高速列车制动盘材料的研究进展
- 格式:pdf
- 大小:483.91 KB
- 文档页数:7
高速列车车辆制动系统的刹车盘材料性能与寿命研究随着高速列车的快速发展,车辆制动系统的安全性和可靠性需求也越来越高。
而刹车盘作为车辆制动系统的核心组成部分之一,其材料性能与寿命对于整个系统的运行效果具有重要的影响。
因此,对高速列车车辆制动系统的刹车盘材料性能与寿命展开研究显得尤为重要。
刹车盘材料的性能主要包括摩擦特性、热稳定性、耐磨性、抗疲劳性和耐高温性等指标。
首先,刹车盘材料的摩擦特性对于高速列车的制动效果至关重要。
摩擦特性的好坏直接关系到刹车盘与刹车片之间的摩擦系数,进而影响制动力的传递和稳定性。
因此,刹车盘材料需要具备较高的摩擦系数,以确保在各种复杂的路况下都能够提供稳定的制动效果。
另外,刹车盘材料的热稳定性也是一个非常重要的指标。
在高速列车运行过程中,由于制动引起的能量转化,刹车盘会受到较高的温度影响。
因此,刹车盘材料需要具备良好的抗热性能,能够在高温环境下保持稳定的性能并不发生过热膨胀等问题。
同时,刹车盘材料的耐磨性也是需要考虑的关键因素。
高速列车在长时间运行中,频繁制动会对刹车盘材料造成较大的摩擦磨损。
因此,刹车盘材料需要具备较好的耐磨性能,能够在长时间使用过程中保持相对较低的磨损量,以延长刹车盘的使用寿命。
除了上述性能指标外,刹车盘材料的抗疲劳性和耐高温性也非常重要。
抗疲劳性能是指刹车盘在长时间使用过程中不发生裂纹和断裂等现象,能够保持长期的可靠性。
耐高温性是指刹车盘材料在高温环境下能够保持强度和稳定性,不会发生变形或损坏。
在研究刹车盘材料性能与寿命的过程中,可以采取多种方法和手段进行实验和测试。
例如,可以利用摩擦试验机对刹车盘材料的摩擦系数和摩擦特性进行测试。
同时,可以借助高温试验设备对刹车盘材料的热稳定性和耐高温性进行测试。
此外,还可以通过试验台对刹车盘材料的耐磨性和抗疲劳性进行测试,以评估其在长时间使用过程中的性能。
除了实验和测试,理论研究也是研究刹车盘材料性能与寿命的重要手段之一。
高速动车组制动盘运用现状及其发展趋势摘要:随着铁路“引进技术-消化吸收-再创新”战略的实施,我国高速动车组制动技术达到了国际先进水平,CRH系列动车组分别采用了德国克诺尔公司和日本纳博特斯科公司的制动系统,使我国微机控制直通电空制动技术、大功率盘形基础制动技术得到显著提升。
我国动车组制动技术的自主研发取得突破,自主研制的动车组制动系统和关键部件已在标准动车组和部分既有动车组上投入运营或运用考核。
近几年,国外知名的轨道车辆制动系统开发商不断推出新的制动系统产品,对我国动车组制动技术的持续改进和发展具有借鉴作用。
关键词:高速动车组;制动盘;运用现状;发展趋势1我国高速动车组制动系统技术现状1.1基本技术现状国内批量运用的CRH系列高速动车组均采用微机控制直通电空制动控制技术和大功率盘形基础制动技术,制动技术主要来源于德国克诺尔公司和日本纳博特斯科公司。
另外,CRH3/5、CRH380B/C型动车组还装有备用自动空气制动装置,CRH3/5以及CRH380B/C/D型动车组装有撒砂装置,CRH2系列和CRH380A型动车组装有踏面清扫装置。
在制动控制方面,CRH2系列和CRH380A型动车组按1动1拖或2动1拖为单元进行制动力管理,CRH1/3/5、CRH380B/C/D型动车组按整列车进行制动力管理。
常用制动时采用动力制动(再生制动)和空气制动(或空气-液压制动)的复合制动方式,优先使用动力制动,当动力制动力不能满足制动力需求时,空气制动力自动补偿,制动过程中制动力能根据理论黏着力要求和车辆载荷变化自动调整,具有冲动限制功能;紧急制动时根据速度-黏着变化进行制动力分级控制,采用克诺尔制动技术的制动系统设有空重车调整阀,能够根据车辆载荷变化自动调整制动缸压力,采用纳博特斯科制动技术的制动系统通过减压阀调整制动缸压力。
在防滑控制方面,采用克诺尔公司制动系统的动车组,空气制动和电制动的防滑控制分别由空气制动系统和牵引系统完成,采用纳博特斯科制动系统的动车组,牵引系统不进行防滑控制,只有空气制动系统进行防滑控制。
CRH380B动车组制动盘有限元分析与优化摘要:动车组制动盘在列车制动过程中起到重要的作用,为了保证制动效果和制动安全性能,有限元分析和优化方法被广泛应用于制动盘结构设计中。
本文以CRH380B动车组为研究对象,采用有限元分析方法对制动盘进行了结构分析,并通过参数优化方法对其结构进行改进和优化,以提高制动性能和制动安全性。
1. 引言动车组制动盘是高速列车制动系统的重要组成部分,它负责将制动力通过摩擦将能量转化为热能,并将速度转化为制动力。
制动盘的结构与性能直接影响了列车的制动效果和制动安全性能。
因此,深入研究制动盘的结构和性能,并进行有限元分析与优化,对于提高动车组的制动效果和制动安全性能具有重要意义。
2. 有限元分析模型建立针对CRH380B动车组制动盘的结构特点,建立了有限元模型。
首先,采用三维建模软件对制动盘的几何形状进行建模,并根据实际情况给予适当的约束条件。
然后,将建模结果导入有限元分析软件,进行网格划分和材料属性设置。
最后,通过施加相应的载荷,得到制动盘在制动过程中的应力和变形分布。
3. 结果分析通过有限元分析,得到了CRH380B动车组制动盘在制动过程中的应力和变形分布。
结果表明,制动盘表面的应力集中区主要集中在制动盘的刹车面和孔洞周围,而变形较大的区域主要集中在制动盘的孔洞附近。
这些应力集中和变形较大的区域容易导致制动盘的疲劳破裂和变形失效,从而降低了制动效果和制动安全性能。
4. 优化方法探讨为了改善制动盘的结构和性能,采用了参数优化方法进行改进和优化。
首先,对制动盘的材料参数进行优化,选择具有较高抗疲劳性能和热稳定性的材料,以提高制动盘的耐久性和热稳定性。
其次,优化制动盘的几何形状参数,减小制动盘刹车面的应力集中区,降低变形区域的变形值,以提高制动性能和制动安全性能。
5. 优化结果分析通过参数优化方法,得到了改进后的制动盘结构。
与初始结构相比,改进后的制动盘表面应力集中区减小了约20%,变形区域的变形值降低了约15%。
高速动车组制动盘运用现状及发展趋势马鹏飞卢铁鹏(通讯作者)王清章中车青岛四方机车车辆股份有限公司山东青岛266100摘要:高速动车组制动盘根据动车组的运营情况和对速度的不同追求,都有着不同的结构形状和材质的划分。
本文将对高速动车组制动盘的发展历史,现阶段的配置情况以及制动盘的材料和以后的发展趋势进行详细的分析和论述。
关键词:高速动车组;制动盘;运用现状;发展趋势随着经济的高速发展,人们对动车速度的追求也是越来越高。
随着动车时速的提高和能量需求的加强,原来的踏面制动系统已经不能够满足当前速度下对制动系统的要求。
所以高速动车组的制动系统也一直在不断的进行改造和创新。
结合实际,盘形制动系统进入到了高速动车组。
以下将会对盘形制动系统进行更加详细的解说。
一盘形制动系统的概述。
盘形制动系统主要应用与时速高,能量大的轨道车辆。
它们的时速一般都在100公里以上,同时车辆的制动能量也很大,传统的踏面制动系统无法满足这两个条件。
盘形制动系统的采用也是建立在了改造的基础之上的,比如在结构方面,通风式的结构代替了非通风式的结构,轴装结构和轮装结构共存的模式代替了原来的单纯的轴装结构。
再比如在材料方面,也由最早期的铸铁材料向着合金材料进行着发展和改变。
在我国现行的轨道车辆盘形制动系统的材料使用上上,时速160千米是一条分界线,此速度以上运采用的是新型的合金材料,以下用的是普通的合金材料。
合金材料的不同,制动盘的承受能力就不同。
目前最高时速可达400千米的轨道车辆运用的则是承受力更强的新型材料的制动盘。
二高速公车组制动盘的使用现状我国的高速铁路在高速的发展,现在已经拥有时速超过250公里的动车组,并且还自主研发了许多的动车组新车型。
虽然我国的高铁发展很快,但是动车组使用的制动盘产品还是基本靠进口。
“复兴号”的研发成功,标志着我国国产动车组的制造水平已经有了大幅度的提升,因为80%的零件都是国产的,并且制动盘产品都是我国自主研发的。
高速列车制动盘传热特性实验研究高速列车制动盘传热特性实验研究在高速列车的运行过程中,制动系统是至关重要的部分,它保障列车的安全与稳定。
而制动盘的传热特性对制动性能和寿命具有重要影响。
因此,对高速列车制动盘传热特性进行实验研究具有重要的理论与实际意义。
本次实验旨在探究高速列车制动盘在制动工况下的传热特性,并对制动盘的温度分布和传热过程进行分析。
实验所使用的制动盘为上海机车车辆有限公司研发的高速列车制动盘,具备较高的制动性能和热容量。
为了探究制动盘的传热特性,我们首先设计了实验方案。
在制动盘上设置了多个测温点,以测量不同位置的温度变化。
同时,在制动盘周围则布置了多个热电偶以监测空气温度和热交换过程。
该实验采用了机械制动的方式来模拟实际列车制动过程,并通过实验数据分析制动盘的传热过程。
在实验中,我们分别对不同速度下的制动盘进行测试。
首先将制动盘的表面温度均匀升温至某一设定温度,然后制动盘开始受到机械制动,记录下制动盘表面温度随时间的变化。
同时,通过监测制动盘周围的空气温度和热电偶温度,可以了解空气和制动盘之间的温度传导情况。
通过实验数据的分析,我们得到了制动盘表面温度随时间的变化曲线图,同时观察到了制动盘不同位置的温度分布差异。
在刚开始制动时,由于制动盘与制动片间摩擦产生的热量迅速传导到制动盘表面,使其温度迅速上升。
而随着时间的推移,制动盘表面温度变化逐渐趋于稳定,达到一个相对平衡的状态。
此外,通过热电偶监测可以发现,制动盘附近的空气温度也随着制动盘温度的上升而升高,具有较好的热传导性能。
实验结果表明,高速列车制动盘具有良好的传热特性。
制动盘通过与制动片的摩擦来将热量迅速传导至表面,并与周围空气进行热交换。
其表面温度随时间变化的规律符合传热理论。
通过研究制动盘的传热特性,可以为高速列车制动系统的优化提供科学依据。
同时,对于制动盘的材料选择和制动性能的改进也具有一定的指导意义。
综上所述,本次实验通过对高速列车制动盘传热特性的研究,深入了解了制动盘在制动工况下的传热过程。
高速动车组制动盘运用现状及发展趋势下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着我国高速铁路的迅猛发展,高速动车组制动盘作为重要的安全组件,其运用现状及发展趋势备受关注。
高速列车车辆制动系统的刹车盘材料研究与应用随着交通运输的发展和人们对出行的需求不断增长,高速列车的运行速度也越来越快。
在高速列车的运行过程中,制动系统的安全和可靠性成为至关重要的因素。
而作为制动系统中的关键部件之一,刹车盘的材料性能对系统的制动效果和安全性有着直接的影响。
刹车盘是用于制动的重要元件,它负责承受大量的摩擦和热能传递。
因此,刹车盘的材料必须具备高温稳定性、良好的摩擦特性、高强度和优异的耐磨性能,以确保制动过程中的效果和可靠性。
在高速列车的制动系统中,常用的刹车盘材料有钢铁、铸铁、铝合金和复合材料等。
钢铁作为传统的刹车盘材料,具有较高的强度和耐磨性,但存在质量重、散热性能差等问题。
铸铁由于其低成本和制造成型的便利性而被广泛应用,但其强度和耐磨性相对较差。
铝合金则具有较低的密度和较好的散热性能,但其强度和刹车性能相对较弱。
复合材料是近年来发展较快的刹车盘材料,由金属基体和填料复合组成,具有高强度、耐磨性好和良好的散热性能等优点。
针对高速列车制动系统的特殊需求,刹车盘材料的研究与应用方向主要集中在以下几个方面:第一,提高刹车盘材料的热稳定性。
高速列车的制动过程会产生大量的热量,若刹车盘材料的热稳定性不足,则容易引起变形和裂纹,严重影响刹车效果和安全性。
因此,研究人员致力于开发能够在高温条件下保持结构稳定性的刹车盘材料,如高温合金和陶瓷基复合材料等。
第二,优化刹车盘材料的摩擦特性。
刹车盘材料与刹车片之间的摩擦特性直接影响制动效果和刹车系统的稳定性。
研究人员通过调整材料的成分和结构,以提高摩擦系数和摩擦磨损性能,并减少摩擦噪音和振动。
第三,提高刹车盘材料的耐磨性能。
高速列车的持续制动过程对刹车盘的耐磨性提出了更高的要求。
为了提高材料的耐磨性能,可以采用表面改性技术,如表面涂层、表面喷丸处理等,以提高材料的硬度和耐磨性。
第四,研发更轻量化的刹车盘材料。
高速列车的重量是影响其运营效率和能源消耗的重要因素之一。
高铁列车制动技术研究与应用一、引言高铁列车是目前世界上最快的铁路交通工具之一,其高速行驶给列车制动带来了巨大挑战。
高铁列车制动技术的研究与应用对于保障列车运行安全、提高列车制动性能至关重要。
本文将对高铁列车制动技术进行深入研究,探讨其发展趋势、技术挑战及应用前景。
二、高铁列车制动原理1. 制动系统组成高铁列车的制动系统通常包括制动盘、制动钳、液压控制系统、制动传动系统等部件。
制动盘通过制动钳施加制动力,实现列车刹车,液压控制系统通过控制液压油的流动实现对制动盘的控制,制动传动系统将制动力传递给制动盘。
2. 制动原理列车制动的基本原理是利用制动盘与制动钳之间的摩擦力来减速列车。
当制动盘受到制动钳的夹紧时,制动盘会发生摩擦磨损,转动速度逐渐减慢,从而使列车减速停车。
三、高铁列车制动技术研究现状1. 制动系统优化目前,高铁列车制动系统已经取得了显著进展,制动盘材料、制动钳结构、液压控制系统等方面都进行了优化设计,提高了列车的制动性能和安全性。
2. 制动力分配控制针对高速列车制动时容易发生滑行等问题,研究人员提出了制动力分配控制技术,通过智能控制系统实现对各个车轮的制动力分配,提高了列车的稳定性和安全性。
3. 制动辅助系统为了进一步提高高铁列车的制动性能,一些研究机构开始研究制动辅助系统,如防抱死系统、紧急制动系统等,用于提供额外的制动支持,确保列车在紧急情况下能够及时停车。
四、高铁列车制动技术面临的挑战1. 高速运行下的摩擦磨损高铁列车高速行驶时,制动系统面临着摩擦磨损的问题,制动盘和制动钳的寿命将受到影响,需要研究新型材料和润滑技术来解决这一问题。
2. 制动力分配精准性制动力分配控制技术需要准确控制各个车轮的制动力,避免出现滑行和侧滑等问题,这对制动系统的智能化和精准度提出了更高的要求。
3. 制动系统安全可靠性列车制动系统的安全性和可靠性是关乎列车运行安全的重要因素,需要进行深入研究和测试,确保列车在各种情况下都能够及时有效地刹车。
碳陶复合材料在高速列车制动上的应用前景摘要:论述了铸铁、钢质、铝基复合材料、碳/碳复合材料、碳陶复合材料制动盘的优缺点,介绍了碳陶制动盘的研究进展,指出了碳陶复合材料在高速列车制动上的应用前景。
关键词:制动盘;碳陶复合材料;高速列车1 引言制动盘的材质经历了特种铸铁、钢质,随着高速列车运营速度的不断提升,制动盘的热负荷能力和重量已经成为高速列车进一步提速的制约因素。
当高速列车运营速度达到400km/h及以上时,制动盘温度将超过700℃,此时钢质制动盘在反复使用过程中会多次回火,材料组织发生相变,导致制动盘出现热裂纹甚至开裂脱落,其使用寿命大幅度降低,并存在极大的安全隐患。
为满足更高运行速度下的制动盘热负荷要求及达到轻量化目的,急需寻找新型制动材料如铝基复合材料、碳/碳复合材料、碳陶复合材料等。
2 不同材质制动盘的优缺点2.1 铸铁自1935年法国采用盘形制动代替踏面制动以来,铸铁作为摩擦制动材料在列车制动装置中的应用已有一百多年的历史。
铸铁制动盘的制造工艺成熟,易于成型,且价格低廉,但由于其耐受温度低、耐磨性差、抗热龟裂性差,目前主要在低速车辆和地铁车辆上使用。
2.2 铸钢与锻钢20世纪50年代,法国、德国、日本等国家的高速列车开始使用铸钢制动盘。
铸钢制动盘的优点在于其利用铸造成型工艺可制造出带有散热筋的盘体,盘体散热性好,同时其凝固组织为等轴晶,抗热龟裂性能和耐磨性能良好,耐热性亦强于铸铁。
与铸钢制动盘相比,锻钢制动盘具有更高的力学性能、抗热龟裂性能和耐热疲劳性能,但由于采用锻造成型,其结构受到很大限制。
目前,在高速列车上广泛使用铸钢或锻钢制动盘。
但当制动盘温度高于700℃时,钢质制动盘材料会发生相变,可能会导致出现裂纹。
2.2 铝基复合材料铝基复合材料主要由金属基体材料和增强材料通过搅拌铸造、粉末冶金、无压渗透、喷射沉积等方法组合而成。
金属基体材料可以是纯铝也可以是铝合金,增强材料主要有纤维、晶须以及颗粒。
高速动车组制动盘运用现状及发展趋势摘要:我国高速动车组已经发展超过十年,其中盘形制动系统中有铸铁制动盘、铸钢制动盘、锻钢制动盘以及即将要运用的碳陶制动盘等复合材料制动盘,制动盘运用主要取决于制动能量的大小,简单的说,与动车组制动速度和载荷情况密切相关,需要严格计算校核选型,使得每种制动盘都能发挥其应有的作用。
随着更高速度的动车组研制,各种新材料制动盘也将登上历史舞台,为高速动车组的发展提供技术支撑。
关键词:高速动车组;制动盘;现状;发展趋势盘形基础制动系统主要运用于时速100公里及以上轨道车辆用基础制动系统中,由于此类车型制动能量较大,原有的踏面制动已经无法满足车辆制动能力要求。
而随着制动车速的不断提升,制动盘结构方面也从轴装非通风式向通风式结构发展,同时也由早期的轴装结构发展到现在轴装结构和轮装结构共存的状态;制动盘材料方面已经由最早的灰铸铁材料、低合金铸铁材料、蠕墨铸铁、合金铸铁、合金钢材料等发展。
当前,在城轨车辆和时速低于160km/h的铁路客车中制动盘运用一般为通风式灰铸铁或者蠕墨铸铁材料;而在时速160km/h以上速度级动车组中普遍采用合金钢制动盘,而处于科技前沿的时速400公里以上速度等级的动车组制动盘将使用制动能量承受能力更为强大的新材料制动盘。
1动车组制动盘配置现状1.1引进动车组配置情况我国动车组引进国外成熟动车组车型,主要包括CRH1、CRH2、CRH3、CRH5等动车组车型。
CRH1为四方庞巴迪引进车型,该车初期运营速度为200km/h,该车型制动盘采用铸铁制动盘,动车每轴采用2套轮装制动盘,拖车每轴采用3个轴装制动盘,在改进型CRH1-250动车组上,制动盘均换成铸钢材料,其轮盘采用中心孔连接方式,轴盘为整体铸造通风结构结构。
CRH2为四方股份引进的日本的动车组车型,其运营最高速度可达300km/h以上,其制动盘配置为动车每轴采用2套轮装制动盘,拖车每轴采用2套轮装和2套轴装制动盘,制动盘材料均为锻钢,而且其轴装制动盘采用了分体式的结构,此种结构主要便于更换,其制动盘连接结构采用制动盘内侧连接爪连接,这是与其它车型最大的不同。
高速列车粉末冶金制动闸片的制备与摩擦磨损性能研究1. 本文概述随着高速列车技术的迅速发展,制动系统作为列车安全运行的关键组成部分,其性能的优化和提升日益受到重视。
高速列车制动系统通常采用粉末冶金制动闸片,因其具有优异的摩擦磨损性能、较高的热稳定性和良好的耐久性。
本文旨在研究高速列车粉末冶金制动闸片的制备工艺及其摩擦磨损性能,以期为高速列车制动系统的优化设计提供科学依据和技术支持。
本文将综述高速列车粉末冶金制动闸片的发展背景、研究现状和关键性能指标,明确研究的必要性和重要性。
随后,详细介绍粉末冶金制动闸片的制备工艺,包括原材料的选择、粉末混合、压制和烧结等关键步骤,探讨各工艺参数对制动闸片性能的影响。
在此基础上,本文将重点研究粉末冶金制动闸片的摩擦磨损性能。
通过设计一系列摩擦磨损试验,分析不同工况下制动闸片的摩擦系数、磨损率和摩擦表面的微观形貌,揭示其摩擦磨损机制。
本文还将考察制动闸片的热稳定性和耐久性,评估其在高速列车制动过程中的性能表现。
最终,本文将综合实验结果,提出优化高速列车粉末冶金制动闸片性能的方案和建议,为高速列车制动系统的安全、高效运行提供科学依据和技术支持。
通过本研究,期望能够推动高速列车制动技术的发展,为我国高速列车制动系统的自主研发和性能提升贡献力量。
2. 制动闸片材料的选择与制备制动闸片作为高速列车的重要安全部件,其材料的选择与制备工艺对列车的运行安全和制动性能具有决定性的影响。
本研究中,我们经过深入调研和试验,最终选择粉末冶金工艺制备制动闸片。
粉末冶金工艺能够制备出具有优良机械性能和摩擦磨损性能的复合材料,且易于实现材料的均匀分布和微观组织的优化。
在材料选择上,我们主要考虑了材料的硬度、耐磨性、抗热衰退性和热稳定性等因素。
通过对比分析,我们选择了以铁基粉末为基体,添加适量的铜、石墨、二硫化钼等润滑剂,以及稀土元素进行强化的复合材料。
这种材料组合既保证了制动闸片具有较高的硬度和耐磨性,又能够减少制动过程中的摩擦热,防止制动热衰退。
摘要利用激光熔覆技术强化高速列车制动盘是提高列车车速、保证制动性能的一种有效方式和手段。
激光熔覆技术的优点是可以制备出性能良好的耐磨层,缺点是制造过程中会在表面生成氧化皮和残渣,如果多层激光熔覆表面杂质未清理,则会降低激光熔覆层的性能。
因此本文首先采用铁基合金粉末制备高速列车制动盘激光熔覆层,然后设计组装了一套减材铣削熔覆层的装置,最后采用增减材相结合成形了实体高速列车制动盘。
首先,参照国内外制动盘材质及服役要求设计了一种新型激光熔覆铁基合金粉末,利用正交实验法研究了激光熔覆工艺参数,结果表明扫描速度影响最大,激光功率影响较小,送粉量影响最小,并得到最佳工艺参数功率为600w,扫描线速度4.5mm/s,送粉电压转数6r/min,进而又研究了不同的单道搭接率对制动盘激光熔覆层的影响,结果显示60%单道搭接率表面平整,同时无裂纹。
激光熔覆试样组织为细小均匀的板条状马氏体,显微硬度为359.68HV;抗拉强度为1172MPa,延伸率在12.1%左右,拉伸断口存在大量的第二相强化粒子;摩擦因子为0.339,磨损机制为疲劳磨损和氧化磨损的混合形式,主要性能指标均满足高速列车使用要求。
其次,为去除激光熔覆沉积表层的氧化皮及残渣,设计开发出一套自动减材装置。
利用底座、运动轴、龙门架和电钻完成了运动装置的组装,并使用Workbench对装置稳定性进行模拟,装置整体稳定性良好,满足减材加工要求;利用控制卡、驱动器和相应的电机、电路完成了硬件系统的搭建,实现了对减材装置的运动和铣削控制;利用减材装置进行增减材制造的对比实验,结果表明减材后的试样表面质量得到改善,内部的层间夹杂变窄,激光熔覆层在刀具作用下发生加工硬化,导致熔覆层硬度提高,熔覆层内外质量均满足制动盘要求。
最后,采用ANSYS有限元软件对制动盘的成形路径进行优化,利用生死单元技术模拟熔覆层的生长过程,内部生成热源的方式模拟激光能量,整个盘体分成6、8、12块扇形进行对序和顺序模拟。