第八章虚拟变量参考答案
- 格式:doc
- 大小:123.00 KB
- 文档页数:4
第八章练习题及参考解答8.1 Sen 和Srivastava (1971)在研究贫富国之间期望寿命的差异时,利用101个国家的数据,建立了如下的回归模型:2.409.39ln3.36((ln 7))i i i i Y X D X =-+--(4.37) (0.857) (2.42) R 2=0.752其中:X 是以美元计的人均收入;Y 是以年计的期望寿命;Sen 和Srivastava 认为人均收入的临界值为1097美元(ln10977=),若人均收入超过1097美元,则被认定为富国;若人均收入低于1097美元,被认定为贫穷国。
括号内的数值为对应参数估计值的t-值。
1)解释这些计算结果。
2)回归方程中引入()ln 7i i D X -的原因是什么?如何解释这个回归解释变量? 3)如何对贫穷国进行回归?又如何对富国进行回归? 4)从这个回归结果中可得到的一般结论是什么? 练习题8.1参考解答: 1. 结果解释依据给定的估计检验结果数据,对数人均收入对期望寿命在统计上并没有显著影响,截距和变量()ln 7i i D X -在统计上对期望寿命有显著影响;同时,()()2.40 3.3679.39 3.36ln ((ln 7)) 1 2.409.39ln 0 i i i i i i i X D X D Y X D ⎧-+⨯+---==⎨-+=⎩富国时穷国时 表明贫富国之间的期望寿命存在差异。
2. 回归方程中引入()ln 7i i D X -的原因是从截距和斜率两个方面考证收入因素对期望寿命的影响。
这个回归解释变量可解释为对期望寿命的影响存在截距差异和斜率差异的共同因素。
3. 对穷国进行回归时,回归模型为12ln 1097i i i i i i Y X Y X αα=+≤,其中,为美元时的寿命; 对富国进行回归时,回归模型为12ln 1097i i i i i i Y X Y X ββ=+>,其中,为美元时的寿命;4. 一般的结论为富国的期望寿命药高于穷国的期望寿命,并且随着收入的增加,在平均意义上,富国的期望寿命的增加变化趋势优于穷国,贫富国之间的期望寿命的确存在显著差异。
第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。
加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
2. 虚拟变量有哪几种基本的引入方式?它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。
如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。
这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。
4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。
试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2)来自欠发达城市地区的男生,得到奖学金;(3)来自发达地区的农村女生,得到奖学金;(4)来自发达地区的城市男生,未得到奖学金。
解答:记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1)来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|=X i,D1i=D2i=D3i=D4i=0)=β0+β1X i(2)来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|=X i,D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3)来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |=X i ,D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4)来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |=X i ,D 2i =D 3i =D 4i =1,D 1i =0)=(β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。
第八章一、名词解释1、虚拟变量:在建立模型时,有一些影响经济变量的因素无法定量描述,如职业、性别对收入的影响,教育程度,季节因素等往往需要用定性变量度量。
为了在模型中反映这类因素的影响,并提高模型的精度,需要将这类变量“量化”。
根据这类边另的属性类型,构造仅取“0”或“1”的人工变量,通常称这类变量为“虚拟变量”2、虚拟变量陷阱:一般在引入虚拟变量时要求如果有m个定性变量,字在模型中引入m-1个虚拟变量。
否则,如果引入m个虚拟变量,就会导致模型解释变量间出现完全共线性的情况。
我们一般称由于引入虚拟变量个数与定性因素个数相同出现的模型无法估计的问题,称为“虚拟变量陷阱”二、单项选择题1、B:“地区”一个,“季节”三个2、A:将D=1代入估计后的方程即可3、D:“季节”包含4个类型,只能用3个虚拟变量,用4个虚拟变量会出现完全多重共线的问题,参数将无法估计4、C:“地区”只有两个类别,引入两个虚拟变量会出现完全多重共线问题5、A:1α体现了城镇和农村截距上的差异,1β体现了城镇和农村斜率上的差异,当它们为0时,表示无差异6、A:斜率相同,仅截距不同7、D:此问题表现为1000前后斜率的变化,B表示截距的变化,不合适;C在D=0时没有解释变量,不正确;A和D相比,D更合适,A会造成曲线在临界值出断开,但D会保证曲线的连贯的。
8、A:虚拟变量表示性别、季节等时,只表示属性的不同,没有等级之分,作为质的因素;表示收入高低时,高与低是有级别的,属于有序数据,可以表示数量的因素。
9、A/B:这题比较牵强,按书上原话应该选择B;但当用加法引入虚拟变量时,会存在问题。
【当用加法形式引入虚拟变量时,用一个虚拟变量作为截距项,取值全部为1;其他m-1个表示该因素的前三个类型。
如果不引入截距项,当虚拟变量都取0时不能解释该因素第四个类型的作用。
】10、D :概念性三、多项选择题1、B C D :A 太绝对,也可以表示数量因素;E 太绝对2、ABCDE :A 加法方式;B 乘法方式;C 临界指标的虚拟变量;D 在ABC 基础上可构造分段回归3、AB :C 当虚拟变量取0或2时,过程一样,但参数的意义稍作调整;D 见书P207倒数第二段。
第八章 虚拟变量回归一、判断题1。
虚拟变量只能作为解释变量.(F)2。
引入虚拟变量后,用普通最小二乘法得到的估计量仍是无偏的。
( T )3.引入虚拟变量的个数与模型有无截距项无关.(F )4。
虚拟变量用来表示某些具有若干属性的变量.(T)5。
引入虚拟变量的个数与样本容量大小有关。
(F )二、单项选择题1.设消费函数011t t t y a a D b x u =+++,其中虚拟变量10D ⎧=⎨⎩东中部西部,如果统计检验表明10a =成立,则东中部的消费函数与西部的消费函数是( D ).A. 相互平行的 B 。
相互垂直的 C. 相互交叉的 D 。
相互重叠的2.虚拟变量( A )A 。
主要来代表质的因素,但在有些情况下可以用来代表数量因素B 。
只能代表质的因素C 。
只能代表数量因素D.只能代表季节影响因素3。
分段线性回归模型的几何图形是( D )A 。
平行线 B. 垂直线 C 。
光滑曲线 D. 折线4.如果一个回归模型中(包含截距项),对一个具有m 个特征的质的因素要引入虚拟变量数目为( B ).A.m B 。
m-1 C 。
m —2 D.m+15.设某商品需求模型为01t t t y b b x u =++,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为( D )。
A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性6.设消费函数为i i i 33i 22i 11o i u bx D D D y +++++=αααα,其中y 为消费,x 为收入,虚拟变量⎩⎨⎧=⎩⎨⎧=⎩⎨⎧=其他季度第三季度,其他季度第二季度,其他季度第一季度 0 0 0 321D 1D 1D 1,该模型中包含了几个定性影响因素?( A )。
A 。
1B 。
2C 。
3D 。
47。
设消费函数为i i i o i u Dx b x b D y ++++=101αα,其中虚拟变量⎩⎨⎧=农村家庭城镇家庭 0 1D ,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为( A ).A 。
第八章虚拟解释变量回归第一节虚拟变量一、虚拟变量的差不多概念在前面的分析中,被说明变量要紧受到一些能够直截了当度量的变量阻碍,如收入、产出、商品需求量、价格、成本、资金、人数等。
但现实经济生活中,阻碍被说明变量变动的因素,除了这些能够直截了当获得实际观测数据的定量变量外,还包括一些本质上为定性因素(或称属性因素)的阻碍,例如性别、种族、肤色、职业、季节、文化程度、战争、自然灾难、政府经济政策的变动等因素。
在实际经济分析中,这些定性变量有时具有不可忽视的重要阻碍。
例如,研究某个企业的销售水平,产业部门(制造业、零售业)、所有制(私营、非私营)、地理位置(东、中、西部)、治理者素养的高低等是值得经常考虑的阻碍因素,这些因素有共同的特点,即差不多上表示某种属性的,不能直截了当用数据精确描述的因素。
因此,被说明变量的变动经常是定量因素和属性因素共同作用的结果。
在计量经济模型中,应当同时包含定量和属性两种因素对被说明变量的阻碍作用。
定量因素是指那些可直截了当测度的数值型因素,如GDP、M2等。
定性因素,或称为属性因素,是不能直截了当测度的、说明某种属性或状态存在与否的非数值型因素,如男性或女性、都市居民或非都市居民、气候条件正常或专门、政府经济政策不变与改革等。
在计量经济学的建模中应当将定量因素和定性因素同时纳入模型之内。
为了在模型中反映定性因素,能够将定性因素转化为虚拟变量去表现。
虚拟变量(或称为属性变量、双值变量、类型变量、定性变量、二元型变量等),是人工构造的取值为0和1的作为属性变量代表的变量,一样用字母D(或DUM,英文dummy的缩写)表示。
属性因素通常具有若干类型或水平,通常虚拟变量的取值为0和1,当虚拟变量取值为0,即D=0时,表示某种属性或状态不显现或不存在,即不是某种类型;当虚拟变量取值为1,即D=1时,表示某种属性或状态显现或存在,即是某种类型。
例如,构造政府经济政策人工变量,当经济政策不变时,虚拟变量取值为0,当经济政策改变时,虚拟变量取值为1。
第八章虚拟变量实验报告一、研究目的改革开放以来, 我国经济保持了长期较快发展, 我国对外贸易规模也日益增长。
尤其是2002年中国加入WTO之后, 我国对外贸易迅速扩张。
2012年, 我国进出口总值38667.6亿美元, 与上年同期相比增长6.2%, 我国贸易总额首次超过美国, 成为世界贸易规模最大的国家。
为了考察我国对外贸贸易与国内生产总值的关系是否发生变化, 以国内生产总值代表经济整体发展水平, 以对外贸易总额代表对外贸易发展水平, 分析我国对外贸易发展受国内生产总值的影响程度。
二、模型设定为研究我国对外贸易发展规模受我国总体经济发展程度影响, 引入国内生产总值为自变量。
设定模型为:+β1X t+ U tY t=β参数说明:Yt——对外贸易总额(单位: 亿元)Xt——国内生产总值(单位: 亿元)U t——随机误差项收集到数据如下(见表2-1)1993 11271 35333.92 2007 166740.2 265810.31 1994 20381.9 48197.86 2008 179921.5 314045.43 1995 23499.9 60793.73 2009 150648.1 340902.81 1996 24133.8 71176.59 2010 201722.1 401512.8 1997 26967.2 78973.03 2011 236402 472881.56 1998 26693.823 73617.66322注: 资料来源于《中国统计年鉴》1986-2012。
为了研究1985-2011年期间我国对外贸易总额随国内生产总值的变化规律是否有显著不同, 考证对外贸易与国内生产总值随时间变化情况, 如下图所示。
图2-1 对外贸易总额(Y)与国内生产总值(X)随时间变化趋势图从图2-1中, 可以看出对外贸易总额明显表现出了阶段特征: 在2002年、2007年和2009年有明显的转折点。
虚拟变量习题一、 单项选择题1、 若一个回归模型包含截距项,对一个具有m 个特征的质的因素需要引入的虚拟变量个数为( B )A.m-2B.m-1C.mD.m+12、 某商品需求函数为:Y i =β0+β1X i +μi ,其中Y为需求量,X 为价格,为了考虑“性别”(男性、女性)和“地区”(东部、中部、西部)两个因素的影响,考虑引入虚拟变量,则应引入虚拟变量的个数为( 3 )A. 5B. 4C. 3D. 23、 消费函数Y i =α0+α1D+β0X i +β1DX i +μi ,其中虚拟变量D=⎩⎨⎧农村家庭城镇家庭01,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为( A )A. α1=0, β1=0B. α1=0, β1≠0C. α1≠0, β1=0D. α1≠0, β1≠04、 根据样本资料建立某消费函数如下:ˆ100.5055.350.45t tC D X =++,其中C 为消费,X 为收入,虚拟变量 1 D 0 ⎧=⎨⎩城镇家庭农村家庭,所有参数均检验显著,则城镇家庭的消费函数为 ( C )A 、ˆ155.850.45t t C X =+B 、ˆ100.500.45t tC X =+ C 、ˆ100.5055.35t t C X =+D 、ˆ100.9555.35t tC X =+5、 假设某需求函数为01i i i Y X ββμ=++,为了考虑“季节”因素(春、夏、秋、冬四个不同的状态),引入4个虚拟变量形成截距变动模型,则模型的 ( D )A 、参数估计量将达到最大精度B 、参数估计量是有偏估计量C 、参数估计量是非一致估计量D 、参数将无法估计6、 对于模型01i i i Y X ββμ=++,为了考虑“地区”因素(北方、南方),引入2个虚拟变量形成截距变动模型,则会产生 ( A )A 、序列的完全相关B 、序列的不完全相关C 、完全多重共线性D 、不完全多重共线性7、 设消费函数01i i i Y D X ααβμ=+++,其中虚拟变量 1 D 0 ⎧=⎨⎩北方南方,如果统计检验表明11α=成立,则北方的消费函数与南方的消费函数是 ( A )A 、相互平行的B 、相互垂直的C 、相互交叉的D 、相互重叠的8、 假定月收入水平在1000元以内时,居民边际消费倾向维持在某一水平,当月收入水平达到或超过1000元时,边际消费倾向将明显下降,则描述消费(C )依收入(I )变动的线性关系宜采用 ( D )A 、0120, 1t t t t C I DI D αββμ⎧=+++=⎨≥⎩ I<1000元 I 1000元B 、0120, 1t t tCD I D αββμ⎧=+++=⎨≥⎩I<1000元 I 1000元 C 、**010(), 1000, 1t t t C I I D I D αβμ⎧=+-+==⎨≥⎩I<1000元元 I 1000元 D 、**0120(), 1000, 1t t t t C I I I D I D αββμ⎧=++-+==⎨≥⎩ I<1000元元 I 1000元 9、 虚拟变量 ( B )A 、可以取1或者2B 、只能代表质的因素C 、只能代表数量因素D 、只能代表季节影响因素10、 由于引入虚拟变量,回归模型的截距项和斜率都发生变换,则这种模型称为 ( D )A 、平行模型B 、重合模型C 、汇合模型D 、相异模型二、多项选择题1、关于虚拟变量,下列表述正确的有 ( BC )A 、是质的因素的数量变化B 、一般情况下取值为1和0C 、代表质的因素D 、在有些情况下可以代表数量因素E 、代表数量因素2、在线性模型中引入虚拟变量,可以反映 ( ABCD )A 、截距项变动B 、斜率变动C 、截距项和斜率同时变动D 、分段回归3、关于虚拟变量设置原则,下列表述正确的有 ( ABCD )A 、当定性因素有m 个类别时,引入m-1个虚拟变量B 、当定性因素有m 个类别时,引入m 个虚拟变量,会产生多重共线性问题C 、虚拟变量的值只能去0和1D 、在虚拟变量的设置中,基础类别一般取值为0三、判断题1、在回归模型012i i i i Y X D βββμ=+++中,如果虚拟变量i D 的取值为0或2, 而非通常情况下的0或1,那么,参数0β、1β、2β的估计值将减半。
第八章 虚拟变量回归一、判断题1.虚拟变量只能作为解释变量。
(F )2. 引入虚拟变量后,用普通最小二乘法得到的估计量仍是无偏的。
( T )3.引入虚拟变量的个数与模型有无截距项无关。
(F )4.虚拟变量用来表示某些具有若干属性的变量。
(T )5.引入虚拟变量的个数与样本容量大小有关。
(F )二、单项选择题1.设消费函数011t t t y a a D b x u =+++,其中虚拟变量10D ⎧=⎨ ⎩东中部西部,如果统计检验表明10a =成立,则东中部的消费函数与西部的消费函数是( D )。
A. 相互平行的B. 相互垂直的C. 相互交叉的D. 相互重叠的2.虚拟变量( A )A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素3.分段线性回归模型的几何图形是( D )A. 平行线B. 垂直线C. 光滑曲线D. 折线4.如果一个回归模型中(包含截距项),对一个具有m 个特征的质的因素要引入虚拟变量数目为( B )。
A.mB.m-1C.m-2D.m+15.设某商品需求模型为01t t t y b b x u =++,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为( D )。
A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性6.设消费函数为i i i 33i 22i 11o i u bx D D D y +++++=αααα,其中y 为消费,x 为收入,虚拟变量⎩⎨⎧=⎩⎨⎧=⎩⎨⎧=其他季度第三季度,其他季度第二季度,其他季度第一季度 0 0 0 321D 1D 1D 1,该模型中包含了几个定性影响因素?( A )。
A.1B. 2C. 3D. 47. 设消费函数为i i i o i u Dx b x b D y ++++=101αα,其中虚拟变量⎩⎨⎧=农村家庭城镇家庭 0 1D ,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为( A )。
练习题8.1参考解答:(1)在其它条件不变的情况下,对数人均收入提高1%,则平均预期寿命可能提高约0.0939年。
但从统计检验结果看,对数人均收入lnX 对期望寿命Y 的影响并不显著。
方程的拟合情况良好,可进一步进行多重共线性等其他计量经济学的检验。
(2)引入()ln 7i i D X -的原因是想从截距和斜率两个方面考证将人均收入超过1097美元的国家定义为富国的话,贫国和富国的预期寿命是否存在显著的区别。
如果人均收入大于1097美元,那么虚拟变量取值为1,否则为0。
即:1 1097(l n()7)0 1097i i D X ⎧-=⎨⎩人均收入大于美元人均收入低于美元(3) 对于贫穷国,其回归方程为:2.409.39ln i X -+ 对于富国,其回归方程为:2.40(9.39-3.36)ln 3.36*721.12 6.03ln i i X X -++=+习题8.2参考答案由于有四个季度,因此引入三个季度虚拟变量1 1 1 1220 0 0 D D D ⎧⎧⎧===⎨⎨⎨⎩⎩⎩一季度二季度三季度其它其它其它(1)按照加法模型引入三个虚拟变量,模型为:(加法模型的作用是改变了设定模型的截距水平)i 0112233i i Y =D D D X ααααβμ+++++回归结果如下:123i 22ˆ=6910.449187.7317D 1169.32D 417.1182D 0.038008X t= (3.594792) (-0.28439 (1.835446) 065093256914 R =0.517642 R =0.416093 F=5.097454 DW=0.39625i Y -+-+)(-.) (.) (2)由于考虑利润对销售额的变化率发生变异,即斜率的改变,因此按照乘法模型引入三个虚拟变量,模型为:i 01i 1i 12i 23i 3i Y =X X D X D X D ββαααμ+++++回归结果如下:i i 1i 2i 322ˆ=7014.7570.037068X -0.000933X D 0.00791X D 0.002385X D t= (3.934394) (3.273896 (-0.216776) 0.0040180.58529 R =0.519733 R =0.418624 F=5.140311 DW=0.429628i Y ++--)() () (3)按照加法和乘法相结合的方式引入三个虚拟变量,模型为:i 01122331i 2i 13i 24i 3i Y =D D D X X D X D X D ααααββββμ++++++++回归结果为:i 123i i 1i 2i 322ˆY =10457.394752.26D 3764.21D 4635.46D 0.0159X 0.029X D 0.03X D 0.0266X D t= (2.566) (-0.87 (-0.6860.8320.6280824089960749 R =0.546701 R =0.348383 F=2---++++-)) () () (.) (.)(.).756686 DW=0.464982通过对三个模型对比分析可以看出,第三个模型的系数均不显著,模型一和二销售额的系数显著,其余系数也不显著。
方程都显著,但拟和程度都不是很好。
习题8.3参考解答:考虑到班次有三个属性,故在有截距项的回归方程中只能引入两个虚拟变量,按加法形式引入,模型设定形式为:12132i i Y D D u βββ=+++ 其中,i Y 为产出,110D ⎧=⎨⎩早班其他,210D ⎧=⎨⎩中班其他。
则回归结果如下:Variable Coefficient Std. Error t-Statistic Prob. C 40.42857 0.555329 72.80115 0.0000 D1 -5.714286 0.785353 -7.276069 0.0000 D29.1428570.78535311.641710.0000 R-squared0.952909 Mean dependent var 41.57143 Adjusted R-squared 0.947676 S.D. dependent var 6.423172 S.E. of regression 1.469262 Akaike info criterion 3.738961 Sum squared resid 38.85714 Schwarz criterion 3.888178 Log likelihood -36.25909 F-statistic 182.1176 Durbin-Watson stat2.331933 Prob(F-statistic)0.000000表中的红字表示在方差分析中需要用到的数据。
Sum squared resid 残差平方和;S.D. dependent var 被解释变量的标准差。
221()1iY Y n σ=--∑ 所以,TSS=(n-1)2σ依据上述数据,有:()26.423172211825.1427708TSS =⨯-=, 38.85714R S S= 825.142770838.857147E S ST S S R S S =-=-=/(1)/()ESS k F RSS n k -=- , 得182.1176F =与如下表所示的结果(《统计学》表5-4,pp167(第2版))相比较,结果完全一致。
方差来源 离差平方和 自由度 方差 F 值 组间 786.286 2 393.143 182.118组内 38.857 18 2.158总和825.14320习题8.6参考答案 引入虚拟变量:1 10 D ⎧=⎨⎩股份制非股份制建立回归模型:i 011i Y =D ααμ++回归结果如下:t 122ˆY =1518.696568.2274D (12.39374) (3.377868)R =0.195343 R 0.178223 DW=1.96144 F=11.40999t +==11(0)1518.696(1)1518.696568.22742086.9234E Y D E Y D ====+=可以看出,非股份制超市的销售规模平均为1518.696,而股份制超市的销售规模平均为2086.9234。
这就表明股份制因素对销售规模起到一定的影响。
习题8.5参考解答在Eviews 中按照给定数据进行录入,点击Quick ,录入grade c gpa tuce psi ,点击method ,在下拉菜单中,选择binary : 并选择logit ,则有:Dependent Variable: GRADE Method: ML - Binary Logit (Quadratic hill climbing) Date: 06/29/05 Time: 17:44 Sample: 1 32 Included observations: 32 Convergence achieved after 5 iterations Covariance matrix computed using second derivativesVariable Coefficient Std. Error z-Statistic Prob. C -13.02135 4.931324 -2.640537 0.0083 GPA 2.826113 1.262941 2.237723 0.0252 TUCE 0.095158 0.141554 0.672235 0.5014 PSI 2.378688 1.064564 2.234424 0.0255Mean dependent var 0.343750 S.D. dependent var 0.482559 S.E. of regression 0.384716 Akaike info criterion 1.055602 Sum squared resid 4.144171 Schwarz criterion 1.238819 Log likelihood -12.88963 Hannan-Quinn criter. 1.116333 Restr. log likelihood -20.59173 Avg. log likelihood -0.402801 LR statistic (3 df) 15.40419 McFadden R-squared 0.374038 Probability(LR stat) 0.001502 Obs with Dep=0 21 Total obs 32 Obs with Dep=1 11边际效应等于()2.8260.5340.1890.0950.0182.3790.499f ⎛⎫⎛⎫⎪ ⎪=⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ X ββ 其中,()()()13.02135 2.82613.11720.095221.9375 2.37870.43752213.02135 2.82613.11720.095221.9375 2.37870.437511ee f ee -+⨯+⨯+⨯-+⨯+⨯+⨯==++X βX βX β()20.33870.1889887460.18910.3387==≈+GPA TUCE PSI Mean 3.117188 21.93750 0.437500 Median 3.065000 22.50000 0.000000 Maximum 4.000000 29.00000 1.000000 Minimum 2.060000 12.00000 0.000000 Std. Dev. 0.466713 3.901509 0.504016 Skewness 0.122657 -0.525110 0.251976 Kurtosis 2.570068 3.048305 1.063492 Jarque-Bera 0.326695 1.473728 5.338708 Probability 0.849296 0.478612 0.069297 Sum99.75000 702.0000 14.00000 Sum Sq. Dev. 6.752447 471.8750 7.875000 Observations 32 32 32。