专题练习平行线的判定
- 格式:doc
- 大小:1009.50 KB
- 文档页数:6
平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。
初二平行线的判定经典练习题平行线是初中数学中的重要概念之一,它在几何学中有着广泛的应用。
平行线的判定方法有很多种,下面将介绍一些经典的练习题,帮助大家掌握平行线的判定方法。
1. 判断下列直线是否平行:(1)直线l1:y = 2x + 1,直线l2:3x - 4y = 7(2)直线l1:2x - y + 3 = 0,直线l2:4x - 2y + 6 = 0(3)直线l1:x - 2y - 3 = 0,直线l2:2x - 4y - 6 = 0解答:(1)两直线斜率相等,l1的斜率为2,l2的斜率为3/4,不相等,因此两直线不平行。
(2)两直线斜率相等,l1的斜率为2/1,l2的斜率为4/2,相等,因此两直线平行。
(3)两直线斜率相等,l1的斜率为1/2,l2的斜率为2/4,相等,因此两直线平行。
2. 已知线段AB且CD平行于AB,点E是线段CD上的点,若DE = 2cm,DC = 5cm,BC = 10cm,求AE的长度。
解答:由线段比例定理可知:AE/EC = AB/BC代入已知条件,得到:AE/5 = 10/10解方程得到:AE = 5cm3. 如图,AB // DE,CB是三角形ACD的角平分线,若∠ACD = 60°,求∠CAB和∠ECB。
解答:由平行线性质可知,∠CAB = ∠ACD = 60°由角平分线性质可知,∠ECB = 1/2 * ∠ACD = 1/2 * 60° = 30°4. 在平面直角坐标系中,有四点A(1, 2),B(3, -1),C(4, 5),D(6, 2),判断线段AB和线段CD是否平行。
解答:利用斜率公式计算:线段AB的斜率为:(2 - (-1))/(1 - 3) = 3/(-2) = -3/2线段CD的斜率为:(2 - 5)/(6 - 4) = -3/2两斜率相等,因此线段AB与线段CD平行。
5. 如图,已知AB // EF,且∠BCD = 90°,AC = 6cm,BC = 8cm,DE = 4cm,求EF的长度。
平行线的判定专项练习题有答案Last revised by LE LE in 20211.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗为什么14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行为什么19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗为什么22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF 平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,D E⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗为什么45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN 平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC 上,EF⊥AB,垂足为F.(1)CD与EF平行吗为什么(2)如果∠1=∠2,DG∥BC吗为什么51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗(2)AB∥CD吗为什么56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗AB与CD呢若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行。
专题1.3 平行线的判定1.掌握同位角相等,两直线平行;2.掌握内错角相等,两直线平行;3.掌握同旁内角互补,两直线平行;4.掌握垂直同一直线的两条直线互相平行;知识点01 同位角相等两直线平行【知识点】判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简单说成: 同位角相等,两直线平行。
几何语言:∵∠1=∠2∴ AB ∥CD (同位角相等,两直线平行)【典型例题】例1.(2022秋·内蒙古乌兰察布·七年级校考期末)如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知13Ð=Ð,2+3=180Ðа,求证:AB 与DE 平行.证明:①:AB DE ∥;②:24180Ð+Ð=°,23180Ð+Ð=°;③:3=4ÐÐ;④:14Ð=Ð;⑤:13Ð=Ð.A .①②③④⑤B .②③⑤④①C .②④⑤③①D .③②④⑤①【答案】B 【分析】先证明3=4ÐÐ,结合13Ð=Ð,证明14Ð=Ð,从而可得结论.【详解】根据平行线的判定解答即可.证明:∵24180Ð+Ð=°(已知),24180Ð+Ð=°(邻补角的定义),∴3=4ÐÐ(同角的补角相等).∵13Ð=Ð(已知),∴14Ð=Ð(等量代换),∴AB DE ∥(同位角相等,两直线平行).所以排序正确的是②③⑤④①,故选:B .【点睛】本题考查的是补角的性质,平行线的判定,证明14Ð=Ð是解本题的关键.例2.2.(2022春·甘肃陇南·七年级校考阶段练习)如图,两直线a ,b 被直线c 所截,已知,162a b Ð=°∥,则2Ð的度数为( )A .62°B .108°C .118°D .128°【答案】C 【分析】根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.【详解】解:∵a ∥b ,∠1=62°,∴∠3=∠1=62°,∴∠2=180°-∠3=118°.故选:C .【点睛】此题考查了平行线的性质与邻补角的定义.解题的关键是熟练掌握两直线平行,同位角相等定理的应用.例3.(2022春·甘肃陇南·七年级校考期末)如图,AB MN ^,垂足为B ,CD MN ^,垂足为D ,1Ð=2Ð.在下面括号中填上理由.因为AB MN ^,CD MN ^,所以ABM Ð=CDM Ð=90°.又因为1Ð=2Ð( ),所以1ABM Ð-Ð=2CDM Ð-Ð(),即EBM Ð=FDM Ð.所以EB FD ∥( )【答案】 已知 等量减等量,差相等 同位角相等,两直线平行【分析】根据垂线的定义,得出ABM Ð=CDM Ð=90°,再根据角的等量关系,得出EBM Ð=FDM Ð,然后再根据同位角相等,两直线平行,得出EB FD ∥,最后根据解题过程的理由填写即可.【详解】因为AB MN ^,CD MN ^,所以ABM Ð=CDM Ð=90°.又因为1Ð=2Ð(已知),所以1ABM Ð-Ð=2CDM Ð-Ð(等量减等量,差相等),即EBM Ð=FDM Ð.所以EB FD ∥(同位角相等,两直线平行).【点睛】本题考查了垂线的定义、平行线的判定,解本题的关键在熟练掌握平行线的判定定理.【即学即练】P的是1.(2022春·浙江温州·七年级瑞安市安阳实验中学校考期中)下列图形中,能由∠1=∠2得到AB CD()A.B.C.D.【答案】D【分析】根据平行线的判定定理逐一判断即可.P,【详解】∵中由∠1=∠2不能得到AB CD∴不符合题意;∥,∵中由∠1=∠2得到AD CB∴不符合题意;P,∵中由∠1=∠2不能得到AB CD∴不符合题意;P,∵中由∠1=∠2得到AB CD∴符合题意;故选D.【点睛】本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题的关键.2.(2022秋·八年级单元测试)如图,1Ð和2Ð分别为直线3l与直线1l和2l相交所成角.如果162Ð=°,那么添加下列哪个条件后,可判定12l l ∥.( ).A .2118Ð=°B .4128Ð=°C .328Ð=°D .528Ð=°【答案】A 【分析】通过同位角相等两直线平行进行判定即可.【详解】A.∵2118Ð=°,∴∠3=180 º-∠2=62 º=∠1,∴能判定12l l ∥,此选项正确;B.∵4128Ð=°,∴∠3=180 º-∠4=52 º≠∠1,∴不能判定12l l ∥,此选项错误;C.∵328Ð=°,∴∠3≠∠1,∴不能判定12l l ∥,此选项错误;D.∵528Ð=°,∴∠3=∠28º≠∠1,∴不能判定12l l ∥,此选项错误;故选:A【点睛】此题考查平行线的判定,掌握同位角相等两直线平行是解答此题的关键.3.(2021·浙江·统考模拟预测)如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行【答案】C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C.【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.4.(2022春·天津滨海新·七年级统考期末)李强同学学完“相交线与平行线”一章后,在一本数学读物上看到一种只利用圆规和无刻度直尺作图的方法:①以∠AOB的顶点O为圆心,以适当长为半径画弧,交OA边于点M,交OB边于点N;②作一条射线CD,以点C为圆心,以OM长为半径画弧,与射线CD交于点E;③以点E为圆心,以MN长为半径画弧,与②中所画弧交于点F;④过点F作射线CP,则∠PCD=∠BOA.如图1:李强想利用这种方法过平面内一点Q作直线l的平行线a,如图2.(1)李强同学能借助上述方法作出直线l的平行线a吗?______(填“能”或“不能”).(2)如果能,请在图2中作出直线a, 保留作图痕迹,并说明能够证明这两条直线平行的理由:________________.【答案】能图见解析,同位角相等,两直线平行【分析】(1)根据题目中所列的方法即可判断;(2)根据题目中所列的方法即可画出图形【详解】解:(1)根据题目中的方法,作出角与已知角相等,再由平行线的判定从而得到平行线,即可用上述方法作出直线l的平行线a;(2)如图所示,证明这两条直线平行的理由:同位角相等,两直线平行故答案为:能;图见解析;同位角相等,两直线平行.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.5.(2020春·广东广州·七年级统考期末)完成下面的证明.如图,AC⊥BC,DG⊥AC,垂足分别为点C,G,∠1=∠2.求证:CD//EF.证明:∵AC⊥BC,DG⊥AC,(已知)∴∠DGA=∠BCA=90°,(垂直的定义)∴ // ( )∴∠2=∠BCD,( )又∵∠l=∠2,(已知)∴∠1=∠ ,(等量代换)∴CD//EF.(同位角相等,两直线平行)【答案】DG,BC,同位角相等,两直线平行,两直线平行,内错角相等,BCD.【分析】根据垂直的定义求出∠DGA=∠BCA=90°,根据平行线的判定得出DG//BC,根据平行线的性质得出∠2=∠BCD,求出∠1=∠BCD,根据平行线的判定得出即可.【详解】∵AC⊥BC,DG⊥AC(已知),∴∠DGA=∠BCA=90°,(垂直的定义),∴DG//BC(同位角相等,两直线平行),∴∠2=∠BCD(两直线平行,内错角相等),又∵∠l=∠2,(已知)∴∠1=∠BCD(等量代换),∴CD//EF(同位角相等,两直线平行),故答案为:DG,BC,同位角相等,两直线平行,两直线平行,内错角相等,BCD.【点睛】本题考查平行的证明,解题关键是通过角度的转化,推导得出∠1=∠BCD,从而证明平行.6.(2022秋·全国·八年级专题练习)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图①~④).从图中操作过程你知道小敏画平行线的依据吗?请把你的想法写出来.【答案】见解析【分析】由折叠的性质可得∠1=∠2=90°,根据同位角相等,即可证明两直线平行.【详解】由折叠得:AB⊥PE,CD⊥PE,∴∠1=∠2=90°,∥.∴AB CD∴依据是:同位角相等,两直线平行【点睛】本题考查了折叠的性质及平行线的判定,熟练掌握知识点是解题的关键.知识点02 内错角相等两直线平行【知识点】判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的判定 练习题一、选择题1.如图,下列条件不能判定1l //2l 的是( )A 21∠=∠B 32∠=∠C 54∠=∠D ︒=∠+∠180432. 如图,在长方形ABCD 中,E=BG=F=12AD=13AB=2,E 、H 、G 在同一条直线上,则阴影部分的面积等于( )。
A.8 B.12 C.16 D.203.如图所示,下列条件中,不能判定AB ∥CD 的是( ) A.AB ∥EF,CD ∥EF B.∠5=∠A; C.∠1=∠4 D.∠2=∠3二、填空题4.若a,b,c 是三条直线,如果a ∥b,b ∥c,那么___________。
5.在同一平面内,若直线a 、b 、c ,满足b a ⊥,c a ⊥,则b 与c 的位置关系是 。
6.如图 ①,已知长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图案②,再沿BF 折叠成图案③,则③中的∠CFE 的度数是__________。
7.将一副三角板摆放成如图所示的形状,图中1∠= 度.8.如图, 如果∠2=∠6,则______∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD.三、解答题9.如图:在四边形ABCD 中,∠1=40°,∠2=40°,AD 与BC 平行吗?为什么?10.如图,已知,,试问EF 是否平行GH ,并说明理由。
11.如图,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=60º,∠E=30°,试说明AB ∥CD.DG AEM ∠=∠21∠=∠12.如图,已知CDAB于D,EFAB于F,∠DGC=105°,∠BCG=75°,求∠1+∠2的度数.13.已知:如图⑿,CE 平分∠ACD,∠1=∠B,求证:AB∥CE14.如图:∠1=︒53,∠2=︒127,∠3=︒53,试说明直线AB与CD,BC与DE的位置关系。
七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。
1.已知:如图,BE平分∠ ABC,∠ 1=∠2.求证: BC∥DE.2.如图,已知∠ A=∠F,∠ C=∠D,试说明BD∥CE.3.如图所示, AB⊥BC,BC⊥CD,BF 和 CE是射线,并且∠ 1=∠2,试说明BF∥CE.4.如图, AB⊥BC,∠ 1+∠2=90°,∠ 2=∠3,求证: BE∥DF.5.如图, OP平分∠ MON, A、B 分别在 OP、 OM上,∠ BOA=∠BAO,那么 AB平行于 ON吗若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠ 1=∠2,∠ A=∠C.求证: AE∥BC.7.已知,如图 B、 D、 A 在一直线上,且∠ D=∠E,∠ ABE=∠D+∠E, BC是∠ ABE的平分线,求证: DE∥BC.8.如图,已知∠ AEC=∠A+∠C,试说明: AB∥CD.9.如图,已知AC∥ED, EB平分∠ AED,∠ 1=∠2,求证: AE∥BD.10.如图,直线AB、 CD与直线 EF 相交于 E、 F,已知:∠ 1=105°,∠ 2=75°,求证: AB∥CD.11.如图,∠ D=∠A,∠ B=∠FCB,求证: ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠ 1=∠2,求证: EB∥FC.13.如图所示所示,已知BE是∠B 的平分线,交AC于 E,其中∠ 1=∠2,那么DE∥BC吗为什么14.如图,已知∠ C=∠D,DB∥EC.AC与 DF平行吗试说明你的理由.15.如图, AC⊥AE,BD⊥BF,∠ 1=35°,∠ 2=35°,求证: AE∥BF.16.如图,已知AB∥CD,∠ 1=∠2,求证: BE∥CF.17.已知∠ BAD=∠DCB,∠ 1=∠3,求证: AD∥BC.18.如图, AD是三角形 ABC的角平分线, DE∥CA,并且交AB与点 E,∠ 1=∠2, DF与 AB 是否平行为什么19.如图,已知:∠ C=∠DAE,∠ B=∠D,那么AB平行于 DF吗请说明理由.20.如图,已知点 B 在 AC上, BD⊥BE,∠ 1+∠C=90°,问射线CF与 BD平行吗说明理由.21.已知∠1的度数是它补角的 3 倍,∠2 等于 45°,那么AB∥CD 吗为什么22.已知:如图,BDE是一条直线,∠ ABD=∠CDE,BF 平分∠ ABD, DG平分∠ CDE,求证: BF∥DG.23.如图,四边形ABCD中,∠ A=∠C=90°, BF、 DE分别平分∠ ABC、∠A DC.判断 DE、 BF 是否平行,并说明理由.24.如图,若∠ CAB=∠CED+∠CDE,求证: AB∥CD.25.如图, CD⊥AB,GF⊥AB,∠ 1=∠2.试说明DE∥BC.26.如图所示,∠ CAD=∠ACB,∠ D=90°, EF⊥CD.试说明:∠ AEF=∠B.27.已知:如图所示,C,P,D 三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠ 1=∠2.28.如图,∠ D=∠1,∠ E=∠2,DC⊥EC.求证: AD∥BE.29.如图,在四边形ABCD中,∠ A=∠C, BE平分∠ ABC, DF平分∠ ADC,试说明BE∥DF.30.已知:如图,∠ 1=∠2,∠ A=∠F,则∠C与∠D相等吗试说明理由.31.如图,在四边形ABCD中,∠ A=∠C=90°,∠ 1=∠2,∠ 3=∠4,求证: BE∥DF.32.如图,已知∠ 1=∠2求证:a∥b.33.如图, DE⊥AO 于 E,BO⊥AO 于 O,FC⊥AB 于 C,∠ 1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠ 1=∠2,∠ C=∠CDO,求证: CD∥OP.35.如图,已知DE平分∠ BDF, AF 平分∠ BAC,且∠ 1=∠2.求证( 1)DF∥AC;(2)DE∥AF.36.如图, AD平分∠ BAC, EF平分∠ DEC,且∠ 1=∠2,试说明DE与 AB的位置关系.37.如图,在△ ABC 中,点 D在 AB 上,∠ ACD=∠A,∠ BDC 的平分线交BC于点 E.求证: DE∥AC.38.如图, AB 与 CD相交于点O,并且∠ A=∠1,试问∠2 与∠B 满足什么关系时, AC∥BD 说明理由.39.如图,已知∠ 1=∠A,∠ 2=∠B,那么MN与 EF 平行吗如果平行,请说明理由.40.如图,直线 AB、 CD被直线 EF 所截,∠ 1+∠4=180°,求证: AB∥CD.41.如图所示,已知:∠ 1=∠2,∠ E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于 F,∠ GEF=25°,∠ 1=65°,则AB与 CD平行吗请说明理由.43.如图,已知∠ 1=∠2=90°,∠ 3=30°,∠ 4=60°,图中有几对平行线说说你的理由.44.直线 AB, CD被直线 EF 所截,∠ 1=∠2,直线AB 和 CD平行吗为什么45.已知:如图, AD⊥BC,EF⊥BC,∠ 1=∠2.求证: AB∥GF.46.如图,已知B、C、 D 三点在同一条直线上,∠ B=∠1,∠ 2=∠E,试说明AD∥CE.47.直线 AB、 CD与 GH交于 E、F, EM平分∠ BEF, FN平分∠ DFH,∠BEF=∠DFH,求证: EM∥FN.48.如图所示,∠ ABC=∠BCD,BE、 CF分别平分∠ ABC 和∠ BCD,请你说出BE与 CF 的位置关系,并说出你的理由.49.如图,若∠ 1=∠2,请判断DB与 EC的位置关系,并说明理由.50.如图,在△ ABC 中, CD⊥AB,垂足为D,点 E 在 BC上, EF⊥AB,垂足为F.(1) CD与 EF 平行吗为什么(2)如果∠ 1=∠2,DG∥BC 吗为什么51.如图,已知:HG平分∠ AHM, MN平分∠ DMH,且∠ AHM=∠DMH.问: GH与 MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠ C=∠1,∠2 和∠D互余, BE⊥FD 于点 G.求证: AB∥CD.53.如图,直线AB, CD被 EF所截,∠ 3=∠4,∠ 1=∠2,EG⊥FG.求证: AB∥CD.54.已知:如图,CD是直线, E 在直线 CD上,∠ 1=130°,∠ A=50°,求证:AB∥CD.55.如图,已知∠ 1=∠2,∠ DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC 吗(2)AB∥CD 吗为什么56.如图,四边形 ABCD,∠ 1=30°,∠ B=60°, AB⊥AC,则 AD与 BC一定平行吗 AB与 CD呢若平行请说明理由,反之则不用说明理由.57.已知:如图,∠ A=∠F,∠ C=∠D.求证: BD∥CE.58.如图, AD⊥BC 于点 D,∠ 1=2,∠ CDG=∠B,请你判断 EF 与 BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ ACD,∠ 1=∠B,求证: AB∥CE.60.如图,已知∠ 1=∠2,∠ 3=∠4,可以判定哪两条直线平行平行线的判定 60 题参考答案 :4.∵ AB⊥BC,∴∠ 3+∠4=90°.1.∵ BE 平分∠ ABC,∵∠ 2=∠3,∠ 1+∠2=90°,∴∠ 1=∠3,∴∠ 1=∠4,∵∠ 1=∠2,∴BE∥DF.∴∠ 2=∠3,5. AB平行于 ON.∴BC∥DE证明:∵ OP 平分∠ MON,2.∵∠ A=∠F(已知),∴∠ BOA=∠NOA,∴AC∥DF(内错角相等,两直线平行),∵∠ BOA=∠BAO,∴∠ C=∠CEF(两直线平行,内错角相等),∴∠ BAO=∠NOA,∵∠ C=∠D(已知),∴AB∥ON∴∠ D=∠CEF(等量代换),6.∵∠ 1=∠2,∴BD∥CE(同位角相等,两直线平行).∴DC∥AB,3.∵ AB⊥BC(已知),∴∠ A+∠ADC=180°.∴∠ ABC=90°(垂直定义);又∵∠ A=∠C,∵BC⊥CD(已知),∴∠ ADC+∠C=180°,∴∠ BCD=90°(垂直定义),∴AE∥BC.∴∠ ABC=∠DCB;7.∵ BC是∠ ABE 的平分线,∵∠ 1=∠2(已知),∴∠ ABC=∠CBE(角平分线定义),∴∠ ABC﹣∠ 2=∠DCB﹣∠ 1,∵∠ ABE=∠D+∠E=∠ABC+∠CBE,∠ D=∠E,即∠ FBC=∠ECB,∴∠ ABC=∠D,∴BF∥CE(内错角相等,两直线平行)∴DE∥BC8.过点 E 作 EF∥AB.∴AE∥BF.∵EF∥AB,16.∵ AB∥CD,∴∠ A=∠AEF;∴∠ ABC=∠BCD(两直线平行,内错角相等);又∵∠ AEC=∠A+∠C,∵∠ 1=∠2,∴∠ AEC=∠AEF+∠C;∴∠ ABC﹣∠ 1=∠BCD﹣∠ 2,而∠ AEC=∠AEF+∠CEF,即∠ EBC=∠BCF,∴∠ CEF=∠C,∴BE∥CF(内错角相等,两直线平行).∴EF∥CD,17.∵∠ BAD=DCB,∠ 1=∠3(已知),∴AB∥CD.∴∠ BAD﹣∠ 1=∠DCB﹣∠ 3(等式性质),即∠ 2=∠4,9.∵ AC∥ED,∴AD∥BC(内错角相等,两直线平行)∴∠ 1=∠4;18.DF∥AB.∵∠ 1=∠2,理由:∵ DE∥CA,∴∠ 2=∠4;∴∠ 1=∠CAD,又∵ EB 平分∠ AED,∵AD是三角形 ABC的角平分线,∴∠ 3=∠4;∴∠ BAD=∠CAD,∴∠ 2=∠3,∵∠ 1=∠2,∴AE∥BD∴∠ 2=∠BAD,10.∵∠ 1+∠BEF=180°,∠ 1=105°,∴DF∥AB∴∠ BEF=75°,19.AB∥DF( 2 分)∵∠ 2=75°,理由:∵∠ C=∠DAE,(已知)∴∠ BEF=∠2,∴AD∥BC,(内错角相等,两直线平行)( 2 分)∴AB∥CD.∴∠ D=∠DFC,(两直线平行,内错角相等)11.∵∠ D=∠A,∴∠ B=∠D,(已知)∴ED∥AB;∴∠ B=∠DFC,(2 分)∵∠ B=∠BCF,∴AB∥DF(同位角相等,两直线平行)∴AB∥CF;20.CF∥BD.理由如下:∴ED∥CF.∵BD⊥BE,12.∵ AB⊥BC,CD⊥BC(已知),∴∠ 1+∠2=90°;∴∠ ABC=∠BCD=90°(垂直定义);∵∠ 1+∠C=90°,又∵∠ 1=∠2(已知),∴∠ 2=∠C.∴∠ ABC﹣∠ 1=∠BCD﹣∠ 2(等量减等量,差相等),∴CF∥BD.∴∠ EBC=∠FCB,21.AB∥CD.( 1 分)∴EB∥FC(内错角相等,两直线平行)理由如下:13.∵ BE 是∠B 的平分线,∵∠ 1+∠MNC=180°,∠ MNC=∠1,∴∠ 1=∠CBE,∴∠ 1=135°.(2 分)∵∠ 1=∠2,又∵∠ AMN=∠2=45°,(3 分)∴∠ 2=∠CBE,∴∠ 1+∠AMN=180°.( 4 分)∴DE∥BC.∴AB∥CD14. AC与 DF平行,理由如下:22.∵ BF 平分∠ ABD, DG平分∠ CDE,∵BD∥EC,∴∠ 1=∠ABD,∠ 2=∠CDE,∴∠ DBC+∠C=180°,又∵∠ ABD=∠CDE,又∠ C=∠D,∴∠ 1=∠2,∴∠ DBC+∠D=180°,∴BF∥DG(同位角相等,两直线平行).∴AC∥DF.23.ED∥BF;证明如下:15.∵ AC⊥AE,BD⊥BF,∵四边形 ABCD中,∠ A=∠C=90°,∴∠ 1+∠3=∠2+∠4=90°,∴∠ ADC+∠ABC=180°,∵∠ 1=35°,∠ 2=35°,∵BF、 DE分别平分∠ ABC、∠ ADC,∴∠ 3=∠4,∴∠ ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ ADE+∠ABF=90°,又∵∠ A=90°,∠ ADE+∠AED=90°,∴∠ AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ ECD中∵∠ C+∠CED+∠CDE=180°(三角形内角和定理)又∵∠ CAB=∠CED+∠CDE(已知),∴∠ C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵ CD⊥AB,GF⊥AB,,∵∠ 1=∠DGF,又∵∠ 1=∠2,∴∠ 2=∠DGF,∴DB∥EC,∴∠ DBA=∠C,∴∠ C=∠D31.∵四边形ABCD中,∠ A=∠C=90°,∴∠ ABC+∠CDA=180°,∵∠ 1=∠2,∠ 3=∠4,∴∠ 2+∠3=90°,∴CD∥FG,∵∠ A=90°,∴∠ 2=∠DCG;∴∠ 1+∠AEB=90°,又∵∠ 1=∠2,∵∠ 1=∠2,∴∠ DCG=∠1,∴∠ AEB=∠3,∴DE∥BC∴BE∥FD.26.∵∠ CAD=∠ACB,32.∵∠ 1=∠2,∠ 2=∠3,∴AD∥BC,∴∠ 1=∠3,∵EF⊥CD,∴a∥b.∴∠ EFC=90°33.CF∥OD.∵∠ D=90°,理由:∵ DE⊥AO,BO⊥AO,∴∠ EFC=∠D,∴AD∥EF,∴DE∥BO,∴∠ 3=∠2,∴BC∥EF,∵∠ 1=∠2,∴∠ AEB=∠B.∴∠ 1=∠3,27.∵∠ E=∠ F,∴CF∥OD∴AE∥FP,34.∵∠ DOB是△ COD的外角,∴∠ PAE=∠APF;又∵∠ BAP+∠APD=180°,∴∠ C+∠CDO=∠DOB,又∵∠ DOB=∠1+∠2,∴AB∥CD,而∠ 1=∠2,∠ C=∠CDO,∴∠ BAP=∠APC,即∠ 2+∠PAE=∠1+∠APF;∴∠ 2=∠C,∴∠ 2=∠1∴CD∥OP28.∵ DC⊥EC,35.( 1)∵ DE平分∠ BDF,AF 平分∠ BAC,∴∠ 1+∠2=90°,∴∠ BDF=2∠1,∠ BAC=2∠2,又∠ D=∠1,∠ E=∠2,又∵∠ 1=∠2,∴∠ D+∠1+∠E+∠2=180°.∴∠ BDF=∠BAC,根据三角形的内角和定理,得∴DF∥AC;∠A+∠B=180°,∴AD∥BE ( 2)∵A F 平分∠ BAC,∴∠ BAF=∠2.29.∵∠ A+∠ABC+∠C+∠CDA=360°又∵∠ 1=∠2,而∠ A=∠C,BE平分∠ ABC, DF 平分∠ CDA∴∠ 1=∠BAF,∴2∠A+2∠ABE+2∠ADF=360°∴DE∥AF.即∠ A+∠ABE+∠ADF=180°36.DE∥AB,又∠ A+∠ABE+∠AEB=180°∵AD平分∠BAC,∴∠ AEB=∠ADF∴BE∥DF30.∠ C=∠D.理由如下:∵∠ A=∠F,∴∠ BAC=2∠1,∵EF 平分∠ DEC,∴∠ DEC=2∠2,∵∠ 1=∠2,∴DF∥AC,∴∠ BAC=∠DEC,∴∠ D=∠DBA.∴DE∥AB.37.∵∠ BDE+∠CDE=∠A+∠ACD,又 DE是∠ BDC的平分线,∠ ACD=∠A,∴∠ A=∠BDE,∴DE∥AC.38.∠2与∠B相等时, AC∥BD.理由如下:∵∠ A=∠1,∠ 1=∠2,∴∠ A=∠2,∵∠ 2=∠B,∴∠ A=∠B,∴AC∥BD.39. MN与 EF平行.理由如下:∵∠ 1=∠A,∴MN∥AB,∵∠ 2=∠B,∴E F∥AB,∴M N∥EF.40.∵∠ 1+∠2=180°,∠ 1+∠4=180°,∴∠ 2=∠4,∴AB∥CD.41.∵∠ E=∠F,∴BE∥CF,∴∠ EBC=∠BCF,∵∠ 1=∠2,∴∠ CBA=∠DCB,∴AB∥CD.42.∵ EF⊥CD 于 F,∴∠ EFG=90°,∵∠ GEF=25°,∴∠ EGF=65°,∵∠ 1=65°,∴∠ 1=∠EGF,∴AB∥CD.43.图中共有 2 对平行线.①AB∥C D.理由如下:∵∠ 1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠ 2=90°,∴∠ 4+∠5=90°,又∵∠ 3=30°,∠ 4=60°,∴∠ 3=∠5,∴E F∥HG(同位角相等,两直线平行).综上所述,图中共有 2 对平行线,它们是:AB∥CD、EF∥HG 44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠ 2=∠3,∴A B∥CD.45.∵ AD⊥BC,EF⊥BC(已知),∴∠ ADB=∠EFC=90°(垂直的定义),∴∠ B=90°﹣∠ 1(直角三角形两锐角互余),∠G FC=90°﹣∠ 2(互余的定义),∵∠ 1=∠2(已知),∴∠ B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠ B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠ 2=∠ADE(两直线平行,内错角相等)∵∠ 2=∠E,∴∠ E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵ EM平分∠ BEF, FN平分∠DFH,∴∠ BEF=2∠MEF,∠DFH=2∠NFH,∵∠ BEF=∠DFH,∴∠ MEF=∠NF H,∴EM∥FN48.BE∥CF,理由是:∵ BE, CF 分别平分∠ ABC 和∠ BCD,∴∠ 1=∠ABC,∠ 2=∠BCD,∵∠ ABC=∠BCD,∴∠ 1=∠2,∴BE∥CF.49. DB与 EC的位置关系是平行,理由:∵∠ 1=∠3,∠ 2=∠4(对顶角相等),又∵∠ 1=∠2,∴∠ 3=∠4,∴BD∥EC.50.( 1)CD∥EF,理由是:∵ CD⊥AB,EF⊥AB,∴∠ CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵ CD∥EF,∴∠ 2=∠BCD,∵∠ 1=∠2,∴∠ 1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠ AHM, MN平分∠ DNH(已知),∴∠ GHM∠AHM,∠ NMH=∠DMH(角平分线定义),而∠ AHM=∠DMH(已知)∴∠ GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行)52.∵ BE⊥FD,∴∠ EGD=90°,∴∠ 1+∠D=90°,又∠2和∠D 互余,即∠ 2+∠D=90°,∴∠ 1=∠2,即∠ BAD+∠B=180°,又已知∠ C=∠1,∴AD∥BC.∴∠ C=∠2,( 2) AB与 CD不一定平行.∴AB∥CD57.∵∠ A=∠F,53.∵ EG⊥FG,∴AC∥DF,∴∠ G=90°,∴∠ C=∠FEC,∴∠ 1+∠3=90°,∵∠ C=∠D,∵∠ 1=∠2,∠ 3=∠4,∴∠ D=∠FEC,∴∠ 1+∠2+∠3+∠4=180°,∴BD∥CE.∴AB∥CD.58. EF 与 BC的位置关系是垂直关系.54.:∵∠ 1+∠2=180°,∠ 1=130°,证明:∵∠ CDG=∠B(已知),∴∠ 2=50°,∴DG∥AB(同位角相等,两直线平行),∵∠ A=50°,∴∠ 1=∠DAB(两直线平行,内错角相等),∴∠ A=∠2,又∠ 1=2(已知),∴AB∥CD.∴EF∥AD(内错角相等,两直线平行),55.( 1)∵ DE⊥AC,BF⊥AC,∴∠ EFB=∠ADB(两直线平行,同位角相等),∴∠ AED=∠CFB=90°,又 AD⊥BC于点 D(已知),∴∠ DAE+∠1=90°,∠ BCF+∠2=90°,∴∠ ADB=90°,∵∠ 1=∠2,∴∠ EFB=∠ADB=90°,∴∠ DAE=∠BCF,所以 EF与 BC的位置关系是垂直.∴AD∥BC;59.∵ CE 平分∠ ACD,( 2)AB∥CD.∴∠ 1=∠2,理由如下:∵∠ DAE=∠BCF,∠ DAB=∠DCB,∵∠ 1=∠B,∴∠ DAB﹣∠ DAE=∠DCB﹣∠ BCF,∴∠ 2=∠B,即∠ CAB=∠ACD,∴AB∥CE.∴AB∥CD.60.∵∠ 1=∠2,56.( 1) AD与 BC一定平行.理由如下:∴AB∥CD,∵AB⊥AC,∵∠ 3=∠4,∴∠ BAC=90°,∴AD∥BC,∵∠ 1=30°,∠ B=60°,故可以判定 AB∥CD,AD∥BC.∴∠ 1+∠BAC+∠B=180°,。
1.2平行线的判定⑴【要点预习】1•平行线的判定1.两条直线被第三条直线所截,如果______________ 相等,那么这两条直线平行.简单地说,________ 相等,两直线平行.2•平行线的判定1的特殊情形:在同一平面内,____________ 于同一条直线的两条直线互相平行.【课前热身】1. ____________________________________ 两条平行线被第三条直线所截,共有对同位角.答案:42. _________________________________________ 街道两侧路灯的柱子的位置关系是.答案:平行3. 如图1,直线AB、CD被直线EF所截,如果/ 1 =Z 2,则__________ .理由是(_______________________________________ ).答案:AB // CD 同位角相等,两直线平行4. _____________________________________________________ 在同一平面内,若a b,a c,则a与c的位置关系是 ____________________________________________ .答案:a // c图2【讲练互动】【例1】如图2,直线AB, CD被直线EF, GH所截,下列结论:(1)若/仁/ 2,贝U AB // CD ;2)若/ 仁/2,贝U EF// GH;3)若/ 1 = / 3,贝U AB // CD ;(4)若/仁/3,则EF // GH.其中正确的是............................. ( )A. (1)(3)B. (1)(4)C.⑵⑶D.⑵⑷【解析】/ 1与/ 2是直线EF, GH被AB所截得到的同位角;/ 1与/ 3是AB,CD被EF所截形成的同位角【答案】C【变式训练】1. ................................................................................................. 如图3所示,如果/ D= / EFC,那么 ..................................... (图3A. AD // BCB.EF // BCC.AB // DCD.AD // EF【答案】D【例2】如图4,直线a,b 被直线c 所截,且/ 2+ / 3= 1800,则a // b 吗?请说明理由【分析】只要说明同位角/ 仁/3即可. 【解】•••/ 2+ / 3=180o, / 1 + / 2=180o,1 = / 3,二 a / b.【绿色通道】利用转化思想是解决平行线问题主要方法•【变式训练】 2.如图5,已知直线 EF 和AB, CD 分别相交于 K, H,且EG丄 AB, / CHF=60o, / E=30o,试说明 AB // CD.【解】•/ EG 丄 AB, ••• / EGK=90o. •/ / E=30o, /• / EKG =60o.•••/ CHF=60o, / CHF = / EHD , EHD =60o. •••/ EKG= / EHD, • AB // CD.【例3】如图6,在海上有两个观测所 A 和B,且观测所B 在A 的正东方向•若在A 观测所测得船M 的航行方向是北偏东 50o,在B 观测所得船N 的航行方向也是 北偏东50o,问船M 的航向AM 与船N 的航向BN 是否平行.请说明 理由• 【解】AM 与BN 平行.•••/ MAC= / NBC=50o, • AM // BN.【变式训练】3. 一辆货车在仓库装满货物准备运往超市,驶出仓库门口后开始向东行驶,途中向右 拐了 50o 角,接着向前行驶,走了一段路程后,又向左拐了 50o 角,如图所示•此时汽车和原来的行驶方向相同吗?你的根据是什么?【解】相同•理由如下:•••/ AOB= / A /O /B /=50o, • OA // oH, 即汽车和原来的行驶方向相同 .【同步测控】基础自测1•如图 8,若/ ADE= / ABC,贝U图4东A. DE // BFD. / A =Z ABEA. DE // BFB. DC // BFC. DE // BCD. DC //BC2•如图8,若/ ACD= / F 则B. DC // BFC. DE // BCD. DC // BCA. / C =Z ABEB. /A =Z EBDC. / C =Z ABC4. ______________________________________ 如图10,若/ 1=52o ,问应使/ C= _____________________________________ 度时,能使直线 AB / CD.5. 如果11丄12 , |3丄|2,贝廿11 ________ 13.理由是 ________________________________6. _____________________________________________ 如图11,请你填写一个适当的条件: _____________________________________ ,使AD // BC .7.如图12,若/ 1 + Z 2=180o ,则11// 12.试说明理由(填空) 解:•••/ 2+Z 3= ______________ (平角的意义), 又•••/ 1 + Z 2=180o ( ______________ ),•••/ 仁 _______ ( ______________________________ ), 丨1 / 12 ( _______________________________ ).8. 如图13,已知△ ABC 及AC 上一点 D.过D 作DE // BC,交AB 于点E;作DF // AB,交BC 于点F.9. 如图14,/ ABC =Z DEC , BP 平分/ ABC , EF 平分/ DEC ,试找出图中的各组平行线3.如图9,能判定 图9图11EB // AC 的条件是图1411|2那么DE 与AB 是否平行?请说明理由图1610. 如图 15,在厶 ABC 中,点 D, E 分别在 AC, BC 上•已知/ C=30o, / CDE=115o, / B=35o,能力提升11./ 1与/ 2是两条直线被第三条直线所截的同位角,若/1= 500,则/ 2为……( )A. 50 °B. 130 °C. 50。
专题二平行线及其判断【要点归纳】
1.在同一平面内,不相交的两条直线叫做,用符号“∥”表示2.平行线的判定方法:
(1)
,两直线平行;
(2),两直线平行;(3),两直线平行
3
.平行公理:
(1)过已知直线外一点, 一条直线与已知直线平行;
(2)两条直线都与第三条直线平行,那么这两条直线 ,
即平行于同一条直线的两条直线_____________.
如果a∥c,b∥c,那么a____c。
b
a
c a
c
b
(3)在同一平面内,两条直线都与第三条直线垂直,那么这两条直线,即垂直于同一条直线的两条直线_____________
如果b⊥a,c⊥a,那么b____c.
【例题讲解】
【例1】如图5.2-4所示,根据下列条件,可推得哪两条直线平行,并说明根据.(1)∠ABD=∠CDB;
(2)∠CBA+∠BAD=180°;
(3)∠ABC=∠DCE。
【例2】如图5.2-5,∠A+∠B=180°,∠EFC=∠DCG,试说明:AD∥EF。
【例3】如图5.2-7,若∠B=102°,∠1=78°,则AB与CD平行吗?请说明理由.
【例4】如图5。
2-8,EC,FD与直线AB交于C,D两点,∠1=∠2,则EC∥DF吗?为什么?
【例5】如图5.2-9已知FE⊥CD于E,∠1=64°,∠2=26°,试说明AB∥CD。
【随堂练习】
1。
已知:如图5.2-10,BE平分∠ABC,且∠1=∠3,则DE与BC平行吗?为什么?
2。
(1)如图5.2-13,AF,CE,BD交于点B,BE平分∠DBF,添加条件∠EBF=,可使DB∥AC,说明理由.
(2)(贵州铜仁中考题)如图5.2-14,请填写一个你认为恰当的条件,使AB//CD.
3.如图5。
2-18所示,由(1)∠1=∠3,(2)∠BAD=∠DCB可以判定哪两条直线平行?
4。
如图5。
2-20所示,由∠1=∠2能得到AB ∥CD 的是( )
5.如图5。
2-22,给出了过直线l 外一点P 作已知直线l 的平行线的方法,其依据是( ) A .同位角相等,两直线平行 B .内错角相等,两直线平行 C .同旁内角互补,两直线平行 D .以上都对
6.如图5.2-23,直线EF 分别与直线AB ,CD 相交于点G ,H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M ,则∠3=( )
A .60° B.65° C.70° D.130°
7.如图5。
2-24示,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )
A .∠3=∠4
B .∠A +∠AD
C -180° C .∠1=∠2
D .∠A =∠5 8.如图5.2-25所示的图形中,由∠1=∠2能得到AB ∥CD 的是( )
9.下列说法正确的是( )
A 。
在同一平面内,不相交的两条直线叫平行线 B.在同一平面内,不相交的两条线叫平行线 C.在同一平面内,不相交的两条线段叫平行线 D 。
在同一平面内,不相交的两条射线叫平行线 10.若直线则a ∥b ,b ∥c ,则a ∥c 的依据是( )
A .平行的性质
B .等量代换
C .平行于同一直线的两条直线平行
D .以上都不对
【课后作业】
1.如图5。
2-26,已知∠C =100°,若增加一个条件使得AB ∥CD ,试写出符合要求的一个条
A B D
C
1
2
C
A 1 2 D
B
A B 1
2
C D
图5.2—25
A B D
C
1 2
A .
B .
C .
D .
P
l
图5.2—22
图5.2—23
图5.2—24
E 1 G A D
3 2 H C
F
1
3 B C
E D
A
5
4 2
B M
件:
.
2.如图5。
2-27,下列各条件中:①∠1+∠2=180°;②∠1+∠4=180°;③∠2+∠4=180°,
的有.
3.如图5.2-28,已知∠1=∠2,DE平分∠BDC,DE交于AB点E,试说明AB∥CD,
4.如图5。
2-29所示,已知∠ACB=70°,∠ACB=60°,∠ABC=50°.求证:AB∥CD.
5.如图5。
2-30,已知∠1=∠2.请问BF与CE存在怎样的关系?并证明你的结论。
6.下列说法正确的是( )
A.不相交的两条直线必定平行
B.在同一平面内,两条直线的位置关系有相交,平行,垂直
C.在同一平面内,不相交的两条射线必定平行 D.在同一平面内,不平行的两条直线必定相交7.下列说法不正确的有()
①过任意一点P可作已知直线l的一条平行线;②同一平面内的两条不相交的直线是平行线;
③过直线外一点只能画一条直线与已知直线平行;④平行于同一直线的两条直线平行
A.0个 B.1个 C.2个 D.3个
G
D
2
F
1
E
B A
C
图5.2—28 F
A E
B
D
C
4
2
1
3
G
D
2
F
1
E
B A
C
图5.2—26 图5.2—27 图5.2—28
a
b
8.在同一平面内,下列说法正确的有( )
①若a 与b 相交,b 于c 相交,则a 与c 相交;②若a ∥b ,b 与c 相交(不重合),则a 与c 相交;③若,,a b b c ⊥⊥则a c ⊥;④若a ∥b ,b ∥c ,则a ∥c . A .1个 B .2个 C .3个
D .都不正确
9.如图, 下列条件中,能判断a ∥b 的条件有( )
①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180° A .1个 B .2个 C .3个 D .4个
3452
1
b
c
a
第10题图A
B E
512
34
l 2l 1
第11题图
第9题 第10题 第11题 第12题
10.如图,给出了过直线l 外一点P ,作已知直线l 的平行线的方法,其依据是( )
A .同位角相等,两直线平行
B .内错角相等,两直线平行
C .同旁内角互补,两直线平行
D .过直线外一点,有且只有一条直线与已知直线平行
11.如图:(1)∵∠B = ,∴BE ∥CH ( )
(2)∵∠ADC = ,∴AD ∥BF ( )
12.如图,下列条件中,不能判定直线l 1∥l 2的是( ) A .∠1=∠3 B .∠2=∠3
C .∠4=∠5
D .∠2+∠4=180°
13.如图,能判断AB ∥CD 的条件是( )
A .∠1=∠2
B .∠1+∠2=180°
C .∠2=∠4
D .∠2+∠3=180°
4
2
13
第13题图
C
D
A
8
7
65
4
321
第14题图
A C
B
第15题图
E
C
14.如图,下列条件中能判断AB ∥CD 的是( )
A .∠1=∠5
B .∠4=∠8
C .∠1+∠2+∠3+∠4=180°
D .∠2=∠6
15.如图,能判断AB ∥CE 的条件的是( )
A .∠
B =∠ACE B .∠A =∠ECD
C .∠B =∠ACB
D .∠A =∠ACE
16.已知:如图,BE ∥CF ,BE 、CF 分别平分∠ABC 和∠BCD ,那么AB 与CD 平行吗?为什么?
21
B
C
D E
F
17.如图,AE 平分∠DAC ,∠DAC =120°,∠C =60°,AE 与BC 平行吗?为什么?
18。
如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.
D
19.19。
如图,∠BAP与∠APD互补,∠BAE=∠CPF.求证:∠E=∠F.
对于本题小丽是这样证明的,请你将她的证明过程补充完整.
A
证明:∵∠BAP与∠APD互补(已知),
∴AB∥CD().
∴∠BAP=∠APC().
∵∠BAE=∠CPF(已知),
∴∠BAP-∠BAE=∠APC-∠CPF( ).
即 = .
∴AE∥FP.
∴∠E=∠F.。