《固态相变原理及应用》第一章 金属固态相变基础
- 格式:pptx
- 大小:7.57 MB
- 文档页数:68
金属固态相变原理
金属固态相变原理是指金属在一定条件下从一种晶体结构转变为另一种晶体结构的现象。
金属固态相变是金属材料性质变化的根本原因,对于金属材料的微结构和力学性能具有重要影响。
金属固态相变通常发生在固态下的高温和高压条件下。
当金属的温度或压力发生变化,原子间的相互作用力也会发生变化,从而引起晶体结构的转变。
金属固态相变的过程中,原子重新排列形成新的晶体结构,相应地,金属材料的物理性质和力学性能也会发生改变。
金属固态相变的原理是基于金属的晶体结构和原子间的排列方式。
金属材料的晶体结构可以分为多种不同的形态,包括体心立方结构、面心立方结构、六方最密堆积结构等。
不同的晶体结构具有不同的密堆积方式和原子排列方式,决定了金属材料的力学性能和物理性质。
金属固态相变的原理还涉及到金属的晶格畸变和原子扩散。
晶格畸变是指金属晶体结构在相变过程中的形变和畸变现象,它可以影响金属材料的晶体结构稳定性和力学性能。
原子扩散是指金属内部原子的迁移和重新排列的过程,是金属固态相变发生的基础。
总之,金属固态相变原理是基于金属材料的晶体结构和原子间的相互作用力,通过改变材料的温度、压力和其他外界条件,使金属发生晶体结构的转变,进而影响金属材料的物理性质和
力学性能。
这一原理对于金属材料的研究和应用具有重要的意义。
第1章:奥氏体的形成1.金属固态相变的基础⑴热力学原理(自由能下降):固体中有元素扩散、自由能最低原则、降低自由能的过程⑵动力学原理(时间和温度):成份起伏,结构起伏,能量起伏→相变过程(形核、长大)发生相转变2.奥氏体的形成⑴热处理:通过加热、保温和冷却的方法,改变金属及合金的组织结构,使其获得所需要的性能的热加工工艺。
⑵奥氏体化:钢加热获得奥氏体的过程。
⑶奥氏体形成的热力学条件系统总的自由能变化ΔG:ΔG=-ΔG V+ΔG S+ΔGεΔGV——奥氏体与旧相体积自由能之差;ΔGS ——形成奥氏体时所增加的表面能;ΔGε——形成奥氏体时所增加的应变能ΔG<0,形成奥氏体。
⑷实际加热时临界点的变化加热:偏向高温,存在过热度;A C1,A C3,A CCm冷却:偏向低温,存在过冷度。
A r1,A r3,A rCm3.奥氏体的组织、结构⑴奥氏体的组织通常由多边形的等轴晶粒所组成,有时可观察到孪晶。
⑵奥氏体的结构①具有面心立方结构。
(奥氏体是C溶于γ-Fe中的固溶体。
合金钢中的奥氏体是C及合金元素溶于γ-Fe中的固溶体。
)②C是处于γ-Fe八面体的中心空隙处,即面心立方晶胞的中心或棱边的中点;③最大空隙的半径为0.052nm,与C原子半径(0.077 nm)比较接近。
C原子的存在,使奥氏体点阵常数增大④实际上奥氏体最大碳含量是2.11%(重量)4.奥氏体的性能⑴顺磁性。
用于相变点和残余奥氏体含量的测定等。
⑵比容最小。
也常利用这一性质借膨胀仪来测定奥氏体的转变情况。
⑶线膨胀系数最大。
利用奥氏体钢膨胀系数大的特性来做仪表元件。
⑷奥氏体的导热性能最差(除渗碳体外)。
奥氏体钢要慢速加热。
⑸奥氏体的塑性高,屈服强度低。
5.奥氏体的形成机制⑴奥氏体的形核①在铁素体与渗碳体的界面处依靠系统内的成分起伏、结构起伏和能量起伏形成。
②奥氏体形核于相界面处的原因:Ⅰ界面处碳浓度差大,有利于获得奥氏体晶核形成所需的碳浓度。
第一章金属固态相变基础固态相变:固态金属在加热和冷却过程中可能发生各种相的转变。
金属热处理:固态金属通过特定的加热和冷却,使之发生相、组织转变,获得所需组织性能的一种工艺过程。
1. 扩散型相变① 脱溶分解② 共析转变③ 有序化转变④ 块状转变⑤ 多型性转变⑥ 调幅分解贝氏体转变:钢中一种介于马氏体转变和珠光体转变之间的转变。
弹性应变能:新相与母相间存在点阵错配和体积错配时引起的应变能。
固态金属中存在各种晶体缺陷:如空位、位错、层错、晶界或亚晶界。
均匀形核:晶核在母相中无择优地任意均匀分布非均匀形核:晶核在母相的某些区域不均匀分布空位可通过加速扩散过程或释放自身能量提供形核驱动力而促进形核。
均匀形核位置;空位;位错;堆垛层错;晶界或相界;自由表面。
固态相变的特点一、相变阻力大二、新相与母相之间存在一定的晶体学位向关系三、新相习惯于在母相的一定晶面上形成——惯习现象四、扩散过程对相变的影响较大。
五、母相晶体缺陷对相变起促进作用六、易出现过渡相,有些反应不能进行到底,过渡相可以长期保留。
总之,在固态相变过程中表现出的各种特征都受控于既力求使自由能尽可能地降低又力求沿着阻力最小、做功最少的途径进行。
相变动力学:研究新相形成量(体积分数)与时间、温度关系的学科称为相变动力学。
吉布斯-汤姆斯(Gibbs-Thomson定律:相界面为曲面时,靠近相界面的母相中溶质原子的平衡浓度与曲面的曲率半径有关。
奥斯瓦尔德熟化在固态相变过程中,两个球形新相因半径不等导致其周围溶质原子浓度不等,溶质原子从小颗粒周围向大颗粒周围扩散,扩散的结果是,小颗粒逐渐溶解,大颗粒不断吸收来自小颗粒的溶质原子而长大,同时颗粒之间的距离将增加,位向关系:惯习面存在表明新相与母相存在一定晶体学位向关系。
新相与母相间为共格或半共格界面时,两相间必然存在一定的晶体学位向关系。
两相间无一定的位向关系,则其界面必定为非共格的。
存在晶体学位向关系,未必具有共格或半共格界面3. 纤维状组织的粗化纤维状组织的粗化较多地表现为以下两种方式。