六年级数学知识树(分数除法)
- 格式:ppt
- 大小:328.50 KB
- 文档页数:12
六年级上册的分数除法主要涉及以下几个知识点:
1. 分数的除法概念:理解分数除法的意义和定义,即将一个分数(被除数)平均分成几等份,每份是多少(除数),求解每份的结果(商)。
2. 整数除以分数:将整数除以分数的情况转化为乘法,并进行简化计算。
例如,计算4 ÷1/2,可以转化为4 × 2 = 8的形式。
3. 分数除以整数:将分数除以整数的情况转化为乘法,并进行简化计算。
例如,计算3/4 ÷2,可以转化为3/4 ×1/2 = 3/8的形式。
4. 分数除以分数:将分数除以分数的情况转化为乘法,并进行简化计算。
需要注意分子与分子相乘,分母与分母相乘。
例如,计算2/3 ÷1/4,可以转化为2/3 ×4/1 = 8/3的形式。
5. 分数除法的混合运算:在分数除法的题目中,可能会涉及到加减乘除的混合运算。
需要按照运算的优先级进行计算,或者使用括号来改变运算顺序。
在学习分数除法时,建议学生掌握分数的基本概念和运算规则,
理解除法的概念和意义。
同时进行大量的练习,熟练掌握各种情况下的计算方法和技巧。
通过实际问题的应用,培养学生解决实际问题的能力。
六年级分数除法知识点
在学习分数的除法时,六年级学生通常需要掌握以下几个知识点:
一、分数间的除法
1. 定义:分数的除法是将一个分数的分母和一个分数的分子分别相乘,将其乘积得到的结果是一个新的分数。
2. 计算:先将两个分数的分子(分母)相乘,再将乘积作为新分数的分子(分母),就得到了这两个分数相除的结果。
3. 例题:求$\frac{2}{3} \div \frac{3}{4}$
解答:$\frac{2}{3} \div \frac{3}{4} = \frac{2 \times 4}{3 \times 3} =
\frac{8}{9}$
二、数值和分数的除法
1. 定义:将数值和分数的相除,即将分子相乘,将乘积作为新分数的
分子,分母则将数值乘以分母作为新分数的分母,便可得到这两者的
除结果。
2. 计算:由定义可知,计算和数值相乘可以将分数转换为一般分数表
达式;而计算数值和分数相除,可以将数值转换为分数表达式,便于
进行计算。
3. 例题:求$3\div \frac{1}{2}$
解答:$3\div \frac{1}{2} = \frac{3 \times 2}{1 \times 2} = \frac{6}{2} =
3$
三、分数的倒数
1. 定义:将一个分数的分子和分母调换,得到一个新的分数,这就叫做原分数的倒数(inverse)。
2. 运算:倒数运算与除法运算的关系:除法的倒数等于相乘,乘法的倒数等于相除。
3. 例题:求$\frac{9}{12}$的倒数
解答:$\frac{9}{12}$的倒数 $= \frac{12}{9}$。
六年级上知识点分数除法分数除法是六年级上的重要知识点之一,它主要涉及到分数的除法运算。
在这篇文章中,我们将详细介绍分数除法的规则和计算方法。
一、分数的除法规则1. 如果两个分数的除数相同,那么除法的结果是分子相除,并将结果的分子作为新的分子,分母不变。
例如,计算1/3 ÷ 1/3:分子相除得到1 ÷ 1 = 1,所以1/3 ÷ 1/3 = 1。
2. 如果两个分数的除数不同,那么除法的结果是将被除数乘以除数的倒数,也就是换算成乘法运算。
例如,计算4/5 ÷ 2/3:将除号变为乘号,同时将除数取倒数,即变为4/5 × 3/2;然后进行分子和分母的乘法运算,得到12/10;最后将分数化简,得到6/5。
二、分数除法的计算方法1. 当两个分数的除数相同时,可以直接相除得到结果。
例如,计算2/3 ÷ 2/3:分子相除得到2 ÷ 2 = 1,所以2/3 ÷ 2/3 = 1。
2. 当两个分数的除数不同,可以按照换算成乘法的方法进行计算。
例如,计算3/4 ÷ 1/2:将除号变为乘号,同时将除数取倒数,即变为3/4 × 2/1;然后进行分子和分母的乘法运算,得到6/4;最后将分数化简,得到3/2。
三、分数除法的简化运算在进行分数除法运算时,通常需要将最后的结果进行简化,即将结果的分子和分母约分到最简形式。
例如,计算5/8 ÷ 5/6:将除号变为乘号,同时将除数取倒数,即变为5/8 × 6/5;进行分子和分母的乘法运算,得到30/40;将分数化简,得到3/4。
四、分数除法的运用分数除法在日常生活中有很多实际的运用,比如计算比例、找零钱等。
例如,小明买了一张20元的电影票,他想和朋友平分开销,朋友付了10元给他,那么小明需要找给他的朋友多少零钱呢?首先计算每个人应该付的金额,即20元 ÷ 2人 = 10元;然后计算需要找零多少,即10元 - 10元 = 0元,不需要找零。
二、分数除法一、分数除法1、分数除法的意义:乘法:因数×因数 = 积除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X ,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就 一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:① 求多几分之几:大数÷小数 – 1② 求少几分之几: 1 - 小数÷大数三、比和比的应用(一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=23(比值通常用分数表示,也可以用小数或整数表示)∶ ∶ ∶ ∶前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
六年级数学知识点:第三单元分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数divide;除数=被除数times;除数的倒数。
例 divide;3= times; = 3divide; =3times; =52、除法转化成乘法时,被除数一定不能变,“divide;”变成“times;”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:adivide;b=c 当bgt;1时,c②除以小于1的数,商大于被除数:adivide;b=c 当blt;1时,cgt;a (ane;0 bne;0)③除以等于1的数,商等于被除数:adivide;b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(ab)divide;c=adivide;cbdivide;c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12divide;20= =0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
六年级数学上册分数除法知识点一、分数除法的意义分数除法是分数乘法的逆运算。
已知两个因数的积与其中一个因数,求另一个因数的运算。
二、分数除法的计算法则1. 甲数除以乙数(0 除外),等于甲数乘乙数的倒数。
2. 分数除法的结果要化成最简分数。
三、分数混合运算1. 分数混合运算的顺序与整数混合运算的顺序相同。
- 先乘除,后加减。
- 有括号的先算括号里面的。
2. 整数的运算定律对于分数同样适用。
- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 乘法交换律:a×b = b×a- 乘法结合律:(a×b)×c = a×(b×c)- 乘法分配律:(a + b)×c = a×c + b×c四、“已知一个数的几分之几是多少,求这个数”的问题1. 解题方法:用方程解,设这个数为 x,根据数量关系式列方程解答。
2. 数量关系式:单位“1”的量×几分之几 = 已知量五、“比一个数多(或少)几分之几的数是多少”的问题1. 解题方法:先求出多(或少)的部分,再用单位“1”的量加(或减)。
2. 也可以先求出这个数是单位“1”的几分之几,再用单位“1”的量乘这个分率。
六、工程问题1. 把工作总量看作单位“1”。
2. 工作效率 = 工作总量÷工作时间3. 工作时间 = 工作总量÷工作效率工作总量 = 工作效率×工作时间例如:一项工程,甲单独做需要 5 天完成,乙单独做需要 6 天完成,甲的工作效率是 1÷5 = 1/5,乙的工作效率是 1÷6 = 1/6,甲乙合作需要的时间是 1÷(1/5 + 1/6)= 30/11(天)。
分数除法六年级上册知识点分数除法是六年级上册数学学习的重要知识点之一。
在这个学习阶段,学生将进一步掌握分数除法的概念、技巧和应用。
本文将全面介绍六年级上册分数除法的相关知识点。
一、分数除法的概念分数除法是指在分数运算中,将一个分数除以另一个分数,得出商的过程。
在进行分数除法时,我们可以将除法看作乘法的逆运算,即将被除数乘以倒数来求得商。
例如,如果我们要计算 3/4 ÷ 1/2,可以转化为 3/4 × 2/1,最终得到 6/4,即 1 2/4 或 1 1/2。
二、分数除法的基本技巧1.将除法转化为乘法:如上面的例子所示,为了进行分数除法,我们将除法问题转化为乘法问题,然后求得乘积。
这种转化可以简化计算,并减少出错的可能性。
2.化简分数:在进行分数除法时,我们可以对分数进行化简,即约分。
将分子和分母的公约数都约去,得到最简分数,方便计算。
3.注意整数的运算:当分数除法中存在整数时,我们需要将整数转化为分数,并进行适当的运算。
例如,5 ÷ 3/4 可以转化为 5/1 ÷ 3/4,最终得到 20/3,即 6 2/3。
三、分数除法的应用分数除法在实际生活中有广泛的应用。
以下是一些例子:1.食谱调整:假设我们有一份食谱,该食谱是根据四人份量编写的,但我们只需要两人份。
我们可以使用分数除法来调整食材的比例,以确保做出的食物适量合理。
2.分享物品:假设你有一块巧克力,你想和朋友一起分享。
你可以使用分数除法来确定每个人分得的比例,确保公平分享。
3.比较与排序:在数学考试中,我们经常需要将分数进行比较与排序。
通过进行分数除法,我们可以将分数转化为小数,从而方便计算与比较。
四、总结分数除法是六年级上册的重要知识点,掌握好分数除法的概念、技巧和应用,对于学生进一步提高数学运算能力至关重要。
通过转化为乘法、化简分数和注意整数运算等基本技巧,学生可以更加熟练地进行分数除法运算。
同时,了解分数除法的实际应用,可以帮助学生将所学知识与日常生活相结合,提高数学的实际运用能力。
1.常识:除法是数学四则运算的一种,用来表示将一个数分成几等份的操作。
被除数是要被分成若干等份的数,除数是确定分成的份数,商是每份的数值,余数是无法整除时剩下的数。
2.分子和分母:分数由分子和分母构成,分子表示等份中的份数,分母表示总共分成的份数。
例如,2/6中,2是分子,表示分成的份数,6是分母,表示总共分成的份数。
3.除法的表示:除法可以用分数表示,即被除数除以除数等于商。
例如,12除以3可以表示为12/3或写成带分数44.改写为带分数:当一个分数的分子大于分母时,可以将其改写为带分数的形式。
例如,10/3可以写成31/35.整数的除法:整数的除法可以看作是分母为1的分数的除法。
6.真分数和假分数:分子比分母小的分数叫做真分数,分子比分母大的分数叫做假分数。
7.与整数的关系:一个大于1的假分数可以化为一个带分数,也可以化为一个混合数。
化为带分数时,可以先将分子除以分母,得到一个整数和一个真分数。
化为混合数时,可以将分子除以分母,得到一个整数和一个分子为余数的真分数。
8.几个特殊除法的情况:a.被除数为0:被除数为0时,任何数除以0的结果都是无定义的。
b.除数为0:除数为0时,任何数除以0的结果都是无穷大或无穷小。
c.被除数和除数都为0:被除数和除数都为0时,结果是未定义的。
d.整数除法:整数除法具有向下取整的特点。
例如,7除以2等于3,因为3乘以2等于6,小于7,而4乘以2等于8,大于79.除法的运算性质:a.交换律:a除以b等于b除以a。
b.结合律:a除以b再除以c等于a除以(b乘以c)。
c.分配律:a除以(b加c)等于a除以b加a除以c。