度的提高。
3.效率高:数控机床主轴驱动变频控制由于能够实现电气控制,减少了机械传动过程中的机械损耗,因此其效率远高于传统机床主轴驱动方式。
4.运转平稳:变频器可以调节输出电压和频率,可以进一步实现对主轴转速的控制,从而实现机床运转的平稳。
四、数控机床主轴驱动变频控制的应用数控机床主轴驱动变频控制技术的应用相当广泛,可以应用于各种数控机床类型,包括数控车床、数控加工中心、数控铣床等。
特别是在高速、高精度、高效率的加工应用中,其优势更加明显。
五、数控机床主轴驱动变频控制的维护和保养为了确保数控机床主轴驱动变频控制系统的长期稳定运行,必须进行日常的维护和保养。
机床电气控制机床电气控制,是指通过电气信号对机床的各个部件进行控制和调节的过程。
它是现代机床制造的重要组成部分,是机床自动化和智能化的实现必要手段。
机床电气控制的主要内容包括:电气传动系统、数控系统、机床保护系统等。
一、电气传动系统机床电气控制的重要组成部分是电气传动系统。
电气传动系统是指通过电气信号,对机床的电动机等执行元件进行调节,控制机床的动力输出,实现有效的加工作业。
电气传动系统分为两个部分:主轴驱动系统和进给系统。
主轴驱动系统是指控制主轴电动机的运转状态,以便实现高速、稳定的主轴转动。
当主轴电机正常工作时,它承担了机床的高精度加工和高负荷加工的任务,切削热能利用率较高,能够实现高水平的产品质量。
进给系统是指控制进给电机的转速、转矩、切削速度等参数,以实现对工件加工的控制。
进给控制系统的设计需要考虑到极限速度、车削速度、加工功率等多个参数,设置合理的控制范围和响应机制,确保加工的稳定性和安全性。
二、数控系统随着工业化和信息技术的不断发展,数控技术已经成为现代机床中不可或缺的一部分。
数控是指通过数字信号,对机床的运动、位置、加工参数进行精密控制,实现加工工艺的可编程、可执行和可监测。
数控系统主要包括CPU、执行器、编程器和显示器等。
CPU是数控系统的核心部分,是用于控制加工数据流、计算加工轨迹、调节加工参数的计算机芯片。
执行器是指数控系统中的动作控制器,用于控制机床的运动和加工过程。
编程器是用于将加工程序转换为数控程序的设备,包括数控语言、宏指令和参数化编程等。
显示器用于显示加工过程和加工结果的数控界面,包括图形界面和文字界面等。
三、机床保护系统机床保护系统是机床电气控制的重要组成部分,主要用于检测机床的运行情况和设备的状态,及时发现故障,保护设备的安全可靠运行。
机床保护系统主要包括以下几个方面:1、过流保护系统:用于检测主轴电机和进给电机的电流是否过大,超负荷时自动切断电源,保护电机和随之工件的损伤。
机床控制系统的基本组成概述机床控制系统是指用于控制机床运动和加工过程的系统。
它是机床上最重要的部分之一,直接影响机床性能和加工质量。
机床控制系统的基本组成主要包括硬件和软件两个方面。
硬件组成机床控制系统的硬件主要包括以下几个方面:1. 伺服驱动装置:用于控制伺服电机的运动,实现机床上各个轴的精确位置控制。
伺服驱动装置通常由伺服电机、编码器和控制器组成。
2. 电气驱动装置:用于控制机床上的其他电气元件,如刀库、液压装置等。
电气驱动装置通常由电子开关、继电器和控制器组成。
3. 传感器:用于获取机床上各种物理量的信息,如位置、速度、压力等。
常用的传感器有位移传感器、速度传感器、力传感器等。
4. 人机界面:用于与机床控制系统进行交互,包括显示器、键盘、触摸屏等。
人机界面使操作人员能够直观地监控和操作机床控制系统。
软件组成机床控制系统的软件主要包括以下几个方面:1. 运动控制软件:用于实现机床上各个轴的运动控制,包括速度控制、位置控制、加速度控制等。
运动控制软件通常由编写在控制器中的程序实现。
2. 加工控制软件:用于控制机床的加工过程,包括加工参数的设定、加工程序的编写和执行等。
加工控制软件通常由操作人员通过人机界面进行操作。
3. 系统监控软件:用于监控机床控制系统的运行状态,包括故障诊断、报警提示、数据采集等。
系统监控软件可以提高机床的可靠性和稳定性。
功能与优势机床控制系统的基本组成决定了它具备以下功能和优势:1. 高精度控制:通过精确的伺服驱动装置和运动控制软件,机床控制系统可以实现对机床上各个轴的高精度控制,保证加工的精度和质量。
2. 灵活多变:机床控制系统的软件可以根据加工需求进行编程和调整,实现不同类型、不同形状的加工,提高生产效率和灵活性。
3. 实时监控:通过系统监控软件,机床控制系统可以实时监控机床的运行状态,及时发现和处理故障,提高机床的可靠性和稳定性。
4. 人机交互友好:机床控制系统的人机界面设计合理,操作简便,使操作人员能够方便地监控和控制机床,提高生产效率和操作便利性。
机床电气控制技术机床电气控制技术是机械制造业和工业制造业中不可或缺的一项重要技术领域。
它涉及到多个方面,包括机床的构造、电气控制系统、自动化控制、网络通讯控制、传感器、执行器和控制算法等等。
机床电气控制技术的主要目的是通过电气控制系统来控制机床的运动,使其能够按照工件图样进行精确加工。
机床电气控制技术的发展历程可以追溯到20世纪60年代,当时出现了数字控制系统,它是机床电气控制技术历史上的重要里程碑。
数字控制系统采用了计算机技术,使得机床能够实现高精度、高速度的加工。
从此,机床加工的精度、效率和稳定性都得到了大幅度提高。
在数字控制系统之后,机床电气控制技术又出现了许多新的技术和方法,如伺服电机技术、编码器技术、电容传感器和光电传感器技术、PLC控制技术、通讯总线技术等等。
伺服电机技术是机床电气控制技术的重要组成部分。
伺服电机是一种能够自动调节角度、速度和位置的电动机。
它可以根据要求精确地控制机床的转动速度和位置,使机床的精度和效率得到大幅度的提高。
编码器技术是指采用脉冲编码器来检测伺服电机转子位置的一种技术。
脉冲编码器可以把转子的转动位置转换成电信号,让伺服电机的控制器根据这些信号来准确控制机床的转动。
电容传感器和光电传感器技术是机床电气控制技术中的一个重要组成部分。
它们可以用来检测工件和工具的位置、形状和尺寸,从而实现机床的自适应控制和智能化控制。
PLC控制技术是指工业控制领域中普遍采用的一种自动化控制技术。
PLC控制器是一种可编程的电子设备,能够自动控制机器或生产线的运作。
它可以根据不同的程序,控制机床的转动、进给、冷却等动作,并能够实时监测和反馈机床的工作情况。
通讯总线技术是机床电气控制技术的新兴领域,它是指通过现代通讯技术将多个设备和系统互相连接起来,形成一个高效、稳定和智能化的生产流程。
通讯总线技术可以提高机床的生产效率、降低能源消耗和减少机械故障的发生。
总之,机床电气控制技术是机械制造业和工业制造业中不可或缺的一项重要技术领域。
一、实验目的1. 了解机床电气控制的基本原理和基本方法。
2. 掌握机床电气控制系统的工作原理和调试方法。
3. 学会使用常用电气元件,并能根据实际需求进行电路设计。
4. 培养实际操作能力,提高对电气故障的判断和排除能力。
二、实验设备1. 机床电气控制系统实验台2. 常用电气元件:接触器、继电器、按钮、开关、熔断器等3. 仪器设备:万用表、示波器、电源等三、实验原理机床电气控制系统是机床的重要组成部分,其主要作用是实现机床的自动控制。
本实验主要研究机床电气控制系统的基本原理和调试方法。
1. 机床电气控制系统的工作原理:机床电气控制系统主要由电源、控制电路、执行电路和信号反馈电路组成。
电源为控制系统提供能量,控制电路实现对执行电路的控制,执行电路驱动机床运动,信号反馈电路将机床的运动状态反馈给控制电路。
2. 机床电气控制系统的调试方法:调试是确保机床电气控制系统正常运行的重要环节。
调试主要包括以下步骤:(1)检查电气元件是否完好,接线是否正确;(2)检查控制电路是否正确,确保控制信号能够正确传输;(3)检查执行电路是否正常,确保执行元件能够按照控制信号的要求工作;(4)检查信号反馈电路是否正常,确保反馈信号能够正确传输;(5)进行系统联调,检查整个控制系统是否正常运行。
四、实验内容1. 机床电气控制系统基本原理分析(1)分析机床电气控制系统的组成及各部分的作用;(2)了解常用电气元件的工作原理及特点;(3)掌握机床电气控制系统的工作原理。
2. 机床电气控制系统调试(1)根据实验台提供的电气元件和接线图,搭建机床电气控制系统;(2)检查电气元件是否完好,接线是否正确;(3)检查控制电路是否正确,确保控制信号能够正确传输;(4)检查执行电路是否正常,确保执行元件能够按照控制信号的要求工作;(5)检查信号反馈电路是否正常,确保反馈信号能够正确传输;(6)进行系统联调,检查整个控制系统是否正常运行。
3. 机床电气控制系统故障排除(1)分析机床电气控制系统常见故障及原因;(2)学会使用万用表、示波器等仪器设备检测电气元件和电路;(3)掌握故障排除方法,提高对电气故障的判断和排除能力。